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Abstract: Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex
and debilitating illness with a significant global prevalence, affecting over 65 million individuals. It
affects various systems, including the immune, neurological, gastrointestinal, and circulatory systems.
Studies have shown abnormalities in immune cell types, increased inflammatory cytokines, and brain
abnormalities. Further research is needed to identify consistent biomarkers and develop targeted
therapies. This study uses explainable artificial intelligence and machine learning techniques to
identify discriminative metabolites for ME/CFS. Material and Methods: The model investigates
a metabolomics dataset of CFS patients and healthy controls, including 26 healthy controls and
26 ME/CFS patients aged 22–72. The dataset encapsulated 768 metabolites into nine metabolic super-
pathways: amino acids, carbohydrates, cofactors, vitamins, energy, lipids, nucleotides, peptides, and
xenobiotics. Random forest methods together with other classifiers were applied to the data to classify
individuals as ME/CFS patients and healthy individuals. The classification learning algorithms’
performance in the validation step was evaluated using a variety of methods, including the traditional
hold-out validation method, as well as the more modern cross-validation and bootstrap methods.
Explainable artificial intelligence approaches were applied to clinically explain the optimum model’s
prediction decisions. Results: The metabolomics of C-glycosyltryptophan, oleoylcholine, cortisone,
and 3-hydroxydecanoate were determined to be crucial for ME/CFS diagnosis. The random forest
model outperformed the other classifiers in ME/CFS prediction using the 1000-iteration bootstrapping
method, achieving 98% accuracy, precision, recall, F1 score, 0.01 Brier score, and 99% AUC. According
to the obtained results, the bootstrap validation approach demonstrated the highest classification
outcomes. Conclusion: The proposed model accurately classifies ME/CFS patients based on the
selected biomarker candidate metabolites. It offers a clear interpretation of risk estimation for
ME/CFS, aiding physicians in comprehending the significance of key metabolomic features within
the model.

Keywords: explainable artificial intelligence; myalgic encephalomyelitis/chronic fatigue syndrome;
metabolomics data; clinical classification
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1. Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and
debilitating disease. It may come with broad heterogeneity and common symptoms, in-
cluding severe fatigue, post-exertional malaise (PEM), restless sleep, cognitive impairment,
and orthostatic intolerance [1]. The prevalence of ME/CFS is significant, with more than
65 million suffering individuals worldwide, indicating the significant impact of the disease
on a global scale [2]. In addition, the true prevalence of the disease is difficult to determine
due to factors such as underdiagnoses and misdiagnoses [3]. Although ME/CFS has been
observed to be diagnosed more frequently in women, it is not a female-specific condition,
and approximately 35–40% of patients with ME/CFS are male [4]. The reasons behind
the higher prevalence in women are not fully understood [4,5] and may be influenced by
a variety of factors such as hormonal differences, genetic predisposition, and social and
cultural factors.

Dysfunctions of various systems, including the immune, neurological, gastrointestinal,
and circulatory systems, have been reported in individuals with ME/CFS [6–9]. Studies
focusing on the immune system have revealed abnormalities in various immune cell types
among ME/CFS patients, suggesting that the disease is an immune disorder [6,7]. Increased
levels of inflammatory cytokines were also observed in the plasma of ME/CFS patients
compared with healthy controls, indicating an increased inflammatory response [10].

Neuroimaging studies have identified abnormalities in the brains of ME/CFS patients,
including changes in brain structure and function. These findings add to the understanding
of cognitive impairment and other neurological symptoms experienced by individuals
with ME/CFS [11]. Digestive problems are common among ME/CFS patients, with a
significant proportion reporting symptoms consistent with irritable bowel syndrome (IBS).
This suggests that the gastrointestinal tract plays a potential role in the pathophysiology of
the disease [12,13].

The circulatory system plays a very important role in providing essential compounds
and removing metabolic wastes from various organs [14]. Several studies have been
conducted to characterize the blood metabolome of ME/CFS patients to gain insight into
the underlying causes of the disease and to establish diagnostic strategies [14]. These
studies have highlighted differences in amino acids, lipids, and imbalances in energy and
redox metabolisms. However, it is important to note that no consistently altered metabolites
were identified in all studies, which poses a challenge to a full understanding of the disease.

The surprising nature of ME/CFS, in which multiple organ systems are affected [6–14],
underlines the complexity of the disease and the need for further research. ME/CFS is a
heterogeneous condition, and individual variations in symptoms and underlying mecha-
nisms may contribute to the difficulty in identifying consistent biomarkers or metabolic
changes. More comprehensive and collaborative research efforts are required to un-
cover the mechanisms underlying ME/CFS, identify reliable biomarkers, and develop
targeted therapies. The involvement of multiple organ systems highlights the impor-
tance of a multidisciplinary approach in the diagnosis, treatment, and management of this
complex disease.

