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Abstract: Hepatocellular carcinoma (HCC) is the deadliest malignant tumour worldwide. The
metalloproteinase ADAM17 is associated with tumour formation and development; however, its
significance in HCC is unclear. This study aimed to investigate the role of ADAM17 in HCC and the
correlation between its expression and immune cell infiltration. ADAM17 expression was analysed
in pan-cancer and HCC tissues using The Cancer Genome Atlas and Genotype-Tissue Expression
datasets. Kaplan–Meier survival analysis displayed a negative association between ADAM17 expres-
sion and the overall survival of patients with HCC. High ADAM17 expression was linked to poor
tumour/node (T/N) stage and alpha fetoprotein (AFP) levels. Gene Set Enrichment Analysis, Gene
Ontology, and Kyoto Encyclopaedia of Genes and Genomes analyses revealed the enrichment of
several pathways, including epithelial–mesenchymal transition, inflammatory response, Hedgehog,
and KRAS signalling, in patients with upregulated ADAM17. ADAM17 was shown to be positively
correlated with immune cell infiltration and immune checkpoint expression via the Tumour Immune
Estimation Resource (TIMER) database and immunohistochemistry analyses. Protein–protein in-
teraction (PPI) network analysis revealed that ADAM17 plays a core role in cancer development
and immune evasion. In vitro and in vivo experiments demonstrated that ADAM17 influences HCC
growth and metastasis. In conclusion, ADAM17 is upregulated in most cancers, particularly HCC,
and is critical in the development and immune evasion of HCC.

Keywords: ADAM17; hepatocellular carcinoma; immune cell infiltration; prognosis; proliferation;
metastasis; immune evasion; metalloproteinase; signalling pathway

1. Introduction

Cancer is one of the most serious diseases affecting human health worldwide. Liver
cancer is the sixth most common malignancy and the third leading cause of cancer-related
death worldwide [1]. Hepatocellular carcinoma (HCC) is the most common pathological
type of liver cancer, accounting for approximately 90% of all liver cancer cases [2]. These
tumours have a high propensity for recurrence and metastasis, resulting in an unsatisfactory
prognosis in patients with HCC who undergo radical resection [3,4]. The American Joint
Committee on Cancer (AJCC) TNM staging system is particularly important in the surgical
resection and prognosis evaluation of HCC. According to the AJCC cancer staging criteria,
T, N, and M represent the primary tumour, regional lymph nodes, and distant metastasis,
respectively. Combined with the categories of T, N, and M, the AJCC proposed prognostic
stage groups [5]. Recently, targeted therapy and immunotherapy have greatly improved
HCC treatment. However, a limited number of patients benefit from these treatments
because of drug insensitivity or resistance [6,7]. It is, therefore, paramount to explore the
critical events in cancer development and further elucidate the molecular mechanisms
behind HCC progression, to aid in the discovery of novel and potential therapeutic targets.
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ADAM17, also known as the tumour necrosis factor-alpha converting enzyme (TACE),
is a transmembrane cell surface metalloproteinase that is widely expressed in various
cell and tissue types [8–11]. The main body of the ADAM17 enzyme is composed of a
cysteine-rich membrane proximal domain, transmembrane domain, cytoplasmic domain,
prodomain, catalytic domain, and disintegrin domain [12]. Numerous studies have con-
firmed that the shedding activity of ADAM17 is enhanced in many tumours, causing
ADAM17 to be abnormally expressed [11]. This observation has been noted in breast [13],
lung [14,15], gastric [16], and colorectal cancers [17], pancreatic adenocarcinoma [18], and
head and neck squamous cell carcinoma [19]. The tumour microenvironment (TME) is a
complex environment composed of a variety of cells, extracellular matrix, and signalling
molecules [20] and is closely related to tumour cell proliferation, drug resistance, immune
evasion, metastasis, and angiogenesis [21,22]. Multiple studies have shown that ADAM17
participates in the immune regulation of tumours and plays an important role in their
formation and development [23,24].

In this study, we explored the association between ADAM17 expression and the clinical
features of HCC, as well as the role of ADAM17 in HCC prognosis. The enriched signalling
pathways, gene profiles, and protein–protein interaction (PPI) networks of ADAM17 in
HCC were examined, and the association between ADAM17 expression and immune cell
infiltration was evaluated. The biological functions of ADAM17 in HCC were investigated
in vitro and in vivo.

