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Abstract: Opioid receptor agonists, particularly those that activate µ-opioid receptors (MORs), are
essential analgesic agents for acute or chronic mild to severe pain treatment. However, their use
has raised concerns including, among others, intestinal dysbiosis. In addition, growing data on
constipation-evoked intestinal dysbiosis have been reported. Opioid-induced constipation (OIC)
creates an obstacle to continuing treatment with opioid analgesics. When non-opioid therapies fail to
overcome the OIC, opioid antagonists with peripheral, fast first-pass metabolism, and gastrointestinal
localized effects remain the drug of choice for OIC, which are discussed here. At first glance, their
use seems to only be restricted to constipation, however, recent data on OIC-related dysbiosis and its
contribution to the appearance of several opioid side effects has garnered a great of attention from
researchers. Peripheral MORs have also been considered as a future target for opioid analgesics with
limited central side effects. The properties of MOR antagonists counteracting OIC, and with limited
influence on central and possibly peripheral MOR-mediated antinociception, will be highlighted. A
new concept is also proposed for developing gut-selective MOR antagonists to treat or restore OIC
while keeping peripheral antinociception unaffected. The impact of opioid antagonists on OIC in
relation to changes in the gut microbiome is included.

Keywords: OIC; opioid antagonists; PAMORAs; gut-selective MOR antagonists; OID

1. Introduction

The research history of the opioid structure is traced back to the 19th century when
morphine was isolated by Friedrich Wilhelm Sertürner [1]. Since then, morphine has been
considered one of the most important analgesic agents used to manage acute and chronic
mild to severe pain. Next, besides the great benefit of opioid analgesics in the management
of pain, opioid abuse liability-related effects, respiratory depression, apnea, and death
have opened avenues for developing agents to overcome opioid overdose and opioid use
disorder. Furthermore, in addition to constipation, the accumulation of large amounts
of data on the involvement of peripheral opioid receptors in the development of opioid
analgesic tolerance, alterations in intestinal bacterial composition, and their consequences
have opened new avenues for repurposing medications including opioid antagonists.

Opioid agonists exert their antinociceptive actions through the activation of opioid
receptors, particularly µ-opioid receptors (MORs), both peripherally and centrally (spinal
and supraspinal MOR activation) [2]. Although the site of action of clinically available
analgesics is considered to be central, MOR-mediated peripheral analgesia has also been
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identified in human and experimental pain models [3–10]. The current consensus is that opi-
oid agonists are the most effective analgesics for treating mild to severe acute and chronic
pain types, yet in the case of neuropathic pain, their effect is up for debate [11–13]. The
peripheral distribution of MORs is not limited to the peripheral sensory fiber terminals that
mediate peripheral antinociception, and they are also found in other tissues including the
gastrointestinal tract where they can mediate constipation [14–16]. Activation of gastroin-
testinal MORs has advantageous therapy properties related to the treatment of diarrhea.
However, MOR activation has also been identified as being implicated in the development
of gastrointestinal dysbiosis, an imbalance in microbiome composition [17–19]. Recent data
have indicated that opioid-induced dysbiosis (OID) is associated with the development of
opioid analgesic tolerance, opioid-induced hyperalgesia, and the progression of chronic
pain conditions such as neuropathic pain [4,20–22]. More recently, the notion of the role of
peripherally acting opioid antagonists in improving the antinociceptive effects of opioid ag-
onists by reversing opioid analgesic-induced alterations in the gastrointestinal microbiome
has been proposed. Indeed, proposed mechanisms of OID are varied, including opioid-
induced constipation (OIC) (for review see Zádori et al., 2022 [23]). This reflects the fact that,
despite the greater use of opioid agonists for the treatment of pain, opioid antagonists have
also gained relevant practical use in the clinical world such as in the present context of OID
and OIC, among others, in relation to opioid overdose, opioid and/or alcohol maintenance
treatment, and obesity. This review will pay attention to the pharmacology of opioid
antagonists, including peripherally acting opioid antagonists, and their benefits for animals
and human subjects complaining of OIC as a result of the activation of gastrointestinal
MORs and its consequences, as covered in detail in Section 2. In addition, it will shed light
on the hallmarks of relationships between antagonist treatment and the composition of the
gastrointestinal microbiome as seen in OIC. This review will also discuss the association
between direct and indirect anti-opioids and the gut microbiome under the condition of
opioid treatment. Furthermore, the review aims to find an alternative and complementary
avenue that identifies and develops peripherally selective opioid antagonists that over-
come the adverse gastrointestinal effects of MOR analgesics, particularly OIC, without
impacting either the central opioid analgesia or peripheral analgesia, which is still the
subject of current and future research. In this context, we present a scenario-based overview
related to the concepts of developing opioid antagonists in order to overcome OIC and its
consequences on the intestinal microbiome and pain. Finally, the impact of food-derived
opioids and probiotics on gut dysbiosis, when simultaneously taken with these antagonists,
are also discussed.

2. Opioid Receptors

Opioid receptors are G protein-coupled receptors (GPCRs) that mediate a wide variety
of physiological and pharmacological effects upon the binding of endogenous or exogenous
peptides and non-peptide opioid agonists. To date, three primary opioid receptor (OR)
types can be distinguished, µ-opioid receptors (MORs), δ-opioid receptors (DORs), and
κ-opioid receptors (KORs), as well as nociceptin receptors (NOP-R). They can be found
in the central nervous system (CNS) and the periphery including the enteral nervous
system [24–26]. ORs interact preferentially with Gi and Go α-subunits of G proteins that
show sensitivity for the pertussis toxin [27,28]. Upon the binding of agonists to ORs, the
trimer structure of G-proteins dissociates to Gα and the Gβγ, which are involved in the
regulation of several intracellular effectors such as enzymes, and ion channels [29,30]. The
inhibition of adenylyl cyclase, activation of inwardly rectifying K+ channels, and inhibition
of voltage activated Ca2+ channels occurred as a consequence of OR activation [31].