Explainable artificial intelligence (XAI) based on machine learning has recently been
utilized in healthcare diagnostics [4,15]. Valdes et al. applied an XGBoost model to
predict the prevalence, demographics, and costs of ME/CFS. The model was developed
based on the characteristics of individuals diagnosed with ME. The results showed a
prevalence rate of 835/100,000 in the United States population study [4]. Yagin et al.
proposed an XAI model to extract gene biomarkers for COVID-19. The model applied local
interpretable model-agnostic explanations (LIME) and SHAPley Additive exPlanations
(SHAP) approaches, which identified three genes that can predict the disease with an
accuracy of 93% [15].

In this study, we comprehensively analyzed the metabolites of ME/CFS patients
compared to normal controls to identify patterns in metabolites that could potentially
serve as biomarkers for the disease. What makes our analysis comprehensive is that we
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examined metabolites belonging to nine different super pathways, aiming to address the
heterogeneous nature of the disease and understand its mechanisms of development and
progression. To achieve this, we used a combination of XAI methodology and ML. This
methodology enabled us to identify discriminative metabolites for ME/CFS.

2. Materials and Methods
2.1. ME/CFS Metabolomics Dataset

The metabolomics data of CFS patients and healthy controls were utilized to perform
the experiments in the study [2]. All of the participants were female and consisted of
26 healthy controls and 26 ME/CFS patients aged 22 to 72 years and with a similar body
mass index (BMI). Data for 768 different identified metabolites were obtained from the
plasma sample used in the global metabolomics panel. According to the standards set by
Metabolon®, the detected substances were further classified into nine different metabolic
super-pathways. The distribution of identified compounds is as follows: amino acids 196,
carbohydrates 25, cofactors and vitamins 29, energy 10, lipids 259, nucleotides 33, partially
defined molecules 2, peptides 33, and xenobiotics 181 (Supplementary Files S1 and S2).

2.2. Experimental Setup and Proposed Framework

The Python programming language was used to perform the research experiments.
The experiments were conducted in an environment containing a graphics processing
unit (GPU) backend with 16 GB of RAM and 90 GB of disk space. sklearn version 1.2.2,
numpy version 1.22.4, seaborn version 0.12.2, pandas version 1.5.3, and matplotlib version
3.7.1 were the used machine learning libraries. An architectural representation of the
proposed methodology is depicted in Figure 1. Diagnosis and biomarker discovery of
patients suffering from ME/CFS and healthy controls form the basis of this proposed study.
Below is a step-by-step description of the proposed methodology:

• The first step involves obtaining metabolomics data to be used in the experiments.
Metabolomics data are based on results from a study of 26 healthy controls and
26 ME/CFS patients aged 22 to 72 years with similar BMI.

• In the second step, artificial intelligence-based random forest (RF) feature selection
is applied to identify biomarker candidate metabolites and to eliminate the high
dimensionality problem in omics data. Because the metabolomics data have a large
number of feature dimensions, the performance scores of the predicted models may
be lower. Therefore, the twenty most important metabolites contributing to improved
performance scores in ME/CFS prediction were identified.

• In the third step, 80–20% split, 5-fold cross-validation (CV), and 1000 replicate boot-
strap approaches were used to validate the prediction models to be generated using
the selected biomarker candidate metabolites, and the results were compared.

• In the fourth step, Bayesian hyper-parameter optimization was used to determine the
optimal parameters.

• In the fifth step, predictive models were built to diagnose ME/CFS patients. For this
purpose, the Gaussian naive Bayes (GNB), gradient boosting classifier (GBC), logistic
regression (LR), and random forest classifier (RFC) algorithms were constructed.
The performance of the models was evaluated using the area under (AUC) receiver
operating characteristic (ROC) curve, the Brier score, accuracy, precision, recall, and
the F1 score. While the primary purpose of the methodology is biomarker discovery
and diagnosis of ME/CFS, an important secondary purpose is to provide users with
indicative probability scores. Therefore, we evaluated the quality of the probabilities
with a calibration curve and by calculating the Brier score.

• Finally, XAI approaches SHAP and TreeMap were applied to the proposed model
in order to provide transparency and interpretability to the model and to explain
intuitively the decisions made by the model. With the help of SHAP and TreeMap, the
rationale and process behind a particular decision made by the proposed model can
be grasped.
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Figure 1. The proposed methodology architecture analysis for detecting healthy individuals and
ME/CFS patients.

2.3. Feature Selection

For feature selection and dimensional reduction from the utilized metabolomics data,
the RF method, which is based on artificial intelligence, was applied in this study. The
mean decrease impurity method is commonly utilized to carry out the process of choosing
features that are included in the random forest model. The impurity of the decision trees
in the forest is used as a factor in the calculation of the important score for each feature.
This score is based on the average amount that each feature reduces the impurity of the
decision trees. The feature importance score was normalized in such a way that the total of
all features’ importance values is equal to 1. After that, the most important features with
the highest scores are chosen to be used for training the models that are applied. The RF
method of feature selection can be mathematically represented as follows:

Feature Importance

= 1
ntrees
∗

ntrees
∑

t=1

nnodes
∑

t=1
Ivi= f ∗

(
Nt
N

)
∗
(

impurityparent − impuritychildern

)
where:

ntrees is the number of decision trees in the random forest.
vi is the feature used for the split at node i of the t-th tree.
f is the feature being evaluated for importance.
Ivi = f is an indicator function that equals 1 if vi = f and 0 otherwise.
Nt is the number of samples in the t-th tree that reaches node i.
N is the total number of samples in the training set.
Impurity parent is the impurity of the set of samples at the parent node i.
Impurity child is the weighted impurity of the two sets of samples after the split based

on feature f.