2. Results
2.1. Expression of ADAM17 in Pan-Cancer and HCC

The expression of ADAM17 was first explored in pan-cancer using The Cancer Genome
Atlas (TCGA) cohort. As shown in Figure 1A,B, ADAM17 was overexpressed in most
tumour tissues compared to normal tissues, including bladder (BLCA), cervical (CESC), bile
duct (CHOL), colon (COAD), oesophageal (ESCA), head and neck (HNSC), liver (LIHC),
rectal (READ), stomach (STAD), and endometrioid (UCEC) cancers; glioblastoma (GBM);
and kidney clear cell (KIRC) and lung squamous cell (LUSC) carcinomas. Specific to HCC,
we analysed the level of ADAM17 in TCGA-LIHC cohorts, including or excluding the
Genotype-Tissue Expression (GTEx) datasets. Boxplots showed that ADAM17 expression
increased significantly in HCC tissues compared to that in normal tissues (Figure 1C,D).
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Figure 1. ADAM17 expression in pan-cancer and hepatocellular carcinoma (HCC) and its prognostic
role. TIMER (A) and TCGA (B) databases indicate ADAM17 is upregulated in most cancer types.
The expression level of ADAM17 is higher in tumor than normal tissue in TCGA-liver cohorts with
((C), n = 424) or without ((D), n = 531) the GTEx datasets. The TCGA ((E), n = 424) and Kaplan-Meier
Plotter ((F), n = 364) databases show that high expression of ADAM17 is associated with significantly
poorer overall survival (OS) in patients with HCC. * p < 0.05; ** p < 0.01; *** p < 0.001.

2.2. Prognostic Role of ADAM17 and Its Correlation with HCC Clinicopathological Features

Survival analysis of patients with HCC showed that patients with high ADAM17 ex-
pression had significantly poorer OS than those with low ADAM17 expression
(Figure 1E,F). These findings indicate the prognostic significance of ADAM17 expres-
sion in patients with HCC. In addition, we explored the correlation between ADAM17
expression and the clinicopathological features of patients with HCC. Boxplots showed
that the increase in ADAM17 was associated with poor T and N stages of cancer, where
T refers to the size and extent of the main tumour and N refers to the number of nearby
lymph nodes affected. Moreover, ADAM17 expression was positively correlated with the
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level of alpha-fetoprotein (AFP; Figure 2A–D). Patient characteristics included in these
analyses are presented in Table 1.
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Figure 2. Correlation between ADAM17 levels and the HCC clinicopathological features. Increased
ADAM17 expression correlates with more advanced T (A) and N (B), M stages (C), and a higher level
of alpha-fetoprotein ((D), AFP). ns, no significance; * p < 0.05.

Table 1. Associations between ADAM17 expression and the clinicopathological features of
HCC patients.

Characteristics Overall $ Characteristics Overall

Pathologic T stage, n (%) Gender, n (%)
T1 183 (49.3%) Female 121 (32.4%)
T2 95 (25.6%) Male 253 (67.6%)
T3 80 (21.6%) Age, n (%)
T4 13 (3.5%) ≤60 177 (47.5%)

Pathologic N stage, n (%) >60 196 (52.5%)
N0 254 (98.4%) BMI, n (%)
N1 4 (1.6%) ≤25 177 (52.5%)

Pathologic M stage, n (%) >25 160 (47.5%)
M0 268 (98.5%) Histologic grade, n (%)
M1 4 (1.5%) G1 55 (14.9%)
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Table 1. Cont.

Characteristics Overall $ Characteristics Overall

Pathologic stage, n (%) G2 178 (48.2%)
Stage I 173 (49.4%) G3 124 (33.6%)
Stage II 87 (24.9%) G4 12 (3.3%)
Stage III 85 (24.3%) AFP (ng/mL), n (%)
Stage IV 5 (1.4%) ≤400 215 (76.8%)

>400 65 (23.2%)
$: the ‘overall’ column shows the sample size with corresponding percentage for each characteristic category.

2.3. Investigating the Function of ADAM17 and Related Pathways

Differentially expressed genes (DEGs) were identified in patients with high and low
ADAM17 expression levels (Figure 3A). These DEGs were subjected to enrichment analy-
sis. Gene Set Enrichment Analysis (GSEA) based on Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathway analysis revealed that the hallmark pathways of epithelial–
mesenchymal transition (EMT), inflammatory response, Hedgehog signalling, and KRAS
signalling UP were significantly enriched in the high ADAM17 expression group
(Figure 3B). Gene Ontology (GO) annotation and KEGG pathway analyses were performed
to further understand the function of ADAM17. The ADAM17-related DEGs were enriched
in the following top terms (Figure 3C): cell–cell adhesion via plasma–membrane adhe-
sion, molecules external encapsulating structure organisation, homophilic cell adhesion
via plasma membrane adhesion molecules (BP); collagen-containing extracellular matrix,
transporter complex, transmembrane transporter complex (CC); passive transmembrane
transporter activity, channel activity, extracellular matrix structural constituent (MF); neu-
roactive ligandreceptor interaction, oxidative phosphorylation, and extracellular matrix
(ECM)-receptor interaction (KEGG).
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(B,C) Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopaedia of
Genes and Genomes (KEGG) analysis showing the top functions or pathways enriched by the DEGs.