MORs are the primary target for the current opioid analgesic agents used in the
management of pain. The major drawbacks of these agents, such as morphine, include
the development of analgesic tolerance, addiction liability, and constipation [32]. It is
worth noting that there is no tolerance for OIC [4], which is considered to be a peripheral
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gastrointestinal MOR-mediated effect, yet some research works have reported on the
involvement of CNS MORs as well [33–35].

Neuroanatomical studies have localized all three opioid receptor types in the myen-
teric and submucosal plexuses of the enteral nervous system on muscular and secretory
motor neurons and interneurons [16]. Activation of opioid receptors in the enteral nervous
system inhibits the release of neurotransmitters from excitatory motor neurons and stimu-
lates neurotransmitter release from inhibitory motor neurons, resulting in non-propulsive
motility. Administration of exogenous opioids (e.g., morphine) for analgesic purposes does
activate the peripheral MORs in the gastrointestinal tract and can evoke several adverse
gastrointestinal effects, such as alteration in fluid dynamics, inhibition of gastric emptying,
and intestinal coordinated propulsive activity, and can thereby increase transit time, all of
which may contribute to postoperative ileus and OIC [16,23,36]. In fact, opioid agonist-
induced slow gastric emptying, decreases in both small and large bowel transits as well as
an increase in anal sphincter tone are together involved in the development of OIC [4,37–40].
Constipation, intestinal spasms, and abdominal pain are some of the clinical manifestations
of the disproportions that occur between the small and large intestines [41]. Additionally,
less pancreaticobiliary secretion and gut absorption lead to a harder, drier stool when
MORs in the enteric nervous system are directly activated, they are also associated with
a reduction in vasoactive intestinal peptide release. In contrast to clinically used opioid
analgesics, such as morphine, oxycodone, and fentanyl, G protein-biased MOR agonists
have been reported to have reduced adverse effects including constipation, but there is no
scientific consensus on this issue [42–44].

The concept on the presence of subtypes of MOR in the CNS has been proposed and
published [45–47]. However, to the best of our knowledge this proposal has not been
elucidated in gastrointestinal tract. Thus, the current consensus of the opioid research
field is that there are no known differences in the sequences of the central and peripheral
receptors that can be exploited for drug discovery purposes.

3. Evidence on the Peripheral Pharmacology of Opioid Antagonists in Relation to
Opioid-Induced Constipation

Opioid-induced constipation is experienced by ~41% of patients and constitutes one
of the obstacles that limit continuing opioid analgesic therapies, particularly in long-term
use [48,49]. For instance, 8 weeks of treatment with opioid analgesics can cause OIC
in an average of 4% of patients [48]. In addition, both OIC and opioid-induced bowel
dysfunction appear in up to 80% of patients who take opioids [50]. In fact, OIC causes pain
that may discourage patients from taking opioid analgesics. Therefore, several non-opioid
therapies (laxatives, prokinetics, chloride channel activators), and opioid rotation, have
been approved for the treatment of OIC before starting opioid antagonist therapy.

To obtain the current medications that counteract the MOR-receptor-mediated side
effects, great efforts have been exerted to develop opioid receptor antagonists such as
naloxone, naltrexone, naloxegol, naldemedine, 6β-naltrexol, naltrexamine analogs (NAP
and BNAP), and nalmefene, among others (Figure 1). The main purpose of developing
opioid antagonists has been to inhibit opioid agonist-induced respiratory depression [51,52].
Aside from these effects, the pharmacological property of these antagonists creates a
possibility of using them alone or in combination with opioid agonists or other medications
to treat other clinical conditions such as obesity, disruptive impulse control, conduct
disorder (kleptomania), opioid addiction, alcohol dependence, smoking [53–55], and OIC.
With respect to opioid overdose, naloxone and nalmefene are being considered as rescuers.
Unfortunately, when opioid antagonists are administered even in small doses they do
reverse the well-controlled pain and make it agonizing, though controversial data have
been reported relating to small doses of opioid antagonists and analgesia [56]. This section
highlights the relevant steps in the development of opioid receptor antagonists, intended to
reduce OIC (Figure 1) without notable impact on the analgesic action of the applied opioids.
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3.1. Preclinical Studies