2.4. Validation Methods

The evaluation of a predictive model is prone to overestimation when assessed only
on the population of individuals that was utilized to construct the model [16]. There exist
various internal validation methods that strive to offer a more precise estimation of model
performance on novel subjects [17,18]. We conducted an evaluation of multiple variations
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of holdout, cross-validation [17], and bootstrapping [17] methodologies. These validation
methods were used to evaluate the distinctive performance and calibration quality of our
ML methodology on metabolomics ME/CFS data.

Hold-out Validation: One commonly used and well-accepted methodology involves
randomly partitioning the training dataset into two distinct subsets: one for model de-
velopment and the other for evaluating its performance. The performance of the model
is evaluated using a split-sample (hold-out) approach, where identical yet independent
data are utilized. The hold-out validation approach involves utilizing the training data
samples during the training phase, while the testing data samples are utilized to assess the
predictive performance of the model [19].

k-fold Cross-validation: A more advanced technique involves the utilization of cross-
validation, which can be regarded as an expansion of the split-sample methodology [16].
Split-half cross-validation involves developing a model using one randomly selected half
of the data and subsequently testing it on the other half, and vice versa. The average
is commonly used as a means for approximating performance. Certain percentages of
respondents may be omitted, such as 10%, in order to evaluate a model that was constructed
using 90% of the sample. The aforementioned technique is iterated a total of ten times,
ensuring that each subject is tested once to evaluate the model. k-fold cross-validation
is a statistical method for evaluating and comparing learning algorithms; in k-fold cross-
validation, the data are first divided into k folds, each of which has a size that is equal to or
very close to being equal to the others. Following this, k iterations of training and validation
are carried out in such a way that, within each iteration, a different fold of the data is held
out for validation while the remaining k minus one folds are used for learning [20].

Bootstrap Validation: It has been argued that computationally demanding resam-
pling methods like the bootstrap technique provide the most reliable validation [16]. The
bootstrapping technique involves generating samples from a given population by randomly
selecting samples with replacement from the initial dataset, where the size of the generated
samples matches the size of the original dataset.

The estimation of prediction error using cross-validation is generally unbiased, al-
though it can exhibit significant variability. However, the bootstrap method produces
findings with low variance. Bootstrap validation can be conceptualized as a technique
that generates smoother versions of cross-validation. Bradley and Robert demonstrated
that the bootstrap method exhibited superior performance compared with cross-validation
in a collection of 24 simulation experiments [17]. The bootstrap resampling method is a
way to predict the fit of a model to a hypothetical test set when an explicit test set is not
available [21]. It helps to avoid overfitting and improves the stability of ML algorithms [22].

2.5. The Bayesian Approach for Hyper-Parameter Optimization

The effectiveness of an ML model is determined by the hyper-parameters associated
with that model. Hyper-parameters have influence over the learning process or the structure
of the statistical model that lies beneath the surface. On the other hand, there is no standard
approach to selecting hyper-parameters in real experiments. As a substitute, practitioners
frequently set hyper-parameters using a process of trial and error or occasionally allow them
to remain at their default settings, both of which result in inadequate generalization. By
recasting it as an optimization problem, hyper-parameter optimization gives a methodical
approach to solving this issue. According to this line of thinking, a good set of hyper-
parameters should (at the very least) minimize validation errors. When compared with
the vast majority of other optimization problems that can arise in machine learning, hyper-
parameter optimization is a nested problem. This means that at each iteration, an ML model
needs to be trained and validated. Many approaches have been developed to discover
the optimal combination of ML model hyper-parameters. Grid search and random search
are two optimization approaches that are often used for this purpose. These strategies,
however, have a few drawbacks. Grid searching is a time-consuming and inefficient
strategy for the central processing unit (CPU) and graphics processing unit (GPU). The
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grid search strategy outperforms random search; nevertheless, the exact answer is more
likely to be ignored. In comparison to these two strategies, Bayesian optimization is
the best choice for searching for hyper-parameters. First, because the Gaussian process
is involved, the Bayesian optimization technique may consider prior results. To put it
another way, each step computation may be retrieved to assist in determining a better set of
hyper-parameters. Second, compared with other methodologies (for example, grid search),
Bayesian optimization takes fewer iterations and has a quicker processing time. Finally,
even when working with non-convex issues, Bayesian optimization may be trusted [23–26].

2.6. Classification Models

To separate patients into two categories, namely, ME/CFS and healthy individuals,
we made use of a variety of AI-based classification algorithms in this work. These include
GNB, GBC, LR, and RFC.