2.4. Association between ADAM17 Expression, Immune Infiltration, and Copy Number

The TME plays an important role in cancer development and immune escape. First,
we analysed the correlation between ADAM17 levels and immune cell infiltration using
the Tumour Immune Estimation Resource (TIMER) database. Using the TIMER algorithm,
six types of immune cells were identified in the TME. Correlation analyses revealed that
ADAM17 was negatively correlated with the purity of the tumour, but positively correlated
with the levels of six immune cells, including B cells, CD8+ T cells, CD4+ cells, macrophages,
neutrophils, and dendritic cells (Figure 4A). Furthermore, we analysed the relationship
between ADAM17 and the immune checkpoints. The results showed that the expression of
ADAM17 was positively correlated with the levels of immune checkpoints in the immune
microenvironment (Figure 4B). In addition, the copy number of ADAM17 was found to be
related to immune cell infiltration (Figure 4C). These results indicate that ADAM17 can
affect immune cell infiltration and create an immunosuppressive microenvironment.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 4. Analysis of immune cell infiltration based on the expression levels of ADAM17. (A,B) 
ADAM17 expression levels positively correlated with the infiltration of immune cells and the ex-
pression of immune checkpoints; (C) the boxplot demonstrates the impact that the ADAM17 copy 
number has on the immune cell infiltration level. * p < 0.05. 

2.5. Gene Profile Analysis of ADAM17 
We analysed gene mutations in ADAM17 using the online cBioPortal tool. The mu-

tation status of ADAM17 in pan-cancer cells is shown in Figure 5A. In HCC, ADAM17 has 
a relatively high mutation rate, with approximately 3% of patients harbouring genetic al-
terations (Figure 5A,C). We also found a relationship between the mutation and ADAM17 
mRNA expression (Figure 5B), highlighting the role of gene alteration in ADAM17-driven 
tumorigenesis. 
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2.5. Gene Profile Analysis of ADAM17

We analysed gene mutations in ADAM17 using the online cBioPortal tool. The mu-
tation status of ADAM17 in pan-cancer cells is shown in Figure 5A. In HCC, ADAM17
has a relatively high mutation rate, with approximately 3% of patients harbouring genetic
alterations (Figure 5A,C). We also found a relationship between the mutation and ADAM17
mRNA expression (Figure 5B), highlighting the role of gene alteration in ADAM17-driven
tumorigenesis.
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2.6. PPI Network Analysis

The top genes that directly interacted with ADAM17 were identified, and a network
was built. As shown in Figure 6A, several oncogenes and immune genes were involved in
this network. This further confirms the important role of ADAM17 in cancer development
and immune evasion. Enrichment analysis based on these genes identified the following
terms: membrane protein proteolysis, membrane protein ectodomain proteolysis, Notch
signalling pathway, membrane microdomain, membrane raft, apical part of the cell, sig-
nalling receptor activator activity, endopeptidase activity, growth factor receptor binding,
endocrine resistance, and ErbB signalling pathway (Figure 6B).

2.7. Verification of ADAM17 Expression and Its Prognostic Roles in HCC

The expression of ADAM17 was assessed using IHC in 79 pairs of HCC and adjacent
non-tumour tissues. The results showed that the expression of ADAM17 was significantly
stronger in HCC tissue compared to those in non-tumour tissues (Figure 7A). Patients
with HCC were divided into high and low ADAM17 groups based on the IHC staining
intensity. ADAM17 was found to have a close correlation with the clinicopathologic
features, including differentiation (p = 0.001), histologic grade (p = 0.001), stage (p = 0.021),
and PT (p = 0.038) (Table 2). Survival analysis showed that high ADAM17 expression was
significantly associated with poorer DFS in patients with HCC (Figure 7B). Univariate
analysis of the important factors affecting survival was then performed. The results
showed that the length of survival was significantly associated with Child-Pugh (p = 0.005),
group high expression (p = 0), Histologic Grade Gx (p = 0.011), PT (p = 0.002), and stage
(p = 0.029) (Table 3). These factors were then entered into the multivariate Cox proportional
hazard regression model, and the results demonstrated that group high expression levels
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and Child-Pugh were independent factors affecting the prognosis of patients with HCC,
whereas Histologic Grade Gx, PT, and stage were not (Table 3).
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Table 2. Relationship between ADAM17 expression and clinicopathological parameters of patients
with HCC.

Clinicopathological
Parameters Level

ADAM17 Expression
p-Value

Low Expression High Expression

N 25 54
Age (median [IQR]) 51.00 [46.00, 59.00] 56.00 [49.00, 59.75] 0.509
Sex (%) female 10 (40.0) 12 (22.2)

0.114male 15 (60.0) 42 (77.8)
Cirrhosis (%) no 2 (8.0) 2 (3.7)

0.587yes 23 (92.0) 52 (96.3)
Capsule (%) incomplete 2 (8.0) 10 (18.5)

0.458intact 6 (24.0) 9 (16.7)
unclear 17 (68.0) 35 (64.8)

MVI risk (%) M0 14 (56.0) 24 (44.4)
0.678M1 9 (36.0) 25 (46.3)

M2 2 (8.0) 5 (9.3)
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Table 2. Cont.