Several preclinical studies have demonstrated the peripheral OR-mediated anti-opioid
action of naloxone, naltrexone, and other morphinan-based quaternary opioid antagonists
such N-methyl-naloxone or N-methyl-naltrexone (MNTX), as well as N-allyl-nalorphine
or N-methyl-nalorphine or levallorphan methyl iodide, by co-administering them with
systemic morphine or another opioid agonists in animal models designed to assess the
antinociception and constipation induced by opioids [57–66]. Tavani and coworkers pro-
vided data on the ability of N-allyl-nalorphine to counteract the morphine-induced in-
testinal transit delay in rats to a comparable extent [67]. Prior treatment with either
N-methyl-nalorphine or N-methyl-levallorphan abolishes morphine-induced constipation
but not antinociception [64]. In another work, Bianchi and coworkers [59] investigated the
peripheral and central antinociceptive or constipating component of systemic morphine
alone or in combination with N-allyl-nalorphine, N-methyl-nalorphine, N-methyl-naloxone,
and N-methyl-naltrexone or naloxone in mice. In this work, the authors provided data on
the ability of tested quaternary antagonists to restore morphine-induced constipation and
partially reduce morphine’s antinociception in this animal pain model. In another study,
the peripheral selectivity of some quaternary antagonists has been found to be species-
dependent [61]. This observation was based on the fact that N-methyl-levallorphan showed
greater peripheral selectivity in mice than in rats, even compared to N-allyl-levallorphan,
N-methyl-nalorphine, and N-methyl-naloxone. Both N-methyl-levallorphan and N-methyl-
nalorphine were the most potent in preventing constipation evoked by subcutaneous (s.c.)
morphine in a charcoal meal assay. In a study carried out by Anselmi and coworkers, they
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showed that s.c. or intraperitoneally administered MNTX antagonized the chronic mor-
phine treatment-induced total gastrointestinal transit delay, with no effect being measured
in naïve guinea pigs’ gastrointestinal transit, indicating the sensitivity of OIC to MNTX [68].

Another strategy for developing peripheral MOR antagonists entails the synthesis of
the 6β-N-heterocyclic-substituted naltrexamine derivative NAP, which has been reported
to produce a measurable increase in the intestinal motility of morphine-treated mice [69,70].
In fact, some of these analogs, such as BNAP, showed an affinity for more than one opioid
receptor subtype [71]. Kanemasa and co-workers reported that naldemedine, in certain
doses, inhibits OIC without affecting analgesia or withdrawal in rats. The measured
effect in this study was attributed to MORs, because the applied agonists were MOR-
selective agonists, though naldemedine has displayed comparable affinity for MOR, DOR,
and KOR in receptor binding assays [72]. Likewise, naloxegol, a pegylated derivative
of naloxone, can antagonize the OIC in rat experiments where morphine was the test
agonist [73]. Alvimopan is a fully synthetic zwitterionic piperidine derivative that is
structurally completely different from other clinically used opioid antagonists. Based
on affinity studies, alvimopan has been proven to be a MOR antagonist displaying an
affinity five times higher for MOR and five times lower for both DOR and KOR than
naloxone. The route of administration of alvimopan dictates its site-of-distribution profile
within the peripheral tissue, namely peripheral tissues or the entire gastrointestinal tract
when administered s.c. or orally, respectively [74,75]. Furthermore, zwitterionic opioid
antagonists, namely naloxone-14-O-sulfate and naltrexone-14-O-sulfate have also been
reported previously; however, their impact on OIC, to the best of our knowledge, has not
yet been elucidated [76,77].

3.2. Human Studies

In humans, the real breakthrough was the introduction of methylnaltrexone into
clinical practice to counteract the OIC in doses that are devoid of CNS effects [78–80].

A group of peripherally acting µ-opioid receptor antagonists (PAMORAs), known as
methylnaltrexone, naldemedine, and naloxegol, have been approved to treat the OIC of
patients with noncancer pain [81]. These agents selectively block peripheral MORs without
affecting central opioid analgesia [82]. The first used PAMORA was MNTX, which is
applied subcutaneously or orally; however, its oral availability is very low. as indicated by
the large difference between the doses given orally and subcutaneously. Its first approved
indication is to manage OIC in cancer and noncancer patients having a poor response to
conventional laxatives in a palliative care setting [83].

In a randomized placebo-controlled trial, Michna et al. demonstrated that both daily
and alternate-day administration of MNTX significantly improved rescue-free bowel move-
ments compared to a placebo in patients receiving opioid therapy for noncancer pain.
The study reported favorable number-needed-to treat values, namely 5 to 14 for MNTX
compared to a placebo, indicating the therapeutic efficacy of MNTX [84]. Furthermore,
recent research has explored the oral administration of MNTX in patients with chronic
noncancer pain. In a published phase 3 study, Rauck et al. investigated three different doses
(150, 300, and 450 mg) and found that the 450 mg dose was the most effective with 28.0% of
administrations achieving rescue-free bowel movement within four hours of treatment, as
opposed to 18.8% after placebo [85].

Naloxegol acts on peripheral opioid receptors to counteract OIC. Clinical trials have
demonstrated the efficacy of oral naloxegol 25 mg administration in improving straining,
stool consistency, and the frequency of fully spontaneous bowel movements compared
to a placebo in noncancer pain patients [86]. Another FDA-approved PAMORA for OIC
treatment is naldemedine. Clinical trials, namely COMPOSE-1 and COMPOSE-2, involv-
ing patients with persistent noncancer pain demonstrated that naldemedine significantly
increased bowel movements above baseline compared to a placebo [87]. COMPOSE-3, a
52-week placebo-controlled study involving 1241 patients randomly assigned to receive
either naldemedine or a placebo further confirmed the superior efficacy of naldemedine in
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increasing the frequency of spontaneous bowel movements [88]. In patients with cancer
pain, the efficacy of naldemedine to attenuate OIC was confirmed by a two-week controlled
study (COMPOSE-4) [89]. It is worth noting that, in addition to PAMORAs, a fixed-dose
combination of oxycodone hydrochloride and extended-release naloxone hydrochloride
has been approved to reduce the occurrence of OIC in chronic pain patients. The delayed
release of naloxone allows it to act as a local antagonist on opioid receptors in the gastroin-
testinal tract while having minimal impact on analgesia owing to its first-pass effect once
administered per os to human or animal subjects [90,91]. With respect to alvimopan, in clin-
ical trials it was proven to effectively inhibits constipation evoked by either loperamide [92]
or chronic opioid treatment without affecting analgesia [93]. It has also been shown to
prevent chronic opioid treatment-induced gastrointestinal side effects [94,95].

