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Abstract: Mineral trioxide aggregates (MTA) are commonly used as endodontic filling materials
but suffer from a long setting time and tooth discoloration. In the present study, the feasibility of
using barium titanate (BTO) for discoloration and a calcium chloride (CaCl2) solution to shorten the
setting time was investigated. BTO powder was prepared using high-energy ball milling for 3 h,
followed by sintering at 700–1300 ◦C for 2 h. X-ray diffraction was used to examine the crystallinity
and crystalline size of the as-milled and heat-treated powders. MTA-like cements were then prepared
using 20–40 wt.% BTO as a radiopacifier and solidified using a 0–30% CaCl2 solution. The correspond-
ing radiopacity, diametral tensile strength (DTS), initial and final setting times, and discoloration
performance were examined. The experimental results showed that for the BTO powder prepared
using a combination of mechanical milling and heat treatment, the crystallinity and crystalline size
increased with the increasing sintering temperature. The BTO sintered at 1300 ◦C (i.e., BTO-13)
exhibited the best radiopacity and DTS. The MTA-like cement supplemented with 30% BTO-13 and
solidified with a 10% CaCl2 solution exhibited a radiopacity of 3.68 ± 0.24 mmAl and a DTS of
2.54 ± 0.28 MPa, respectively. In the accelerated discoloration examination using UV irradiation,
the color difference was less than 1.6 and significantly lower than the clinically perceptible level
(3.7). This novel MTA exhibiting a superior color stability, shortened setting time, and excellent
biocompatibility has potential for use in endodontic applications.

Keywords: mineral trioxide aggregates; radiopacifier; barium titanate; mechanical milling; radiopacity;
discoloration; setting time
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1. Introduction

Canal treatment is an important clinical practice in endodontics where mineral tri-
oxide aggregate (MTA) serves as a dental filling and radiopacifying material for lateral
perforations, apexification, direct pulp capping, and root end filling [1–6]. The long setting
time and tooth discoloration are key issues to be addressed for MTAs [7–9]. The setting
time is immediate, and discoloration occurs after treatment.

Typically, MTA consists of 80% Portland cement and 20% radiopacifier (Bi2O3) mixed
with a solution for solidification. Setting times are directly related to the Portland cement
and solidifying solution [2,10]. The modification of Portland cement and use of alternative
calcium-silicate-based cements have been attempted [11–15]. Various solidifying solutions
that include calcium chloride, calcium nitrate, calcium formate [16,17], calcium lactate
gluconate [18], disodium hydrogen phosphate [19], tannic acid [20], silk fibroin [21], etc.,
were investigated to shorten the setting times. For the most part, tooth discoloration
is caused by blood contamination [8,22] and the radiopacifier Bi2O3 [9,23]. Alternative
radiopacifiers, such as ZrO2 and Ta2O5, have been used in commercial products to minimize
tooth discoloration [24,25].

Recently, bioceramics for endodontic applications have been reviewed [26,27]. Among
them, barium titanate (BaTiO3, BTO), which exhibits a perovskite crystalline structure,
has been widely used in dielectric and ferroelectric applications [28–30]. The phase tran-
sition and dielectric performance of BTO and erbium-doped BTO were elucidated by
Leyet et al. [31]. The positive temperature coefficient’s resistivity effect on the ferroelectric-
paraelectric phase transition was addressed. The application of BTO nanoparticles in
various biomedical fields has been attempted [32–34]. For instance, Choi et al. reported the
effects of barium titanate addition on the radiopacity and biocompatibility of tricalcium
silicate-based bioceramics for bone regeneration [33]. This indicates that BTO is a potential
candidate endodontic radiopacifying and filling material.

Barium titanate can be prepared using various wet chemical techniques [30], including
the solvothermal method [35], hydrothermal synthesis [36,37], sol–gel process [38,39], and a
physical ball milling process [40,41]. The high-energy ball milling process is a facile method
used to synthesize various materials, such as metastable amorphous materials, extended
solid solutions, intermetallic compounds, nanocrystalline powders, etc. [42–44]. BTO
powder can be synthesized by milling BaCO3 and TiO2, followed by a high-temperature
treatment [40,45,46]. When using BaO and TiO2 as starting materials, high-energy ball
milling may induce a mechanochemical reaction and result in BaTiO3 formation [41].