Clinicopathological
Parameters Level

ADAM17 Expression
p-Value

Low Expression High Expression

Differentiation (%) low 0 (0.0) 8 (14.8)

0.001
moderate 19 (76.0) 41 (75.9)
high 6 (24.0) 1 (1.9)
unclear 0 (0.0) 4 (7.4)

Histologic Grade (%) G1 6 (24.0) 1 (1.9)

0.001
G2 19 (76.0) 41 (75.9)
G3 0 (0.0) 8 (14.8)
Gx 0 (0.0) 4 (7.4)

Stage (%) I 12 (48.0) 10 (18.5)

0.021
II 10 (40.0) 23 (42.6)
III 3 (12.0) 18 (33.3)
IV 0 (0.0) 3 (5.6)

History of hepatitis (%) no 3 (12.0) 3 (5.6)
0.374yes 22 (88.0) 51 (94.4)

TBIL µmol/L (median [IQR]) 13.90 [11.80, 21.50] 16.00 [11.60, 24.60] 0.602
ALB g/L (median [IQR]) 37.70 [34.70, 38.50] 37.80 [36.20, 41.38] 0.158
PT s (median [IQR]) 12.10 [11.20, 12.60] 12.70 [12.00, 13.35] 0.038
Child Pugh (%) A 24 (96.0) 50 (92.6)

1B 1 (4.0) 3 (5.6)
C 0 (0.0) 1 (1.9)

Tumor size (%) MHCC 4 (16.0) 14 (25.9)

0.702
SHCC 10 (40.0) 22 (40.7)
LHCC 9 (36.0) 14 (25.9)
HHCC 2 (8.0) 4 (7.4)

Serum AFP ng/mL (%) ≤400 19 (76.0) 44 (81.5)
0.563>400 6 (24.0) 10 (18.5)

Note: MVI, microvascular invasion; TBIL, total bilirubin; ALB, serum albumin; PT, prothrombin time; MHCC,
micro hepatocellular carcinoma; SHCC, small hepatocellular carcinoma; LHCC, large hepatocellular carcinoma;
HHCC, huge hepatocellular carcinoma; AFP, alpha fetoprotein.

Table 3. Univariate and multivariate Cox regression survival analysis of clinicopathological parame-
ters and ADAM17 expression in patients with HCC.

Clinicopathological
Parameters

Univariate Analysis Multivariate Analysis

HR 95% CI p-Value HR 95% CI p-Value

Age 1.01 0.98–1.04 0.449 NA NA NA
ALB g/L 1 0.92–1.07 0.918 NA NA NA
Capsule Incomplete Reference

intact 0.83 0.34–2.04 0.679 NA NA NA
unclear 0.86 0.42–1.75 0.678 NA NA NA

Child Pugh 3.41 1.45–8.02 0.005 3.48 1.09–11.11 0.0356
Cirrhosis No Reference

yes 5.56 0.77–40.24 0.09 NA NA NA
Differentiation Low Reference

high 0.24 0.05–1.03 0.054 NA NA NA
moderate 0.74 0.29–1.92 0.535 NA NA NA
unclear 1.73 0.46–6.47 0.416 NA NA NA

group Low expression Reference
High expression 4.07 2.06–8.08 0 3 1.4–6.42 0.0047

Histologic
Grade G1 Reference

G2 3.13 0.97–10.13 0.057 1.83 0.53–6.37 0.341
G3 4.22 0.98–18.3 0.054 1.35 0.27–6.88 0.7159
Gx 7.3 1.59–33.56 0.011 3.44 0.67–17.77 0.1405

History of
hepatitis No Reference

yes 1.39 0.55–3.49 0.487 NA NA NA
MVI risk 1.11 0.72–1.7 0.633 NA NA NA
PT s 1.31 1.1–1.56 0.002 1.07 0.84–1.35 0.601
Serum AFP
ng/mL ≤400 Reference

>400 1.37 0.72–2.6 0.332 NA NA NA
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Table 3. Cont.

Clinicopathological
Parameters

Univariate Analysis Multivariate Analysis

HR 95% CI p-Value HR 95% CI p-Value

Sex Female Reference
male 1.29 0.71–2.33 0.403 NA NA NA

Stage 1.45 1.04–2.03 0.029 1.42 0.98–2.05 0.063
TBIL µmol/L 1.02 0.99–1.05 0.162 NA NA NA
Tumor size 1.09 0.81–1.46 0.57 NA NA NA

Note: NA, not available; HR, hazard ratio; CI, confidence interval; MVI, microvascular invasion; TBIL, total
bilirubin; PT, prothrombin time; AFP, alpha fetoprotein.