GNB: The GNB algorithm is a well-known classification method that is frequently
utilized in the field of biomedical research to categorize various patient groups. GNB can
be used to properly diagnose patients based on specific physiological traits or biomarkers
in the case of healthy individuals as well as patients with ME/CFS. The Bayes theorem,
which asserts that the probability of a hypothesis may be computed based on the prob-
ability of observing specific evidence, serves as the foundation for GNB’s mathematical
operation. This theorem underpins how GNB works. When using GNB, it is assumed that
the conditional probability of each feature given the class is Gaussian, which indicates that
the features are regularly distributed within each class. This enables compliance with the
requirements of the GNB algorithm. This assumption makes the computation of the poste-
rior probability much easier, which in turn enables classification that is both more efficient
and more accurate. The GNB method works by first determining the posterior probability
of each class for a certain set of features and then designating the class that has the highest
probability as the class that will be predicted [27,28]. The following mathematical notations
are used to express GNB:

P(x|y) = P(x|y)× P(y)
P(x)

where:
P(y|x) is the posterior probability of class y given input vector x.
P(x|y) is the likelihood of the input vector x given class y, modeled as a multivariate

Gaussian distribution.
P(y) is the prior probability of class y, estimated as the relative frequency of y in the

training set.
P(x) is the evidence or marginal likelihood of the input vector x, calculated as the sum

of the joint probabilities of x and all possible classes y.
GBC: The GBC is a powerful ML algorithm that has shown great potential in the

classification of healthy individuals and patients with ME/CFS [29]. The GBC operates by
iteratively constructing an ensemble of weak prediction models, typically decision trees,
and combining their outputs to make accurate predictions. During the training phase, the
GBC builds the ensemble by initially fitting a weak model to the training data. Subsequent
models are then constructed in a way that each new model focuses on the instances that
were previously misclassified by the ensemble [30,31]. The mathematical notations for the
GBC model for classification are as follows:

ŷi =
M

∑
M=1

fm(xi)

where:
ŷi represents the predicted value for the i-th instance.
M denotes the number of weak classifiers (decision trees) used in the GBC.
fm(xi) refers to the m-th weak classifier’s prediction for the i-th instance.
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LR: For binary classification problems such as disease categorization using patient data,
LR is a common machine learning model. Given input data including patient demographics,
symptoms, and laboratory test results, a LR model calculates the likelihood of a positive
class. To maximize the likelihood of the positive class, the model learns the ideal set of
weights or coefficients by minimizing the logistic loss function. To produce a probability
between 0 and 1, the logistic function uses a linear combination of input features and
their weights. Afterward, a threshold (such as 0.5) is used to the anticipated probability to
determine the expected class; if the predicted probability is greater than the threshold, the
positive class is predicted, and vice versa [32,33]. The following are some mathematical
symbols for the LR model of binary classification:

p(y = 1|x, θ) =
1(

1 + e−(θ0+θx1+θx2+···+θxp)
)

where:
p(y = 1|x,θ) is the predicted probability of the positive class given the input feature

vector x and the model parameters θ.
e is the base of the natural logarithm (approximately 2.718).
θ0 is the intercept or bias term.
θx1, θx2, . . ., θx0 are the coefficients or weights of the input features x1, x2, . . ., xp.
x = [x1, x2, . . ., xp] is the input feature vector.
RFC: RFC is a well-known technique for machine learning that is used for classification

tasks, such as the classification of diseases based on patient data. Building an ensemble
of decision trees that have been trained on random subsets of the input features and data
samples is how RFC goes about completing its work. Each decision tree in the ensemble
makes a prediction based on a subset of the input features, and the final prediction is
generated by aggregating the predictions of all of the trees in the ensemble. RFC can handle
high-dimensional data with a large number of features and can also capture nonlinear
correlations between the input features and the output classes [34–36]. The RFC equation is
written as follows in its mathematical notation:

y = f (X)

where:
X is an input data matrix with n samples and p features, where X = [x1, x2, . . ., xn] and

each xi is a vector of p features.
y is a vector of predicted class labels, where y = [y_1, y_2, . . ., y_n].
f (X) is the function that maps the input data X to the predicted class labels y using a

random forest model.

2.7. Performance Evaluation and Model Calibration
Performance Evaluation

Accuracy: Accuracy refers to the correct classification rate of a classification model.
The accuracy score is calculated as the ratio of correctly guessed samples to the total
number of samples. However, in the case of unbalanced classes or misclassification costs,
the accuracy score alone may be insufficient and should be evaluated in conjunction with
other metrics [37].

Precision: The precision score expresses how many of the positively predicted samples
are actually positive. The precision score is calculated as the ratio of the number of false pos-
itives (False Positive) to the total number of positive predictions (True Positive + False Pos-
itive). The higher the precision score, the better the positive predictions of the model [37].

Recall: The recall score expresses how many of the true positives (True Positive)
are correctly estimated. The recall score is calculated as the ratio of the number of false
negatives (False Negative) to the total number of true positives (True Positive + False
Negative). The higher the recall score, the better the model captures true positives [37].
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F1 Score: The F1 score is calculated by taking the harmonic mean of the precision and
recall scores. It is preferred to the harmonic mean because it provides the balance between
precision and recall scores. The higher the F1 score, the higher the model classifies with
both high precision and high recall [37].