Novel MTA with the combination of a suitable radiopacifier and solidification solution
is an attractive research and development topic [10]. Alternative radiopacifiers including
oxides (ZrO2 and Ta2O5) and perovskite structure materials (BaZrO3 and CaZrO3) have
been used in commercial endodontic products [47]. Though the applications of BTO in
medical fields have been addressed, the feasibility of using BTO in dentistry is low. In
the present study, barium titanate was prepared by combining high-energy ball milling
with high-temperature sintering at 700–1300 ◦C. The as-prepared BTO was solidified using
various concentrations of calcium chloride solution (0–30%) to prepare MTA-like cements.
The effects of sintering temperature, the amount of BTO addition, and the concentration
of solidifying solution on the performance of the MTA-like cements were investigated to
determine their potential endodontic application.

2. Materials and Methods
2.1. Preparation and Characterization of Barium Titanate

Commercially available BaCO3 (<5 µm, purity 99.9%, Ultimate Materials Technology
Co., Ltd., Hsinchu, Taiwan) and TiO2 powders (<45 µm, purity 99.99%, Ultimate Materials
Technology Co., Ltd., Hsinchu, Taiwan) were used as the starting materials for mechanical
milling. A SPEX 8000D shaker ball mill (Fisher Scientific, Ottawa, ON, Canada) positioned
in an Ar-filled glove box was used for this process [48]. Within the environment-controlled
glove box, the total oxygen and water concentration was kept lower than 100 ppm. The
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starting powder (BaCO3 and TiO2 in an equal molar concentration with a total weight
of 6 g) and 7 mm Cr-steel balls (~30 g) were canned in a SKH 9 high-speed steel vial
(40 mm and 50 mm in diameter and height, respectively) for 3 h of mechanical milling
treatment. The as-milled powder was then sintered, respectively, at 700, 900, 1100, and
1300 ◦C for 2 h. The heat-treated powder was coded, respectively, as BTO-7, -9, -11, and -13
and examined using an X-ray diffractometer (Bruker AXS GmbH-D2 PHASER, Billerica,
MA, USA) with Ni-filtered Cu Kα emission. The crystalline size of the as-prepared BTO
powder was calculated according to Scherrer’s formula with a shape factor (k) equal to
0.9 using the Rietveld fitting method with the XRD analysis software EVA (Bruker-AXS
DiffracEVA, version 6.0, Bruker, WI, USA) [49,50].

2.2. Preparation and Characterization of MTA-like Cements

MTA-like cements were prepared by mixing 80 wt.% Portland cement with 20 wt.%
BTO powder using a benchtop ball mill (Retsch PM100, Haan, Germany) for 10 min. For
solidification, the mixed powder was mixed with deionized water or a 10, 20, and 30%
calcium chloride solution using a powder-to-water ratio equal to 3. The pastes were
then placed into a mold (10 mm diameter and 1 mm thickness for radiopacity; 6 mm
diameter and 5 mm height for diametral tensile strength; n = 6 for both experiments). After
solidification, the MTA-like cements were placed in an environment-controlled incubator
(37 ◦C with 100% relative humidity) for another 24 h to simulate the oral environment. The
detailed experimental procedures are available elsewhere [51].

Radiopacity was examined using a dental X-ray system (VX-65; Vatech Co, Yongin
Si Gyeonggi-Do, Republic of Korea) in which a radiographic film (Koadak CR imaging
plate size 2; Eastman-Kodak Co, Rochester, NY, USA) was located at a distance of 30 cm.
The X-ray equipment was operated at a voltage of 62 kV, a current density of 10 mA,
and an exposure time of 0.64 s. X-ray images of six samples and a reference aluminum
step-wedge were taken simultaneously and analyzed using Image J software (version 1.53s,
Wayne Rasband, National Institutes of Health, Bethesda, MD, USA). The diametral tensile
strength (DTS) was measured with a universal test machine (CY-6040A8, Chun Yen testing
machines, Taichung, Taiwan) using a crosshead speed of 6.0 mm/min and calculated using
DTS = 2F/πbw, where F is the maximum applied load (N) and b and w are the diameter
(mm) and the height (mm) of the sample, respectively.