The aforementioned preclinical and clinical studies support the effectiveness of the
peripherally acting opioid antagonists as well as those with systemic metabolism in counter-
acting OIC (Table 1). In addition, they have an advantage over the readily CNS-penetrating
opioid antagonists with the negligible first-pass effect of being devoid of the reduction in
opioid analgesia or reduced opioid antagonist-precipitated withdrawal.

Recent evidence of the deleterious effect of OIC on changes to the gastrointestinal
microbiome has attracted many opioid researchers and clinicians [23,96]. Data presented in
Section 4 answer the issue of whether these opioid antagonists could normalize the changes
in the microbiome.

3.3. Safety of Current Opioid Antagonists for OIC Therapy

Long-term studies have been carried out to evaluate the safety of PAMORAs for
OIC therapy. In a multicenter phase III study with 1034 chronic noncancer pain patients
experiencing OIC, the administration of a daily 12 mg subcutaneous MNTX for 48 weeks
resulted in significant improvements in various bowel-related parameters. Adverse events
were mainly mild to moderate, and 15.2% of patients discontinued the study due to such
events [97]. In addition, treatment with oral MNTX (150, 300, or 450 mg, or placebo once
per day for 4 weeks, followed by as-needed use for 8 weeks) for OIC in patients with
chronic noncancer pain showed a long-term safety profile comparable with a placebo,
with no evidence of cardiac toxicity or opioid withdrawal [98]. Another long-term study
intended to examine the tolerability of naloxegol (52 weeks) showed similar results with
no new tolerability issues, and all adverse events reported were related to gastrointestinal
transit [99]. The long-term safety and tolerability of naloxegol was also confirmed in a
52-week randomized placebo-controlled study [100]. With respect to naldemedine, in
the COMPOSE-1 and COMPOSE-2 studies, patients were randomly assigned to receive
either oral naldemedine 0.2 mg or a placebo daily for 12 weeks. Naldemedine was more
effective in treating OIC in chronic noncancer pain patients. However, it had a higher rate
of adverse events (15% vs. 7% in COMPOSE-1 and 16% vs. 7% in COMPOSE-2) compared
to the placebo [87]. On the other hand, another study showed that naldemedine was well
tolerated for 52 weeks and did not affect opioid analgesia or cause withdrawal symptoms.
However, diarrhea was reported more frequently with naldemedine (11.0%) vs. placebo
(5.3%) [101]. In a study designed to assess the safety of naloxone once combined with
oxycodone, a 52-week treatment with oxycodone/naloxone found it be safe, well-tolerated,
and typical of opioid treatment [102]. Alvimopan is only approved for short-term usage
in hospitals for treatment of postoperative ileus due to the risk of myocardial infarction
observed in several clinical studies [103,104].

The safety profile of all PAMORAs is comparable to most common symptoms, such
as abdominal pain, diarrhea, and nausea/vomiting. However, the situation is different
regarding the cardiac risks associated with alvimopan, as mentioned above. Moreover,
it is essential to consider potential interactions between naloxegol and drugs that share
the CP450 pathway [105]. It is also important to assess the use of naloxegol [106] and
MNTX [107,108] in individuals with renal failure.
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Table 1. MOR antagonist-mediated effects to reduce OIC that are based on a co-formulation product
or a separate drug product.

Co-Formulated Product Route of
Administration

Purpose of the
Combination Reference

NX + oxycodone per os OIC [109]

NX + oxycodone (1:2) per os (prolonged release) OIC [90]

NX + oxycodone (1:2) per os (prolonged release) OIC [91]

MNTX + opioid analgesics s.c. + per os OIC [110]

MNTX + morphine, oxycodone, or fentanyl

s.c.(MTNX)
(per os) morphine

(continuous-release patches)
fentanyl, oxycodone

OIC [111]

MNTX + morphine s.c.(MTNX)
per os (morphine) OIC [84]

MNTX + morphine per os OIC [85]

MNTX + morphine s.c.(MTNX) OIC [112]

MNTX + morphine s.c.(MTNX) OIC [113]

MNTX + morphine s.c.(MTNX) OIC [114]

Naloxegol + morphine per os OIC [86]

Naloxegol + morphine per os OIC [100]

Naldemedine + morphine per os OIC [87]

Naldemedine + opioid analgesic OIC [115]

Naldemedine + morphine per os OIC [88]

Naldemedine + morphine per os OIC [89]