ROC Curve and AUC: The evaluation of diagnostic tests is a topic of interest in
contemporary medicine, and this is true not only for determining whether or not a disease is
present in a patient but also for determining whether or not healthy people have the disease.
The conventional method of diagnostic test evaluation uses sensitivity and specificity as
measures of accuracy of the test in comparison with the gold standard status. This method is
used in diagnostic tests that have a binary outcome, such as positive or negative results from
the test. In a scenario in which the test results are recorded on an ordinal scale (for example,
a five-point ordinal scale: “definitely normal”, “probably normal”, “uncertain”, “probably
abnormal”, and “definitely abnormal”), or in a scenario in which the test results are reported
on a continuous scale, the sensitivity and specificity can be computed across all the possible
threshold values. Therefore, the sensitivity and specificity change throughout the different
thresholds, and there is an inverse relationship between sensitivity and specificity. Then,
the receiver operating characteristic (ROC) curve is called the plot of sensitivity versus
1-Specifity, and the area under the curve (AUC) is a reliable indicator of accuracy that
has been considered with relevant interpretations. ROC curves are plotted as sensitivity
versus 1-Specifity. This curve is extremely important when determining how well a test
can differentiate between different types of people and their actual conditions. A ROC
curve is formed when sensitivity vs specificity is plotted against each other across a range
of cutoffs. This plot forms a curve in the unit square. In “ROC space”, the ROC curves
that correspond to diagnostic tests with progressively stronger discriminant capacity are
situated gradually closer to the upper left-hand corner. The area under the curve is a
statistic that provides a comprehensive overview of the ROC curve rather than focusing on
a single point of operation. AUC represents the area under the ROC curve and takes a value
between 0 and 1. The AUC value measures the discrimination ability of the classification
model. A high AUC value means that the model can discriminate well and has a high
sensitivity and low false positive rate. The closer the AUC value is to 1, the better the
model’s performance [38–40].

2.8. Model Calibration

A well-calibrated model is one in which the estimated probability matches the true
incidence of the outcome. For example, approximately 90% of patients with an estimated
risk of ME/CFS of 0.9 would be classified as ME/CFS. This is critical for prediction models
because clinical decision-makers need to know how confident the model is in making a
particular prediction. Therefore, we calibrate the trained model to obtain the correctly
predicted probability. In this article, we use the Brier score and calibration curve for model
calibration [41,42].

Brier Score: The Brier score is a metric used to evaluate the quality of probability
estimates. It is especially used for probabilistic classification models. The Brier score
provides a measure of the mean squared errors between the actual labels and the estimated
probabilities. The lower the Brier score, the closer the predictions are to reality [41,42].

Calibration Curve: A calibration curve is a tool used to evaluate how close a classifi-
cation model’s estimates are to the true probabilities. This curve shows the accuracy of the
probabilities predicted with the model. The calibration curve is important to determine
the confidence level of the model and to evaluate the reliability of the predictions. A
well-calibrated model means that high-probability predictions are more likely to happen,
while low-probability predictions should be less likely to happen. It has been verified that
the probabilities predicted by a well-calibrated model are consistent with the realization
rates [41,42].
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2.9. XAI Approaches

Interpretability is absolutely essential when using a complex ML model in a real-
world environment such as the medical field. XAI is an emerging research area that aims
to increase the interpretability and transparency of applied ML models. XAI ensures that
decisions made with applied models are understood and trusted, especially in critical
applications such as healthcare. XAI techniques can help users understand, validate, and
trust the decisions made with these models in real-world applications [43,44]. In this
research, Shapley values and the TreeMap approach were used to interpret the estimation
decision of the optimal ML model.

Shapley Additive Explanations (SHAP): This is an approach used to understand the
contribution of each feature to the prediction to explain the predictions of SHAP ML models.
This approach also takes into account the complexity of the ML model and the interactions
between features that go into the model. It also measures the contribution of a feature to
the prediction using Shapley values and thus produces graphical results for understanding
the model’s decisions [44].

TreeMap: TreeMap provides an intuitive description for tree-based ML models, show-
ing the name of the property used for each decision level and the split value for the
condition. If an instance satisfies the condition, it goes to the left branch of the tree; other-
wise, it goes to the right branch. When purity is high in TreeMap, the knuckle/leaf has a
darker color. The samples row at each node shows the number of samples examined at that
node [45].

3. Results

In this section, firstly, the results of biomarker candidate metabolites are given, and
the performance results of the applied predictive artificial intelligence algorithms are
evaluated using various evaluation metrics. Predictive models were constructed based
on both the original data and the metabolites identified as biomarker candidates, and the
results were compared. The model showing the final performance was used for ME/CFS
estimation, and we tried to explain the decision-making function of the model explained
using XAI approaches.

3.1. Feature Selection Results

Figure 2 depicts the features that were selected together with their respective relevance
ratings, which were determined using a random forest method based on machine learning.
The results reveal that the metabolomics of oleoylcholine, cortisone, 3-hydroxydecanoate,
and C-glycosyltryptophan are extremely relevant for the diagnosis of ME/CFS patients.

3.2. Hyper-Parameters Optimization Results

In Table 1, the optimal hyper-parameters of ML models according to Bayesian opti-
mization are given.