2.3. Setting and Discoloration of MTA-like Cements

MTA-like cements (n = 3) set by adding deionized water with 10, 20, and 30% CaCl2
solution were placed into an acrylic mold with a diameter and height of 6 mm and 5 mm,
respectively. Both the DI water and CaCl2 solutions were colorless and transparent. The
initial and final setting times were determined with a Vicat needle (Jin-Ching-Her Co. Ltd.,
Yunlin County, Taiwan) that was equipped with a movable rod weighing 300 g and a
diameter measuring 1 mm. The depth of impression was measured and the initial and
final setting times were determined based on the depth, measuring less than 1 mm and
zero, respectively.

Discoloration was applied to the disc samples (10 mm diameter and 1 mm thick-
ness) by immersing them in 2 mL glycerin (Wako, Osaka, Japan) for 15 min and exposing
the soaked samples to UV irradiation [52]. A UV curing machine (Phrozen Cure V2,
Hsinchu, Taiwan) with UV-LEDs (365 nm, 385 nm, and 405 nm, 60 W in total) was used
for the discoloration experiments [51]. Excepting the practical photographs for obser-
vation, a digital dental colorimeter (OptiShade Styleitaliano, St-Imier, Switzerland) was
used to obtain the L*a*b* values of the exposed samples (n = 6). The color differences
between the exposed and unexposed samples were calculated using4E00 according to the
CIE standard [53].
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2.4. Biocompatibility Assay of BTO-13-Supplemented MTA-like Cement

The samples for testing biocompatibility were prepared as discs (10 mm diameter
and 1 mm thickness) similar to those used for the radiopacity and discoloration tests. The
biocompatibility of the BTO-13-supplemented MTA-like cements solidified with various
solutions was measured using a CCK8 mitochondria activity assay (Donjindo, Kumamoto,
Japan), followed by the ISO-10993-5 standard [54] protocol. The L929 cells were cultured
in a minimal essential medium (MEM, Gibco, Thermo Fisher Scientific Inc., Waltham,
MA, USA) supplemented with 10% of fetal bovine serum (FBS, Sigma-Aldrich, Merck,
Burlington, MA, USA) and 1% penicillin/streptomycin (PS, Gibco) and cultured in 5% CO2
at 37 ◦C.

In this experiment, L929 cells without extracts from BTO-13-supplemented MTA-like
cement served as the control group, and each sample was tested with four replicates. The
L929 cells were seeded at a density of 104 per well in a 96-well plate. Briefly, the L929 cells
were cultured in extracts from the BTO-13-supplemented MTA-like cement soaked for 24 h.
The fresh culture medium with the 10% CCK8 solution were replaced for an additional 2 h
of incubation and the absorbance was measured at 450 nm (Multiskan FC, Thermo Fisher
Scientific Inc., Waltham, MA, USA). The cell morphologies were observed using a ZEISS
AXIOVERT 200 inverted phase contrast microscope (ZEISS, Oberkochen, Germany).

3. Results and Discussion
3.1. Synthesis of Barium Titanate Powder

Figure 1 shows the X-ray diffraction patterns of the as-milled powder after 3 h of
milling and the heat-treated powder sintered at 700, 900, 1100, and 1300 ◦C for 2 h, respec-
tively. As shown by the bottom black curve in Figure 1, the XRD pattern revealed that
the powder milled for 3 h exhibited a mixture of BaCO3 (orthorhombic phase, ICDD PDF
card No. 05-0378) and TiO2 phases (tetragonal phase, ICDD PDF card No. 04-0477). Only
the refined starting powder (i.e., BaCO3 and TiO2) without the formation of the desired
BaTiO3 phase was observed. Since both BaCO3 and TiO2 were brittle, it was suggested
that the starting powders were cracked into small pieces, entangled with each other, and
continuously refined with the increasing milling time [55]. The relatively high energy input
during ball milling did not trigger a mechanochemical reaction between BaCO3 and TiO2
for the formation of BaTiO3. The reaction is shown below:

BaCO3 + TiO2 → BaTiO3 + CO2
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Figure 1. X-ray diffraction patterns of as-milled and heat-treated powder.