2.8. In Vitro Roles of ADAM17 in HCC Cell Growth

To explore ADAM17’s function in HCC, we generated stable ADAM17 knockdown
(SK-HEP-1 and MHCC97-H) HCC cells and verified ADAM17 expression using Western
blotting (Figure 8A). In the established cell models, ADAM17 knockdown resulted in de-
creased cell viability, as depicted in Figure 8B. Moreover, inhibition of ADAM17 expression
through knockdown hindered clone formation, as illustrated in Figure 8C.
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2.9. In Vitro Roles of ADAM17 in HCC Metastasis

To determine the effect of ADAM17 on cell metastasis, we performed wound healing
and Transwell assays. The results showed that the migration and invasion abilities of
ADAM17 knockdown cells were decreased compared to those of the control (Figure 9A–D).
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2.10. In Vivo Investigation of the Role of ADAM17 in HCC Growth

We explored the oncogenic effects of ADAM17 in a subcutaneously implanted tumour
model. The results showed that ADAM17 knockdown significantly suppressed the increase
in tumour volume and weight (Figure 10A,B). ADAM17 expression in the tumours was con-
firmed by immunohistochemistry (IHC; Figure 10C). Ki-67 staining revealed that ADAM17
knockdown decreased the proliferative ability of tumour cells (Figure 10C). Haematoxylin
and eosin staining was performed on the collected tumour samples, and the results are
presented in Figure 10C.

2.11. Verification of the Correlation between ADAM17 and Immune Cell Infiltration

IHC staining was used for validating the association between ADAM17 and immune
cell levels in the serial section of HCC tissues. A typical example showing the expression of
ADAM17 and immune cell markers (CD3, CD4, CD8, CD56, CD68, CD163, and CD274)
is presented in Figure 11A. Quantitative analysis showed that ADAM17 was positively
correlated with the immune cell markers (Figure 11B,C; Supplementary Figure S1), which
further verified the roles of ADAM17 in regulating the immune cell infiltration in HCC.
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Figure 11. Verification for the immunoregulatory roles of ADAM17 in HCC. (A) IHC showing the
expression of ADAM17 and immune cell markers in one representative case. (B,C) Correlation
analyses of the association between ADAM17 and the indicated cell markers using the ImageJ
quantitative measurement and the pathological score (n = 20).

3. Discussion

HCC is a malignancy of the digestive system. Many strategies have been attempted to
delay disease progression and improve patient prognosis, such as the prevention of chronic
liver disease, effective systemic and local treatment, and timely surgical intervention [25].
Although significant progress has been made in the diagnosis and treatment of HCC, its
5-year survival rate is still unsatisfactory [26]. It is, therefore, necessary to identify the
possible molecular mechanisms involved and new potential therapeutic targets for HCC.
As a transmembrane protein, ADAM17 drives the proteolysis of a variety of chemokines, cy-
tokines, adhesion molecules, and their receptors on the cell membrane [12]. The substrates
of ADAM17 include the epidermal growth factor receptor (EGFR) family, IL-6R, Notch1,
and tumour necrosis factor alpha (TNFα). These substrates can promote the proliferation,
invasion, and migration of tumour cells [12]. In addition, the immunomodulatory effect of
ADAM17 on tumour development has attracted attention in recent years [27,28].

In this study, using TCGA and GTEx datasets, we examined the high expression
levels of ADAM17 in various tumours, particularly those in HCC tissues, and verified
these results using IHC. The Kaplan–Meier method was used to analyse the prognostic
role of ADAM17 in HCC, and the results showed that high ADAM17 expression in HCC
was associated with a poor prognosis. The relationship between ADAM17 expression
and the clinicopathological features of HCC indicates that high ADAM17 expression is
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associated with poor T and N stages and AFP levels. The function and enriched signalling
pathways of ADAM17 in HCC were investigated using GSEA, GO, and KEGG. EMT,
inflammatory response, Hedgehog, and KRAS signalling were enriched in patients with
high ADAM17 expression. Analysis of the relationship between ADAM17 and immune cell
infiltration in HCC using the TIMER database showed that ADAM17 positively correlated
with immune cell infiltration and immune checkpoint expression, as verified by IHC.
Analysis of the ADAM17 gene profile using the cBioPortal for Cancer Genomics platform
showed that ADAM17 has a relatively high mutation rate. PPI network analysis using
STRING indicated that ADAM17 plays an important role in tumour progression and
immune evasion. Moreover, a series of in vitro and in vivo experiments confirmed that
ADAM17 promotes the proliferation, migration, and invasion of HCC cells. Therefore,
ADAM17 is highly expressed in HCC and is associated with poor prognosis. Moreover,
ADAM17 promoted HCC progression and played a vital role in immune evasion.