Table 1. The hyper-parameter tuning analysis of applied methods.

Technique Optimized Parameter Value

GNB var_smoothing = 1 × 10−9

GBC n_estimators = 3, learning_rate = 1.0, max_depth = 1

LR max_iter = 30, solver = ‘liblinear’

RFC max_depth = 26, min_samples_leaf = 5, min_samples_split = 3,
n_estimators= 12
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3.3. The Model Performance Results

In this section, we show how selecting metabolic traits associated with ME/CFS can
help learning models improve their performance. After training using all input features
and a subset of them (significant features), the results of all used models (GNB, GBC, LR,
RFC) are presented in Table 2. We also performed three experiments for model validation:
in the first experiment, the dataset was split into 80% and 20% to train and validate the
learning models. In the second experiment, we used the cross-validation method during
the training and validation of the learning models. Finally, we used the 1000-iteration
bootstrap method in our last experiment. Bootstrap is a resampling method in which parts
are changed at each iteration of the sampling process. This creates a randomly selected
collection of samples from the set of input samples. This procedure can be performed k
times. Models were trained on the sampled dataset and evaluated on the original dataset.
In all experiments, we calculated the performance of all learning models with and without
a feature selection step. After the three experiments outlined in this section, the results
of each learning model were accuracy (A), precision (P), recall (R), F1 score (F1), Brier
score (B), and AUC.

According to Table 2, for the models using the original features in the dataset, it was de-
termined that the GBC model achieved the lowest performance scores (accuracy: 36%; AUC:
33%; Brier score: 0.63) when dividing the data into 80–20. Based on the result of bootstrap
validation with the original features, the LR model had the best performance (accuracy:
96%; AUC: 95%; Brier score: 0.04). All results for the models using biomarker candidate
metabolites showed improved prediction performance when compared with the models
using the original features. The results of the investigation show that the performance
metrics scores of all the used machine learning approaches for diagnosing healthy controls
and ME/CFS patients were much improved by applying selected biomarker metabolites.
The interpretation was also more likely for these models, which took into account fewer
risk factors. The bootstrap validation method gave superior results compared with the
first two experiments (80–20 split and five-fold CV) both in experiments using the original
metabolomics variables and in models using twenty biomarker candidate metabolites.
It was determined that the RFC learning model outperformed the other three models
(GNB, GBC, and LR) with the 1000-iteration bootstrapping method for ME/CFS prediction
based on a few metabolite markers. The RFC learning model achieved 98% accuracy, 98%
precision, 98% recall, 98% F1 score, 0.01 Brier score, and 99% AUC.
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Table 2. The comparative performance analysis of the applied artificial intelligence techniques with
different approaches.

Attained Performance Using All Input Features Attained Performance Using Feature Selection

Technique
A (%) P (%) R (%) F1 (%) B AUC (%) A (%) P (%) R (%) F1 (%) B AUC (%)

80–20% Split Validation 80–20% Split Validation

GNB 73 72 73 72 0.27 67 73 72 73 72 0.27 67

GBC 36 39 36 37 0.63 33 73 75 73 73 0.27 73

LR 64 64 64 64 0.36 60 73 72 73 72 0.27 67

RFC 45 56 45 44 0.54 51 82 86 82 80 0.18 75

Results with a 5-fold cross-validation Results with a 5-fold cross-validation

GNB 52 36 94 62 0.26 59 82 77 92 84 0.15 91

GBC 48 47 35 37 0.34 52 95 94 99 95 0.05 98

LR 58 46 71 54 0.45 46 95 95 96 96 0.03 98

RFC 56 68 38 56 0.28 64 97 96 97 98 0.04 99

Results with a 1000-repetition bootstrap Results with a 1000-repetition bootstrap

GNB 63 70 63 60 0.36 63 83 84 83 83 0.17 91

GBC 92 92 92 92 0.07 92 96 96 96 96 0.03 92

LR 96 96 96 96 0.04 95 96 96 96 96 0.04 99

RFC 90 90 90 90 0.09 90 98 98 98 98 0.01 99

GNB: Gaussian Naïve Bayes; GBC: gradient boosting classifier; LR: logistic regression; RFC: random forest
classifier; A: accuracy; P: precision; R: recall; B: Brier score; AUC: area under the ROC curve.

The ROC area reached by each learning model after training on the selected biomarkers
is shown in Figure 3. The better the performance of the prediction model, as measured
using the ROC curve, the closer the value of the AUC is to one. As can be seen in Figure 3,
the RFC model reached its highest AUC value of 99%.
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It is common in classification to seek both an estimate of the class label and the proba-
bility of that label. By examining these possibilities, the diagnostic decision of the learning
model can be more relied upon. A well-calibrated model is one in which the estimated
probability matches the true incidence of the outcome. For example, approximately 90% of



Diagnostics 2023, 13, 3495 12 of 18

patients with an estimated risk of ME/CFS of 0.9 will develop ME/CFS. This is critical for
models because clinical decision-makers need to know how confident a model is in making
a particular prediction. Therefore, we plotted the calibration curve for the trained model
in Figure 4 to obtain the correctly predicted probability. To calibrate the accuracy of the
estimates, the calibration process compares the actual tag frequency with the expected tag
probability. A closer alignment of points along the major diagonal of the graph indicates a
more accurate calibration or a more reliable estimate. The calibration curve showed a good
fit of the model (Figure 4).
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3.4. XAI Results