The formation of BaTiO3 is accompanied by the byproduct CO2 gas. The energy
input during the mechanical milling process increases the temperature of the environment.
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According to the ideal gas law, the pressure will increase and hinder the formation of CO2
and BaTiO3. Therefore, the desired BaTiO3 phase cannot be synthesized through high-
energy ball milling. The refined starting powder, however, was preferable for the following
heat treatment. The reaction between BaCO3 and TiO2 was observed after sintering at
700 ◦C, as shown by the red curve (BTO-7) in Figure 1. Pavlović et al. [45] synthesized
BaTiO3 using a planetary ball mill. BaTiO3 was prepared by milling a BaCO3 and TiO2
powder mixture for 1.5 h, followed by heat treatment at 1200 ◦C. Othman et al. [46]
increased the milling time to 7.5 h, and the sintering temperature was lowered to 900 ◦C.
In the present work, using the high-energy SPEX 8000D ball mill, BaTiO3 powder was
synthesized by sintering the powder mixture milled for 3 h at 700 ◦C. This suggests that a
high-energy ball milling treatment can refine the starting powder and lower the sintering
temperature for the formation of BaTiO3. The higher the sintering temperature, the sharper
the diffraction peaks (as shown by BTO-9, -11, and -13), and the better the crystallinity of
BaTiO3 (cubic phase, ICDD PDF card No. 31-0174).

The as-prepared BaTiO3 powder is destined to be used as an endodontic radiopacifying
material, and thus, the crystalline size may be an important issue for solidification. Figure 2
shows the average crystalline size of the as-milled powder after sintering at 700, 900, 1100,
and 1300 ◦C for 2 h, respectively. It can be observed that not only the crystallinity (revealed
by the XRD pattern in Figure 1) but also the average crystalline size increased with the
increasing sintering temperature. The average crystalline size was 6.1 ± 1.3 nm for BTO-7
and gradually increased to 20.5 ± 3.6 nm for BTO-13.
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As discussed in Figures 1 and 2, high-energy ball milling can effectively refine the
crystalline size of the starting powders and lower the sintering temperature to 700 ◦C.
At 700 ◦C, the reaction between the BaCO3 and TiO2 powder mixture, however, was not
finished within 2 h. The powder mixture exhibited a major BTO phase (~74%) and minor
BaCO3 and TiO2 phases. The crystalline size of the resulting BTO was 6.1 nm. Complete
BTO formation, however, was noticed after sintering at 900 ◦C for 2 h. For sintering, the
crystalline size increases with either increasing temperature or time. It is evident that
within the same sintering time of 2 h, the crystalline size increased from 6.1 nm for BTO-7
to 14.7, 18.2, and 20.5 nm for BTO-9, -11, and -13, respectively.

3.2. BaTiO3 as Radiopacifier for MTA

The obtained BaTiO3 powder was used as the radiopacifier for mineral trioxide aggre-
gates (MTAs). MTA-like cements were prepared, and the corresponding radiopacities were
measured, as shown in Figure 3. Though not shown here, the MTA-like cement prepared
using BTO-7 was not very successful, probably due to its fine crystalline size and need for
more solution for solidification. Without a radiopacifier, the MTA-like cement prepared
using Portland cement exhibited a low radiopacity of 0.88 ± 0.49 mmAl. It increased to
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1.37± 0.68 mmAl with the addition of the commercially available BaTiO3 (coded as C-BTO).
Using the BaTiO3 prepared in the present study, the radiopacity improved to 1.93 ± 0.71,
2.09 ± 0.13, and 2.76 ± 0.52 mmAl for BTO-9, BTO-11, and BTO-13, respectively. Since the
MTA-like cements were prepared by mixing 80% Portland cement and 20% radiopacifier,
the radiopacity performance was mainly affected by the radiopacifier (crystalline phases
and size) and solidifying solution. As shown in Figure 2, the crystalline size for the sol–
gel-treated BTO was in the nano-sized range (6.1–20.5 nm). BTO-7 (6.1 nm) was too small
to have enough wetting. The others (14.7–20.5 nm) were more suitable for the solidifying
solution to wet the powder. A large crystalline size was beneficial for the radiopacity per-
formance. The radiopacity increased with the increasing sintering temperature. However,
none of the values satisfied the ISO 6876:2012 [56] requirement (3 mmAl). This can be
attributed to the relatively low atomic numbers of Ba and Ti.
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Figure 3. Radiopacity of various MTA-like cements prepared using Portland cement (PC), commercial
barium titanate (C-BTO), and BTO-9, BTO-11, and BTO-13 powders.