Saad et al. reported that the specific blockade of ADAM17 inhibited cellular prolifera-
tion in KrasG12D-driven lung adenocarcinoma (LAC) models. Owing to the threonine phos-
phorylation and preferential shedding of IL-6R, ADAM17 drives IL-6 signalling through the
ERK1/2 MAPK pathway, thereby promoting LAC progression. Therefore, they concluded
that ADAM17 may be a potential therapeutic target for KRAS-driven LAC [14]. Hedemann
et al. demonstrated that the ADAM17 inhibitor, GW280264X, combined with cisplatin sig-
nificantly improved the treatment of ovarian cancer in two- and three-dimensional models.
Therefore, ADAM17 inhibition is considered a promising therapeutic strategy for ovarian
cancer [29]. Previous studies have shown that ADAM17 is required for the development
of pancreatic ductal adenocarcinoma (PDAC) in mice. Ye et al. found that A9(B8) IgG, an
ADAM17 inhibitor, can effectively suppress ADAM17 substrate shedding. Subsequent
studies have shown that A9(B8) IgG administration inhibits tumour cell migration and
significantly delays PDAC progression in mouse models. Taken together, these results
provide an ideal reference for the clinical treatment of PDAC [30]. Bolik et al. demonstrated
that the ADAM17 protease contributes to endothelial cell death, tumour cell evasion, and
metastasis in tumour necrosis factor receptor 1 (TNFR1)-dependent tumour cells. Moreover,
they found that increased γ-secretase release and ADAM17-mediated shedding of TNFR1
ectodomains led to TNF-induced necroptosis. The genetic ablation and pharmacological
intervention of ADAM17 in endothelial cells can prevent the rapid formation of metastatic
lesions. The data presented by Bolik et al. revealed that ADAM17 may serve as a novel
target in advanced malignancies [31].

Macrophages in the TME have an important impact on tumour development. Gnosa
et al. reported that the loss of ADAM17 in cancer cell lines leads to a decrease in the ex-
pression levels of multiple tumorigenic markers on the surface of co-cultured macrophages
in vitro and in mouse models. Owing to the action of ADAM17−/−-educated macrophages,
the invasive ability of cancer cells is reduced. Further experimental results indicate that the
ADAM17 shedding heparin-binding epidermal growth factor (HB-EGF) and amphiregulin
in tumour cells are molecular mediators of macrophage education. The HB-EGF ligand can
induce the release of chemokine ligands (CXCL) from macrophages, thereby promoting
tumour cell invasion [24]. The Fc receptor CD16 is widely distributed in natural killer cells
(NK) in the peripheral blood. Romee et al. reported that after NK cell activation, CD16
expression was reduced because of the combinatory effect of cytokines and target cells.
ADAM17 protease is expressed by NK cells. When ADAM17 is inhibited, CD16 shedding
is reduced, and NK cells enhance the therapeutic efficacy of monoclonal antibodies by
increasing cytokine production. Thus, ADAM17 has a substantial impact on NK cell regu-
lation [32]. Programmed cell death ligand 1 (PD-L1) is highly expressed in triple-negative
breast cancer cells. Romero et al. found that as members of the ADAM family, ADAM10
and ADAM17 proteases mediate the cleavage of PD-L1. Treating breast cancer cells with
the activators of both proteases significantly increased the release of soluble PD-L1 into
the culture medium. They speculated that ADAM10 and/or ADAM17 may be involved in
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regulating the PD-L1/PD-1 pathway and play an important role in antitumour immunity
in breast cancer [33].

This study still has several limitations. First, the number of clinical samples is insuf-
ficient, which may not be representative of the entire population of patients with HCC.
Additionally, there is a lack of in-depth mechanism discussion. However, we are confident
that the number of clinical samples will continue to expand with time, and we will also
continue to explore the mechanism to strengthen the present conclusions.

4. Materials and Methods
4.1. Datasets and Data Preprocessing

Datasets of 33 tumour types, including RNA-sequencing data, mutation data, and
patient clinical information, were downloaded from TCGA database https://portal.gdc.
cancer.gov (25 August 2023). In addition, expression profile data of normal human tissues
were acquired from the University of California, Santa Cruz (UCSC) Cancer Genome
Browser https://xenabrowser.net/datapages/ (26 August 2023) The TCGA-LIHC dataset
(n = 424) was selected for HCC analysis. TPM was used for data normalisation, and data
were transformed using log2 (value + 1) before analysis.

4.2. ADAM17 Association with Patient Survival and Clinicopathological Features

Patients were divided into two groups based on their ADAM17 expression levels, and
patient survival was compared using survival curves. Additionally, we evaluated the role
of ADAM17 in the clinicopathological features of patients. T, N, and M stages and AFP
levels were compared among patients with distinct ADAM17 expression profiles.

4.3. Enrichment Analysis

GSEA was performed to explore the ADAM17-related pathways. Patients with high
ADAM17 expression levels were compared with those with low ADAM17 expression, and
the HALLMARK gene set was used as the reference gene set for GSEA. The top significant
pathways were selected and visualised using the ggplot2 R package [34]. In addition, the
DEGs between the low and high ADAM17 expression groups were identified using the
DESeq2 platform in R software (version 4.0.2), and a volcano plot was drawn. GO and
KEGG analyses were performed based on the DEGs. Top GO annotations and KEGG
pathways were displayed using bubble plots.