4. Opioid Antagonists and the Gut Microbiome

A growing body of evidence has recently shed light on the critical role of the gas-
trointestinal microbiome, because changes in its composition can affect normal central and
peripheral physiological functions in animals and humans, including nutrient absorption,
immune status, and behavior [116,117]. With respect to pain, alterations in microbiome
composition have been proven to be involved in pain pharmacology [118–120] and cog-
nitive changes, which in turn are associated with chronic pain [121,122]. Nevertheless,
it is important to note that the full picture on the degree to which the composition of
the gut microbiome influences pain conditions, the bacterial lineages involved in these
processes and their mechanisms are not yet fully understood. In fact, during treatment of
chronic pain with opioid analgesics, the activation of MORs in the gastrointestinal tract
and as a consequence OIC, which is one of the major participant factors in the develop-
ment of gastrointestinal dysbiosis, should be considered prior to treatment with these
types of medications. This implies creating a balance between the potential benefits and
harms simultaneously or next to gastrointestinal MOR activation. Treatment with opioid
analgesics results in OIC, which has largely participated in the peripheral adverse effect
of opioids, yet no tolerance has been reported regarding OIC; therefore, strategies that
are oriented to restoring the normal balance of microorganisms in the intestines seem to
suit present clinical needs. With respect to OIC, the general consensus is that no opioid
tolerance is related to constipation both in animal and human subjects even in long-term
opioid treatment, as reviewed by Akbarali [123]. Indeed, there are animal data showing
that chronic opioid exposure results in tolerance in the small intestine and the upper part of
gastrointestinal tract but not in the colon, which leads to persistent constipation [124,125].
For instance, in in vitro studies, prolonged exposure to morphine results in downregulation
of ß-arrestin2 in the ileum but not in the colon. This implies a role for β-arrestin2 in the
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development of opioid side effects, which include constipation, as reported in the case of
MOR G protein-biased agonists [43,44]. However, morphine tolerance has been measured
in β-arrestin2 knockout mouse colon [123], suggesting that the role of β-arrestin2 in the
development of opioid tolerance is tissue-dependent, namely it induces tolerance in the
CNS and prevents it in the colon. This partially gives an answer to the reduced constipation
measured for etorphine and fentanyl in the colon as well as explaining why fentanyl pro-
duces less constipation and substantial analgesic tolerance. One possible explanation could
be a relatively larger intracellular pool of MOR and, as a consequence, more pronounced
receptor recycling. Next, in the colon, morphine triggers dynamin upregulation (i.e., better
recycling), yet the activation of the ERK—CREB pathway could also be involved. On the
other hand, many splice variants of MOR are described, and alternative splicing of the
receptor can influence their ability to activate intracellular pathways. Additionally, the
changes to the C-terminal can also influence their internalization and recycling properties.
However, the abundance of those splice variants in the colon are not yet well described.
Opioid-induced internalization of MORs is related to their ability to induce tolerance after
receptor activation. This process involves the phosphorylation of the receptor by different
kinases. The kinases involved in this process can vary. Opioid ligands (e.g., fentanyl,
endogenous opioids) cause phosphorylation by G-protein receptor kinases (GRKs), but
morphine induces phosphorylation by protein kinase C (PKC). After the phosphorylation,
the process involves β-arrestin2 binding and internalization occurs. After internalization,
the receptor can recycle from the intracellular pool in a few hours. This trafficking is
mediated by dynamin. Fast internalization and recycling might provide a protective factor
against tolerance development. For further details on opioid tolerance development in the
gastrointestinal tract, see the review by Galligan and Sternini [126].

To avoid the consequences of OIC, when drugs such as non-bulk-forming laxatives,
prokinetics, and chloride channel activators fail to counteract OIC, drugs that act on opioid
receptors as antagonists currently represent the most promising option. Evidence of the
involvement of OIC in the development of OID relies on the fact that MOR knocking out or
treatment of animals with opioid receptor antagonists with a high affinity for MORs, such as
naltrexone-abolished morphine-induced gut dysbiosis in rats, indicates that these effects are
dependent on MOR activation [127,128]. According to analysis of the gut microbiome, mice
treated with morphine pellets showed an increased proportion of the Firmicutes phylum
alongside some bacterial species from this phylum, and this change was counteracted
by naltrexone [128]. Likewise, Banerjee and coworkers reported that naltrexone prevents
morphine-evoked expansion of Firmicutes, yet naltrexone treatments create a microbial
composition similar to control mice but distinct from morphine-treated mice [127]. In
another study, naltrexone was also able to reverse the morphine treatment-induced increase
in systemic Acinetobacter burdens in mice [129]. Wang’s group also reported that morphine
treatment-induced gut dysbiosis, indicated by a reduction in microbial alpha diversity,
was normalized by naltrexone [17]. This evidence suggests that long-term MOR activation
contributes to microbiome alterations in rodents. In the reviewed studies, naltrexone
was applied—from a pharmacokinetic point of view naltrexone is well absorbed in the
gastrointestinal tract following oral administration and has reasonable CNS penetration—
and would pharmacodynamically counteract the peripheral and the central analgesic effects
of opioid analgesics as well as induce withdrawal symptoms in subjects exposed to chronic
opioid agonists intended either for therapeutic or illicit use. Moreover, the contribution
of the central or peripheral effect of naltrexone to the observed anti-dysbiotic effects is
uncertain. To show the involvement of peripheral and central receptors, microbiome studies
with opioid analgesics and PAMORAS would be necessary, but as far we know, such results
have yet to be published.

The above-mentioned evidence raises the possible benefit of opioid antagonists that
have limited absorption from gastrointestinal tract or have undergone first-pass metabolism
once administered orally. These two properties are found in quaternary opioid receptor
antagonists and naloxone, respectively. In order to elucidate the contribution of the pe-
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ripheral MORs to the observed changes in the microbiome, trials with the aforementioned
PAMORAs could be of use.