SHAP was used to identify metabolomics biomarkers according to their importance
or contribution to the prediction of ME/CFS and to explain the prediction decisions of the
model. The RFC-trained model was subjected to SHAP annotation, which identified the
most important trait metabolites responsible for the prediction of ME/CFS. The results
pointed to a list of metabolites with importance scores. Metabolite biomarkers are arranged
in decreasing order of importance. Oleoylcholine, phenylactate (PLA), octanoylcarni-
tine (CB), hydroxyasparagine**, and piperine are among the most prominent metabolite
biomarkers important in the diagnosis of ME/CFS. Figure 5 also visualizes the relationships
between the relative value of biomarker candidate metabolites and the SHAP values for
these metabolites. In each row of the graph, each patient is marked as a dot. The horizontal
position of the dot reflects the SHAP values, and the color of the dot encodes the relative
value of the metabolites and their mean in the dataset. A positive SHAP value denotes
a positive contribution to the target variable, whereas a negative SHAP value denotes a
negative contribution.

Therefore, low values (relatively blue) of the oleoylcholine and phenylactate (PLA)
metabolites contribute positively to ME/CFS, thus increasing disease risk. In addition,
it was determined that high levels of hydroxyasparagine**, p-cresol glucuronide*, and
C-glycosyltryptophan metabolites increased the risk of ME/CFS (Figure 5).

In addition to that, to gain an understanding of how the RFC model behaves, we used
a method that is known as TreeMap analysis. Figure 6 is an illustration of the TreeMap
that is included in the RFC. The analysis explains how the proposed model came to its
conclusion about the classification of patients as healthy controls and those with ME/CFS.
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4. Discussion

Fatigue is a common occurrence in human beings and serves as an indicator of dis-
rupted homeostasis within the body, resulting from either excessive physical and men-
tal exertion or illness [46]. In addition to being one of the most significant social con-
cerns, chronic fatigue additionally constitutes the most significant economic losses [47].
Pain, cognitive dysfunction, autonomic dysfunction, sleep disturbance, and neuroen-
docrine and immune symptoms are just some of the many symptoms associated with
ME/CFS [48]. A patient must have a symptom of neurological impairments, an im-
mune/gastrointestinal/genitourinary impairment, and an energy metabolism/transport
impairment to be diagnosed with ME/CFS and meet the criteria for post-exertional neu-
roimmune exhaustion. However, the strength and severity of such symptoms in a patient
vary and are heterogeneous, from moderate to severe, with some patients even becoming
bed-bound [48]. Because it is challenging to identify the typical abnormal elements for this
disorder utilizing general and conventional medical examination, artificial intelligence-
based automated methods may aid in improving the diagnosis of ME/CFS. In recent years,
a growing number of studies have explained the pathology of ME/CFS and have estab-
lished biomarkers for the same by using a metabolome analysis technique [48–50]. This has
allowed for the development of a variety of diagnostic studies [51,52].

The present study was an investigation of the effectiveness of the methodology com-
bining ML and XAI techniques to investigate biomarkers of ME/CFS and develop an
interpretable predictive model for disease diagnosis. Metabolomics data from patients
diagnosed with ME/CFS and healthy controls were used. The classification algorithms in-
cluded GNB, GBC, LR, and RFC. The classifiers’ performance was evaluated both with and
without the implementation of the feature selection algorithm (RF). In addition to classical
hold-out validation, cross-validation and bootstrap approaches were also used to evaluate
the performance of the classification learning algorithms in the validation stage, and the
effectiveness of these three validation approaches was also examined. Shapely values, an
explainable AI system, were utilized to interpret the classification models’ predictions and
decisions. After being trained and validated on the significant selected features using the
bootstrapping method, the RFC model was found to be superior to the other four models
(GNB, GBC, and LR). Accuracy, precision, recall, F1 Score, and the AUC were all at or above
98% for the RFC model. The higher the values attained for precision and sensitivity, the
higher the proportion of correct diagnoses, also known as true positives (TPs), and the
lower the value of false negatives (FNs). Errors, both positive and negative, known as false
positives (FPs) and FNs, are widespread in comparative biology research. In addition, we
demonstrated that our method was capable of demonstrating the main features as well
as the interpretations of ML findings by utilizing SHAPley values and SHAP plots. The
SHAP method’s findings indicated that oleoylcholine, phenyllactate, octanoylcarnitine,
hydrooxyasparagine, piperine, p-cresol glucuronide, and palmitoylcholine are all chem-
icals associated with ME/CFS and crucial to the model’s final decision. The use of the
SHAP technique revealed that the indolelactate, which has low Shapley values, is the least
significant of all the features. On the other hand, the feature with the highest Shapley value
is oleoylcholine, which is also the one that contributes the most significant information for
the diagnosis of ME/CFS. Oleoylcholine is a member of the class of chemical compounds
known as acylcholines. Germain et al. [2] researched the metabolic pathways that influence
the diagnosis of ME/CFS patients by performing statistical analysis in conjunction with
pathway enrichment analysis. They found that acylcholines, which are part of the sub-
pathway of lipid metabolism, known as fatty acid metabolism, are consistently reduced
in two different patient cohorts that suffer from ME/CFS. Nagy-Szakal et al. [53] gained
insights into ME/CFS phenotypes using comprehensive metabolomics. Biomarker identifi-
cation and topological analysis of plasma metabolomics data were performed on a sample
group consisting of fifty ME/CFS patients and fifty healthy controls. They demonstrated
that patients with ME/CFS have higher plasma levels of ceramide and observed that
there is a variation in the level of carnitine, choline, and complex lipid metabolites. The
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study of plasma metabolomics data attained a more accurate prediction model of ME/CFS
(AUC = 0.836).