The mechanical properties of the MTA-like cements were evaluated using a diame-
tral tensile test, and Figure 4 shows the corresponding results for the MTA-like cements
presented in Figure 3. It can be noted that the MTA-like cements prepared using Portland
cement possessed the highest diametral tensile strength of 3.09 ± 0.53 MPa, which was
significantly higher than the values for the other samples. The one using C-BTO exhibited
the lowest diametral tensile strength (1.79 ± 0.42 MPa), whereas the DTS values were
1.77 ± 0.48 MPa, 1.72 ± 0.59 MPa, and 2.00 ± 0.14 MPa for BTO-9, BTO-11, and BTO-13,
respectively. Though no significant difference can be noticed for the BTO samples, BTO-13
exhibited not only a slightly higher DTS value but also a smaller deviation.

As shown above, the MTA-like cements prepared using BTO-13 powder exhibited
the best radiopacity (2.76 ± 0.52 mmAl) and DTS (2.00 ± 0.14 MPa) performance. The
radiopacity, however, did not meet the required 3 mmAl. This is similar to the MTA-like
cements with zirconia as the radiopacifier [51]. In order to reveal the therapeutic outcome
of endodontic treatment, the radiopacity is highly important and must be larger than
3 mmAl to determine the differences between the MTAs and tooth (which has a relatively
low radiopacity). Since the radiopacity increases with the increasing amount of radiopaci-
fier, Figure 5 shows the radiopacity and corresponding DTS of the MTA-like cements
prepared using 20–40% BTO-13 powder. It can be noted that the radiopacity (Figure 5a)
increased with the increasing amount of BTO-13 and was 2.76 ± 0.52, 3.30 ± 0.20, and
4.23 ± 0.31 mmAl for 20, 30, and 40% BTO-13, respectively. A similar trend can be observed
for the DTS results. As shown in Figure 5b, the diametral tensile strength of 20, 30, and 40%
BTO-13 was 2.00± 0.14, 2.79± 0.37, and 3.51± 0.44 MPa, respectively. The radiopacity and
DTS results suggested that MTA-like cement with 30% or 40% BTO-13 as a radiopacifier
can be used as an alternative MTA. However, it should be pointed out that it was difficult
to manipulate the paste with 40% BTO-13 during the preparation of MTA-like cements.
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Thus, MTA-like cements with 30% BTO-13 were examined further for their setting time,
discoloration, and biocompatibility.

Figure 4. Diametral tensile strength of various MTA-like cements prepared using Portland cement
(PC), commercial barium titanate (C-BTO), and BTO-9, BTO-11, and BTO-13 powders.
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Figure 5. (a) Radiopacity and (b) diametral tensile strength of MTA-like cements prepared using 20,
30, and 40% BTO-13 powder.

3.3. Effect of Calcium Chloride Solution on Setting and Discoloration

In addition to the radiopacity and diametral tensile strength, setting time and discol-
oration are also important factors in clinical application. Figure 6 shows the setting time
for the MTA-like cement prepared using 30% BTO-13 and solidified with deionized water
and 10–30% CaCl2 solution, respectively. It can be observed that the MTA-like cement
prepared using only Portland cement exhibited relatively long setting times, where the
initial and final setting times were 45 and 110 min, respectively. After adding the 30%
BTO-13 radiopacifier, the initial and final setting times extended, respectively, to 67 and
125 min, which may not be suitable for practical application. Using a calcium chloride
solution to solidify MTA-like cements can significantly shorten the setting time. The initial
setting time was shortened, respectively, to 23, 10, and 6 min, whereas the final setting time
was 55, 35, and 21 min for the 10%, 20%, and 30% CaCl2 solutions.

Using the CaCl2 solution, the corresponding radiopacity and DTS were examined and
are presented in Figure 7. It can be noted that the radiopacity did not exhibit a significant
difference. Compared to that solidified with deionized water (3.30 ± 0.20 mmAl, Figure 5),
the radiopacity slightly increased to 3.68 ± 0.24, 3.50 ± 0.15, and 3.56 ± 0.66 mmAl for the
10, 20, and 30% CaCl2 solutions, respectively. In contrast, the DTS continuously decreased
with the increasing concentration of CaCl2. It decreased from 2.79 ± 0.37 MPa (DI water,
0% CaCl2) to 2.54 ± 0.28, 1.72± 0.24, and 1.25 ± 0.21 MPa for the 10, 20, and 30% CaCl2
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solutions. The higher the CaCl2 concentration, the lower the DTS. This suggests that 10%
CaCl2 is the optimal solidifying solution.
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Figure 6. Initial (grey color) and final (white color) setting time for MTA-like cements prepared using
BTO-13 powder and solidified with deionized water, and 10–30% CaCl2 solution. Portland cement
(PC) solidified using deionized water is also given for comparison.
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Figure 7. (a) Radiopacity and (b) diametral tensile strength of MTA-like cements prepared by using
30% BTO-13 and solidified with 10–30% CaCl2 solution, respectively.