At first glance, the mechanism of OID seems likely due to OIC. Indeed, opioid treat-
ment induces dysbiosis, which in turn contributes to the disruption of the intestinal ep-
ithelial barrier and, as result, bacterial translocation from gastrointestinal tract to other
organs occurs [21,130,131]. This effect has been attributed to a shift in short-chain fatty
acids (SCFAs)—(butyrate)-producing bacteria, such as Faecalibacterium [21]. Constipation
evokes reduction in SCFA production. In addition, low abundances of Faecalibacterium,
Ruminococcaceae, and Roseburia were detected in the feces of constipated people [132]. Fir-
micutes species, including Lactobacillaceae, Ruminococcaceae, and Lachnospiraceae largely
participate in the production of SCFAs [133,134]. Opioid antagonist therapy, as mentioned
above, is based on two strategies, namely applying peripherally acting opioid antagonists
such methylnaltrexone and pegylated naloxone or opioid analgesics and naloxone in com-
bination [81,91,109,135,136]. In general, constipation, and particularly chronic constipation,
causes alterations in the composition of the gut microbiome that affect the production of
SCFAs, which have a principal role in gastrointestinal motility. In addition, endogenous
gastrointestinal motility promotors such as motilin and gastrin have been reported to
be decreased in the serum of patients with constipation [137,138]. Likewise, treatment
with opioid agonists inhibits gastrointestinal motility by direct or indirect action through
modulating the release of neurotransmitters involved in gastrointestinal peristalsis [139].
This indicates that MOR antagonists, once applied prior to or simultaneously with opioid
analgesics, would inhibit gastrointestinal changes including constipation. Studies have pro-
vided evidence for the involvement of intestinal bacteria in the development of neuropathic
pain [20,22,118]. However, to the best of our knowledge, the extent of the influence and the
type of bacterial phylum involved in the development of different neuropathic pain entities
have not been reported in a single paper. Current data regarding the efficacy of opioids in
the treatment of neuropathic pain are controversial. On the other hand, opioid analgesics
are the mainstay of moderate to severe cancer pain management. In neuropathic animal
pain models, several studies have shown that a reduction in MORs which is manifested by
a reduction in the efficacy of opioids [12,140–143]. Indeed, the relationship between neuro-
pathic pain and opioid analgesic-induced gastrointestinal dysbiosis remains unelucidated.
Nevertheless, recently, several studies have shown that treatment with opioid analgesics
causes alterations in microbiome composition that may provoke the development of the
adverse effects of opioids, including opioid analgesic tolerance [4,17,18,23,144]. To achieve
adequate opioid analgesia, dose escalation is required, which further aggravates the side
effects, including OIC as the main factor altering gut microbiome composition, as reviewed
above. In the last four decades, outstanding studies have laid the research foundations for
the distribution of functional MORs in the peripheral tissues that mediate antinociceptive
effects of systemically or locally administered opioid agonists [3,5,7,25,40,145–147]. In these
studies, several opioid agonists with limited CNS penetration have been proven to produce
peripheral antinociceptives; however, the central side effects (addiction liability, tolerance)
were not fully elucidated. Indeed, developing opioid analgesics with limited central side
effects is a great clinical need and challenge. The question raised is, how peripherally acting
opioid agonists could affect gut microbiome composition. Therefore, the hypothesis is that
opioid antagonists whose action is localized to the gastrointestinal tract would be of great
interest since they differ from CNS-penetrating antagonists in avoiding inhibition of MORs
in the CNS or periphery, particularly those located outside of the intestinal luminal surface
to mediate peripheral antinociceptive effects.

Logically, treatment with future peripheral opioid analgesics will be associated with
OIC and, as a consequence, changes in microbiome composition might occur. However,
to the best of our knowledge, no study has investigated this issue. Loperamide, a pe-
ripherally acting opioid agonist, and its antimotility effect via the activation of MORs,
has been utilized in the treatment of diarrhea. This characteristic can be used as a tool to
predict future scenario-related OIC and dysbiosis. However, as has recently been noted,
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developing biased opioid analgesics may forego OIC [148]. Indeed, loperamide is often
used in preclinical microbiota studies, mostly as a tool to induce constipation and detect
constipation-related microbiome changes [149–161]. Findings from these studies have
shown inconsistent results related to microbiome composition due to the use of different
doses of loperamide. For instance, the ratio of the two main phyla Firmicutes/Bacteroidetes
did not change consistently. Nevertheless, hitherto, the majority of studies have proved a
decrease in Bifidobacteria, Lactobacillus, and Ruminococcus, but the level of Bacteroides
was found to be either decreased, unchanged, or increased in different publications. In
contrast with what has already been mentioned, Proteobacteria was mostly unchanged
following loperamide treatment. On the other hand, in treatment with loperamide, similar
to centrally acting opioid analgesic treatment, microbiota studies [127,128,162] showed that
the integrity of the intestinal barrier was also disrupted in some cases, which can lead to
inflammation [153,159,163]. Overall, loperamide-induced intestinal dysbiosis was similar
to that induced by classical opioid analgesics (morphine or others). This further supports
the recent data from other works that have shown similarities in the intestinal bacterial
dysbiosis evoked by opioid analgesics and opioid antidiarrheal agent treatments [23]. In
addition, OIC and constipation not related to opioid use cause the intestinal dysbiosis
of overlapping (Table 2). Thus, even if a clinically effective peripherally acting opioid
analgesic is developed, it will logically cause similar gastrointestinal side effects and mi-
crobiome changes as loperamide or a CNS-acting opioid agonist, when not considering
the impact of future biased opioid agonists. These data again indicate that the particularly
promising possibility is the use of gastrointestinal-tract-restricted opioid antagonists such
as oral naloxone. Furthermore, these types of antagonists may counteract the action of
other compounds showing an opioid-mediated effect in the context of OID.