4.4. Immune Cell Infiltration Analysis

The levels of the six immune cell types were estimated for each patient using the
TIMER algorithm (https://cistrome.shinyapps.io/timer/ (26 August 2023) [35]. The cor-
relation between ADAM17 expression and the infiltration of each immune cell type was
evaluated and visualised using the online TIMER tool. In addition, differences in the abun-
dance of each type of immune cell were identified among patients grouped by variations in
ADAM17 copy number.

4.5. Mutation Analysis of ADAM17

Genomic ADAM17 mutation datasets were downloaded and analysed using the
cBioPortal for Cancer Genomics (http://www.cbioportal.org/ (29 August 2023). The
mutation frequency of ADAM17 in pan-cancers, especially in liver cancer, was analysed.

4.6. PPI Network Analysis

The top 100 genes directly interacting with ADAM17 were obtained from the STRING
database, and a PPI network was established using these genes. GO and KEGG analyses
were performed using the genes in this network to clarify the key function of the ADAM17-
related network.

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://xenabrowser.net/datapages/
https://cistrome.shinyapps.io/timer/
http://www.cbioportal.org/
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4.7. Patients and Tumour Samples

We included 79 patients with HCC from June 2020 to December 2021 in Lanzhou
University Second Hospital. The inclusion criteria were as follows: (1) patients receiving
radical surgery and diagnosed with HCC by histological evaluation; (2) naïve patients
without previous antitumour treatment; and (3) those with at least one evaluable lesion.
Patients were excluded if they had poor conditions, multiple primary cancer, or unavailable
information. The HCC specimens were collected from each included patient to conduct
an immunohistochemical assessment. Information on clinicopathological parameters was
collected from medical records, and patients were followed up regularly. DFS was evaluated
from the date of surgery to the recurrence of tumour or death. The clinical significance of
ADAM17 expression was explored on the basis of the included patients. This study was
approved by the Institutional Ethics Committee of Lanzhou University Second Hospital
(2022A-715).

4.8. Immunohistochemistry

Briefly, sections were baked at 65 ◦C for 1 h, followed by deparaffinisation, dehydra-
tion, and rehydration. After antigen retrieval, the sections were treated with a hydrogen
peroxide blocking solution (Maixin, Fuzhou, China). Subsequently, the sections were in-
cubated with primary antibodies (ADAM17, 1:250, Abcam, Cambridge, UK; CD3, CD4,
CD8, CD56, CD68, CD163, ready-to-use, Maixin; CD274, 1:100, Invitrogen, Waltham, MA,
USA; Ki-67, 1:150, Immunoway, Suzhou, China) at 4 ◦C overnight and probed with sec-
ondary antibodies (ready-to-use, Maixin). Finally, the tissue sections were stained with
3,3′-diaminobenzidine (Maixin), counterstained with haematoxylin (servicebio, Wuhan,
China), dehydrated, washed, and mounted.

Immunostaining was evaluated and scored according to the staining intensity and
the proportion of stained cells by two independent pathologists who were blinded to the
pathological and clinical data. Staining intensity scores were graded as follows: 0 (no
staining), 1 (light yellow), 2 (light brown), or 3 (brown). The proportion of stained cells
was graded as 0 (<5%), 1 (5–25%), 2 (26–50%), 3 (51–75%), or 4 (>75%). The staining results
were calculated using intensity and proportion scores. A staining result ≥4 was considered
to reflect a high expression of ADAM17, while that <4 was considered to reflect a low
expression of ADAM17. In addition, Image J software was used to quantitatively measure
the percentage of positive area of the indicated genes. Dot plots were drawn to explore the
correlation between the expression of ADAM17 and the immune cell marker, and Pearson’s
correlation coefficient with corresponding P value was calculated.

4.9. Cell Culture and Stable Cell Construction

SK-HEP-1 and MHCC97-H cells were purchased from Shanghai Fuheng Biotechnology
(Shanghai, China). The cells were cultured in Dulbecco’s modified eagle medium (DMEM;
Gibco, Carlsbad, CA, USA) supplemented with 10% foetal bovine serum (FBS; Gibco). We
knocked down the ADAM17 gene by treating liver cancer cell lines with short hairpin
RNA (shRNA; Genepharma, Shanghai, China). Cells (1 × 105) were plated and incubated
in a six-well plate for 24 h in DMEM supplemented with 10% FBS. Subsequently, cells
were transfected with three lentiviral shRNA sequences and one lentiviral control sequence
in medium supplemented with 10 µg/mL polybrene (Genepharma). After 16 h of cell
transfection, the transfection medium was replaced with fresh medium. ADAM17 stable
knockdown cells were achieved by puromycin (SK-HEP-1, 1 µg/mL, MHCC97-H, 2 µg/mL,
Biosharp, Guangzhou, China) selection. Verification of knockdown efficiency needs to be
performed via Western blotting.