A comprehensive metabolomics analysis was conducted by Naviaux et al. [54] to
better understand the biology of CFS. They investigated 612 plasma metabolites across
63 different metabolic pathways. Twenty metabolic pathways were revealed to be abnormal
in patients with chronic fatigue syndrome. Sphingolipid, phospholipid, purine, cholesterol,
microbiota, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and
mitochondrial pathways were all disrupted. Diagnostic accuracies of 94% were found
using AUC characteristic curve analysis. In our experiment utilizing the ML-based model,
we were able to achieve a greater level of accuracy (98%) for our proposed prediction
model: the RFC model. Petrick and Shomron [55] discussed how well an ML-based model
performs. They highlighted how AI and ML have permitted important breakthroughs in
untargeted metabolomics workflows and key findings in the fields of disease diagnosis.
In conclusion, the proposed model (RFC) was successful in correctly diagnosing ME/FCS
patients. The findings indicate that ML, when paired with the Shapely analysis, is able
to explain the ME/FCS classification model and offer physicians basic knowledge of the
main metabolic chemicals that influence the model decision. Clinicians can benefit from
individual explanations of the important metabolic compounds in order to gain a better
grasp of why the model yields certain diagnoses for individuals with ME/CFS.

In the context of classification, it is crucial to accurately estimate the true error rate of
a specific classifier in certain situations. CV is a conventional methodology that is almost
unbiased but exhibits a high degree of variability. The bootstrap method is an alternative
strategy that provides a more stable testing for small sample sizes. The bootstrap method
is generally acknowledged to exhibit superior performance for small sample sizes due to
its reduced variance [17]. The aforementioned rationale prompted us to explore alternative
methodologies, such as hold-out validation and CV, in this study. This decision was made
due to the limited sample size of our medical application, which consisted of 26 healthy
controls and 26 ME/CFS patients in the current study.

In the experiments, we conducted a comprehensive evaluation of diverse validation
techniques (such as hold-out, bootstrap, and k-fold CV) across a range of models using
metabolomics ME/CFS data. A relevant prior study [56] emphasized the importance of
prioritizing repeated CV and bootstrap methodologies for studies with limited sample sizes,
as opposed to relying solely on a hold-out approach or a small external test set with similar
patient characteristics. In a study comparing CV and bootstrap results in the literature,
the authors reported that both resampling techniques are effective, but in some cases, the
bootstrap resampling technique is better [57]. While it was highlighted that repeated CV
with a complete training dataset emerged as a preferred choice [56], our specific findings
demonstrated that the bootstrap validation method, involving 1000 repetitions, yielded
the highest classification outcomes. Given the insights from our current investigation, it is
plausible to recommend a holistic approach, where ML models are coupled with various
validation methods, thereby selecting the algorithm that exhibits the optimal performance.
This underscores the significance of tailoring validation techniques to a specific dataset
and context, rather than adhering rigidly to a single method. By embracing this approach,
researchers can harness the synergy between ML and versatile validation strategies, leading
to enhanced model reliability and predictive accuracy.

5. Conclusions

Although research into the causes and mechanisms of ME/CFS continues, the exact
underlying factors are not yet fully understood. It has been reported to result from a
complex interaction of biological, genetic, environmental, and psychological factors. Ad-
vances in research are crucial for better understanding the disease, improving diagnosis
and treatment options, and ultimately finding a cure. Based on this information, the RFC
model proposed in this study correctly classified and evaluated ME/CFS patients using the
selected biomarker candidate metabolites. The methodology combining ML and XAI can
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provide a clear interpretation of risk estimation for ME/CFS, helping physicians intuitively
understand the impact of key metabolomics features in the model.

6. Limitations and Future Works

This study lacked a third-party verification by an independent biologist, which may
have provided more explanation of the collected results, vital metabolic chemicals, and
their significance to the diagnosis of patients with ME/FCS. It is vital to broaden the present
investigation further by incorporating multicenter experiments in subsequent research or
to make use of the associated data from multiple locations for external validation. The
size of the metabolomics dataset might be increased by collecting additional samples
from patients. This would be an improvement for this line of investigation. The perfor-
mance of patient diagnosis can be improved with the development of advanced transfer
learning-based methodologies.
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