An accelerated discoloration examination was performed using UV irradiation exper-
iments to simulate the aesthetics after endodontic therapy for a period of time (approx-
imately one month) [51,52]. Figure 8 shows the photos of a series of MTA-like cements
before and after UV irradiation. The photos in the leftmost column show the MTA-like
cements before the experiment. A relatively light gray color of all the samples can be
observed, and no significant difference can be distinguished. After soaking in glycerin for
1 h (the second from the left), a slight color variation can be observed. Only the sample
prepared using the Bi2O3 radiopacifier (the second from the top) exhibited perceptible
discoloration when treated with UV irradiation. Limited discoloration for the rest of the
samples was observed. This color variation can be examined further using the CIE L*a*b*
values of these samples, and Figure 9 shows the corresponding results. It can be noted that
the MTA-like cement with the Bi2O3 radiopacifier exhibited a significant difference when
compared with the other samples. As shown in Figure 9a, the ∆E00 was 10.8 after a very
short UV irradiation period of 15 s. This significantly exceeded the clinically perceptible
level of 3.7 [57]. The ∆E00 increased continuously to 26.5 after 1 min. The UV irradiation
reached 35.3 at the end of the experiment (3 min). In order to observe the variation in
the other samples, Figure 9b shows the other samples without the Bi2O3-supplemented
MTA-like cement. In general, all the samples started showing limited discoloration after
UV irradiation. The ∆E00 fluctuated with the increasing irradiation time. The MTA-like
cement without a radiopacifier (i.e., PC) fluctuated between 1.5 and 2.1. With BTO-13,
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solidified using deionized water and 10% and 20% CaCl2 solutions, the ∆E00 ranged from
1.0 to 1.6, without any significant difference, and these values were much lower than the
clinically perceptible level [51,57]. The MTA-like cements without Bi2O3 exhibited color
stability. Table 1 summarizes all the ∆E00 results for the discoloration experiments.
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Table 1. ∆E00 results for the accelerated discoloration experiments.

Material
UV Exposure

0 s 2 s 5 s 15 s 1 min 3 min

Portland cement 0.0 1.5 ± 0.2 1.1 ± 0.5 1.3 ± 0.5 0.8 ± 0.5 2.1 ± 0.1

Bi2O3 0.0 3.3 ± 0.9 1.6 ± 0.3 10.8 ± 0.6 26.6 ± 1.1 35.3 ± 0.8

DI 0.0 1.0 ± 0.2 0.9 ± 0.1 1.1 ± 0.1 1.5 ± 0.1 1.5 ± 0.4

10% CaCl2 0.0 1.2 ± 0.2 0.9 ± 0.2 1.3 ± 0.2 1.5 ± 0.2 1.6 ± 0.2

20% CaCl2 0.0 1.3 ± 0.2 1.1 ± 0.2 1.4 ± 0.2 1.4 ± 0.2 1.3 ± 0.1
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3.4. Biocompatibility of MTA-Like Cements

Before the practical application of this novel endodontic radiopacifying material, the
biocompatibilities of the MTA-like cements were evaluated according to the ISO 10993-5
standard [54]. The L929 cells were treated with the extracts from MTA-like cements pre-
pared by adding deionized water with 10% and 20% CaCl2 solutions. The biocompatibility
was examined using the CCK8 kit, and the results for cell viability are shown in Figure 10. It
can be noted that all the examined samples were biocompatible, with a cell viability higher
than 70% (ISO 10993-5 standard [54]). This results also indicated that, compared to the cell
viability of the control group (100 ± 8%), the MTA-like cement solidified with deionized
water exhibited a cell viability of 88% ± 14% that increased to 109 ± 15% and 107 ± 10%
when using 10% and 20% CaCl2, respectively. This shows a similar trend to that reported
by Pinto et al. [58], who noted that calcium ions can effectively promote cell proliferation.
This improved cell biocompatibility and proliferation may be beneficial for these novel
MTAs’ use in endodontic lateral perforation and other bone regeneration applications.
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Furthermore, on the basis of the biocompatibility test, the morphology of the L929 cells
corresponding to the samples in Figure 9 was examined under a microscope. As shown
in Figure 11, the extracts of the BTO-13-supplemented MTA-like cements solidified with
deionized water and the 10% and 20% CaCl2 solutions did not change the L929 cell shape
or cause any damage. Their cell appearances (Figure 11b–d) are similar to those of the
control (Figure 11a), exhibiting spindle-like, epithelial-like, stellate, and round shapes.