4.10. Western Blotting

Control and treated liver cancer cells were harvested and lysed using radioimmuno-
precipitation assay (RIPA; Beyotime, Shanghai, China) buffer supplemented with protease
inhibitors (Beyotime). After centrifugation (Himac, Tokyo, Japan) at 14,000 rpm (18,700× g)
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for 20 min, the supernatant was carefully transferred to the collection tube. The blots were
transferred onto polyvinylidene fluoride (PVDF; Millipore, Danvers, MA, USA) membranes
after gel electrophoresis. Non-specific binding sites were blocked with skim milk at room
temperature for 1 h. The membranes were incubated in primary antibodies (ADAM17,
1:1000, Abcam, Cambridge, UK; GAPDH, 1:5000, Proteintech, Wuhan, China) overnight
at 4 ◦C. The membranes were then incubated with the appropriate secondary antibodies
(anti-mouse/anti-rabbit, 1:5000, Proteintech) at room temperature for 1 h. Signals were
observed using the Biospectrum Imaging System (Jiapeng, Shanghai, China).

4.11. Cell Proliferation and Colony Formation Assays

Cell proliferation assays were conducted using the Cell Counting Kit 8 (CCK8; Biosharp,
China) according to the manufacturer’s instructions. Briefly, cells in the logarithmic growth
phase were seeded into 96-well plates at a density of 5000 cells/well. CCK8 reagent was
incubated with the cells for 2 h. The cell proliferation status (OD450) was measured at 24,
48, and 72 h. For the cell colony formation assay, cells were seeded into six-well plates
at a density of 2000 cells per well and cultured in DMEM supplemented with 10% FBS.
After incubation, cell colonies were fixed with 4% paraformaldehyde (servicebio) and
stained with 0.1% crystal violet (Solarbio, Beijing, China). The number of colonies was
then counted.

4.12. Wound Healing Assays

Liver cancer cell lines (Shanghai Fuheng Biotechnology) were seeded into six-well
plates. When the cells reached 90–100% confluence, scratch wounds were made using a
sterile plastic pipette tip. After washing with PBS, the cells were incubated in a serum-free
medium for 24 or 48 h. Scratches were photographed using a phase-contrast microscope
(Olympus, Tokyo, Japan).

4.13. Transwell Matrigel Invasion and Migration Assay

A Transwell system (BD Biosciences, Franklin Lakes, NJ, USA) was used in this study.
In the invasion assay, liver cancer cells (2 × 105 cells/well) in 200 µL of serum-free DMEM
were seeded into upper chambers that were previously precoated with diluted Matrigel
(Corning, New York, NY, USA). The upper chambers were placed in the lower chamber
containing 750 µL of complete cell culture medium. After 24 h of incubation, the upper
chambers were immersed in 4% paraformaldehyde for 30 min at room temperature and
stained with crystal violet (Solarbio) for 30 min at room temperature. Cells inside the
chambers were removed using a cotton swab. The cells at the bottom of the chambers were
counted under a microscope (Olympus). The migration assay was performed using the
same protocol but without Matrigel, and the number of cells in the chamber was half that
of the previous one.

4.14. In Vivo Growth Assays

Animal experiments were conducted at the Animal Experiment Center of Lanzhou Uni-
versity Second Hospital and were approved by the Animal Ethics Committee of Lanzhou
University Second Hospital (D2022-432). MHCC97-H (2 × 106) cells (Shanghai Fuheng
Biotechnology) carrying sh-ADAM17 or control constructs were resuspended in PBS to
a 100 µL mixture and were subcutaneously injected into twelve NOD-SCID mice aged
5–6 weeks (GemPharmatech, Nanjing, China). Prior to sample collection, mice were anaes-
thetised using isoflurane inhalation and euthanised by cervical dislocation. In order to
achieve optimal exposure of the surgical field, the tumour was meticulously assessed,
revealing partial adhesion to the dorsal fascia and subcutaneous fascia. Employing a com-
bination of blunt and sharp dissection techniques, the tumour was systematically excised,
ensuring a thorough and complete removal.
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4.15. Statistical Analyses

All statistical analyses were performed using the R software (v4.0.2) and GraphPad
Prism (v8.0.1). The difference between groups was tested using the Student’s t-, Wilcoxon
rank sum, chi-squared, or Fisher’s exact tests according to the type of variables. Survival
curves were drawn using the Kaplan–Meier method, and differences between the two
groups were tested using the log-rank test. All tests were two-tailed, and a p value < 0.05
was considered statistically significant.

5. Conclusions and Future Directions

In summary, our study establishes ADAM17 as a crucial factor in HCC, influencing
tumour development and patient outcomes. High ADAM17 levels correlate with advanced
disease stages and poorer survival. Molecular analyses reveal its involvement in key path-
ways, and it is notably associated with immune responses in the tumour microenvironment.
This highlights ADAM17’s potential as a prognostic marker and therapeutic target in HCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms242317069/s1.
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