With respect to the promising effect of opioid antagonists against human intestinal
dysbiosis caused by opioid analgesic treatment, a clinical trial by Gicquelais et al. has
investigated this scenario. In this study, 46 outpatients from an addiction treatment facility
were enrolled in the investigation. They were subdivided into four groups namely, opioid
agonists (such as heroin or prescription opioids), antagonists (such as naltrexone), agonist–
antagonist combinations (such as buprenorphine and naloxone), and neither opioid agonists
nor antagonists being used during the time of sample collection. Comparing people
who used neither agonists nor antagonists, it was found that those who used opioid
agonists only had reduced alpha diversity and different bacterial community profiles.
Roseburia, unclassified Firmicutes, and Bilophila were less abundant in the agonist group
compared to those using neither agonists nor antagonists. In the agonist group, the
relative abundances of Clostridium cluster XIVa, unclassified Firmicutes, Lactobacillus,
Faecalicoccus, Anaerostipes, and Streptococcus were higher compared to the group using
neither agonists nor antagonists. There were no differences in gut microbiota characteristics
between people using agonists + antagonists, antagonists only, and neither agonists nor
antagonists. These results suggest that partial opioid agonists may have a different effect
on the microbiota than full opioid agonists. In addition, the effects of opioids on the gut
microbiota may be counteracted by naltrexone or naloxone [164]. Treatment of patients with
OID is of urgent medical need and establishing a future therapy scheme including opioid
antagonists with restricted gastrointestinal effects would decrease patient compliance,
opioid analgesic tolerance, and intestinal dysbiosis-related pain behaviors.
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Table 2. Changes in the microbiome composition of subjects with OIC or with constipation not
related to opioid use.

Bacteria Opioid
Treatment Reference Note

Subject Constipation Reference Note
Type of Constipation

Firmicutes
Bacteroidetes

↑
↓

[165]
[163]

Sprague Dawley rat
(oxycodone 2 mg/kg s.c.
twice a day for 5 days)

↑
↓ [166]

Irritable bowel
syndrome patients
with constipation.

C57BL/6 mouse (loperamide
9.6 mg/kg p.o., twice a day

for 14 days)

Bifidobacterium,
Lactobacillus ↓ [167]

C57BL/6 mouse (escalating
doses of morphine from 5 to

40 mg/kg, twice/day
for 8 days)

↓ [168] Patients with
functional constipation

Lactobacillus,
Bacteroides and

Akkermansia

↓
↑ [169]

C57BL/6 mouse
(hydromorphone 7.5 mg/kg

twice a day for 8 days)

↓
↑ [96]

Mice received fecal
microbiota from

patients with
constipation

Bacteroidetes,
Lactobacillus,

and Clostridium
↓ [127]

C57BL/6 mouse (25 mg
morphine pellet implanted

for 3 days)
↓ [168,170] Adult patients with

functional constipation

Ruminococcus,
Clostridium spp. ↑ [171]

C57BL/6 mouse
(intermittent and sustained

morphine)
↑ [172] Children with

functional constipation

Roseburia
Enterobacteriaceae

↓
↑ [164] Patients (heroin or

prescription opioids)
↓
↑ [173]

Patients with
constipated-irritable

bowel syndrome

Roseburia ↓ [164]
[174]

Patients (heroin or
prescription opioids)

↓
[175]
[176]
[177]

Patients with severe
chronic constipation
Italian subjects with

functional constipation

C57BL/6 pregnant mouse
(10 mg/kg hydromorphone
i.p. for 3 days, on gestation

days G11-G13)

Constipated
Women of

Reproductive Age

5. Exploring the Possible Interaction between Food-Derived Opioids or Probiotics and
Opioid Analgesics in Microbiome Composition

The question is raised whether food, especially milk and fermented dairy product-
derived opioids (e.g., yogurt, kefir) could affect intestinal microbiome composition, par-
ticularly during treatment with opioid analgesics. Bovine milk-derived β-casomorphins
display agonist activity on MORs [178] measured by in vitro assays, and have shown
antinociceptive activity in in vivo assays. Likewise, bovine milk-derived α-casein exor-
phins have shown opioid agonist activity. In contrast, casoxins derived from both bovine
and human κ- and α-caseins have been proven as opioid antagonists. This means that
the modulation of the intestinal microbiota composition could also occur alongside the
digestion of milk products. Theoretically, peptides with a opioid agonist character could
enhance the effects of opioid drugs due to their ability to interact with MORs, leading to
the enhancement of both the desired and undesired opioid-related effects. In this regard,
the consumption of β-casomorphine-7 and its propeptide has been reported to display
gastrointestinal effects manifesting as delays in transit time, cramping, increased mucus
production, and increased production of inflammatory mediators [179]. On the other hand,
those peptides with an opioid antagonist character could ameliorate the effects of both
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current opioid analgesics and the above-mentioned food-derived opioids. With respect
to the composition of the gut microbiome, some studies have shown that the abundance
of beneficial genera Lactobacillus and Bifidobacterium increased in humans taking dairy
products (milk, yogurt, and kefir) [180–183]. On the other hand, the abundance of these
bacteria either decreased or increased both in human and animals subjected to opioid
treatments [23]. Indeed, the direction of the shift in microbiome composition when opioid
analgesics are taken alone or in combination with a peripherally acting opioid antagonist,
taken simultaneously with dairy products, to the best of our knowledge, has not been
elucidated yet. It is worth noting that enzymatic digestion of milk-derived peptides can
also result in the formation of peptides with antibacterial activity [184]. The later data
further complicate the scenario when opioid analgesics are administered simultaneously
with dairy products.