It should be pointed out that BTO can be prepared using various techniques, including
physical solid-state synthesis (as in the present work) and chemical wet processes [30,35–39].
Slight differences in the synthesized BTO can be expected. In the present work, we demon-
strated the properties and the feasibility of this novel MTA. Further investigations including
continuous modifications of the present formula, to further improve its performance, and
in vivo animal experiments before clinical practice are in progress.

As demonstrated above, the MTA-like cement prepared by adding 30% BTO-13 and
solidified with 10% CaCl2 was optimal for endodontic application, with a suitable radiopac-
ity (3.68 ± 0.24 mmAl), DTS (2.54 ± 0.28 MPa), appropriate initial and final setting times
(55 and 23 min, respectively), no discoloration, and superior biocompatibility. It is a new
potential MTA for use in endodontic treatment.



Materials 2023, 16, 7270 11 of 14

Materials 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 10. Cell viability of L929 cells immersed in the extracts of 30% BTO-13-supplemented MTA-

like cements solidified with deionized water (DI) and 10% CaCl2 and 20% CaCl2 solutions. 

 

Figure 11. L929 cell morphology of BTO13-30 with different extracts, including (a) Ctrl, (b) PC, (c) 

10% CaCl2, (d) and 20% CaCl2 immersion for 24 h. 

4. Conclusions 

In the present study, barium titanate powder was prepared using a combination of 

mechanical milling for 3 h and heat treatment at 700–1300 °C for 2 h. The higher the sin-

tering temperature was, the larger the crystalline size and the be�er the crystallinity were. 

The radiopacity of the MTA-like cements increased with the increasing sintering temper-

ature, whereas no significant difference could be observed in the DTS. With 30% BTO-13 

addition, the MTA-like cements exhibited a radiopacity of 3.30 ± 0.20 mmAl and a DTS of 

2.79 ± 0.37 MPa. Using CaCl2 as a solidifying solution, the se�ing time could be shortened 

without decreasing the radiopacity, whereas the DTS decreased with the increasing con-

centration of CaCl2. This suggests that MTA-like cement prepared by adding 30% BTO-13 

and solidified using a 10% CaCl2 solution is optimal. It exhibited a radiopacity of 3.68 ± 

0.24 mmAl, a DTS of 2.54 ± 0.28 MPa, and initial and final se�ing times of 55 and 23 min, 

0

20

40

60

80

100

120

10% CaCl
2

20% CaCl
2

DI 

C
e

ll 
V

ia
b

ili
ty

 (
%

)

Ctrl

Figure 11. L929 cell morphology of BTO13-30 with different extracts, including (a) Ctrl, (b) PC,
(c) 10% CaCl2, (d) and 20% CaCl2 immersion for 24 h.

4. Conclusions

In the present study, barium titanate powder was prepared using a combination of
mechanical milling for 3 h and heat treatment at 700–1300 ◦C for 2 h. The higher the
sintering temperature was, the larger the crystalline size and the better the crystallinity
were. The radiopacity of the MTA-like cements increased with the increasing sintering
temperature, whereas no significant difference could be observed in the DTS. With 30%
BTO-13 addition, the MTA-like cements exhibited a radiopacity of 3.30 ± 0.20 mmAl and
a DTS of 2.79 ± 0.37 MPa. Using CaCl2 as a solidifying solution, the setting time could
be shortened without decreasing the radiopacity, whereas the DTS decreased with the
increasing concentration of CaCl2. This suggests that MTA-like cement prepared by adding
30% BTO-13 and solidified using a 10% CaCl2 solution is optimal. It exhibited a radiopacity
of 3.68 ± 0.24 mmAl, a DTS of 2.54 ± 0.28 MPa, and initial and final setting times of 55 and
23 min, respectively. This novel MTA also possessed excellent color stability and superior
biocompatibility and is suitable for use as an endodontic filling material.
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