Probiotics have recently attracted the attention of researchers, since they show positive
impacts on OIC, OID, opioid use disorder, and opioid analgesia. Furthermore, they have
shown to be beneficial in several functional and neurodegenerative CNS disorders such
Alzheimer’s disease, major depressive disorder, epilepsy, Parkinson’s disease, multiple
sclerosis, and schizophrenia [185,186] as presented in Table 3.
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Table 3. Human and animal results on the impact of probiotics on the presented CNS diseases, pain, OUD, and constipation.

Disease Probiotics Subject Outcomes +/− Reference

Alzheimer’s
disease

Lactobacillus and Bifidobacterium species Rats Restoration of synaptic plasticity in the hippocampus of the brain after 56 days
of probiotic supplementation. + [187]

Rats
Enhances brain signal transmission by normalizing long-term potentiation, decreases the

activation of microglial markers, and increases the expression of BDNF and synapsin.
Improvement in cognitive function and spatial learning.

+ [188]

Multispecies probiotics containing different
stains and species of the genera Lactobacillus

and Bifidobacterium.
Human Patients did not respond positively to a blend of six probiotic strains. − [189]

Major
depressive

disorder

Lactobacillus plantarum PS128 Mice Probiotic reduced depression and anxiety in mice, with increased dopamine
and serotonin levels. + [190]

Akkermansia muciniphila Mice Probiotics alleviated depressive-like symptoms in mice by reversing abnormalities
in the gut microbiota. + [191]

Clostridium butyricum (CBM588) as an
adjunctive therapy to the antidepressant drugs Human A significant improvement in depression scores. + [192]

Bifidobacterium longum NCC3001 Human Probiotics reduced depression, although not anxiety, in IBS patients and improved their
quality of life. + [193]

L. helveticus R0052 and B. longum R0175 Human Probiotics did not alleviate depressive symptoms in individuals with low mood who were
not on psychotropic medications. − [194]

Epilepsy

a mixture of pro/prebiotics and vitamins for
one month Rats Probiotics did not significantly affect the duration and number of

spike-and-wave discharges. − [195]

Lactobacillus rhamnosus, Lactobacillus reuteri, and
Bifidobacterium infantis for three weeks Rats Probiotics reduced oxidative stress, increased antioxidant capacity in the brain, raised

inhibitory GABA levels, and improved spatial learning and memory. + [196]

VSL#3 for a month Rats

A decrease in the frequency and duration of spike–wave discharges, probiotics exhibited
anti-inflammatory properties by reducing the levels of SOX2 and neurotrophic factors while

increasing the levels of inflammatory factors, alleviating the concurrent anxious and
depressive-like behaviors.

+ [197]

B. longum, L. acidophilus, and E. faecalis Human
Probiotics reduced seizures, with no notable differences in cognitive function, including
measures of intelligence and memory. Probiotics decrease anxiety and depression while

improving the quality of life.
+ [198]
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Table 3. Cont.

Disease Probiotics Subject Outcomes +/− Reference

Parkinson’s
disease

6 strains (Bifidobacterium bifidum, Bifidobacterium
longum, Lactobacillus rhamnosis, Lactobacillus
rhamnosus GG, rhamnosus GG, Lactobacillus

plantarum LP28, and Lactococcus lactis
subsp. Lactis)

Mice
Probiotics induced better motor performance (gait, balance, and coordination) in animals,
from week 16 until the end of the experiment at week 24 and mitigated the degeneration of

nigral dopaminergic neurons.
+ [199]

A fermented milk containing probiotics
and prebiotics Human

Fermented milk containing probiotics and prebiotics significantly enhanced bowel
movements in individuals with severe constipation linked to

parkinson’s disease.
+ [200]

Bifidobacterium bifidum, Lactobacillus acidophilus,
Lactobacillus fermentum, and Lactobacillus reuteri

over a 12-week period
Human Probiotics improved the symptoms of patients with Parkinson’s disease measured using

total MDS-UPDRS scores. + [201]

Pain

Mixed probiotic formulation SLAB51 Mice Probiotics improved paclitaxel-induced mechanical and cold hypersensitivity and increased
the levels of opioid and cannabinoid receptors in the spinal cord. + [202]

14-strainprobiotic mixture for 8 weeks in
chronic and 10 weeks in episodic migraines Human

Improvements in the frequency and severity of migraines and reduction in the consumption
of abortive medications despite no significant changes in serum levels of selected

inflammatory biomarkers
+ [203]

Multiple
sclerosis

Lactobacillus plantarum A7, Bifidobacterium
animalis PTCC 1631 or a mixture of both strains

for 22 days beginning simultaneous with
induction EAE

Mice

Probiotics ameliorated experimental autoimmune encephalomyelitis, in an animal model of
multiple

sclerosis, through inhibiting disease-associated cytokines while increasing
anti-inflammatory cytokines.

+ [204]

VSL3 probiotic mixture, which includes
Lactobacillus, Bifidobacterium,

and Streptococcus
Human

Probiotics resulted in a shift in their gut microbiota that helps to modulate the
anti-inflammatory response of the peripheral innate immune system by regulating the

intermediate monocytes.
+ [205]

Schizophrenia

Bifidobacterium longum for 2 weeks Mice
Probiotics showed promise in alleviating schizophrenia symptoms by reducing

apomorphine-induced rearing behavior, lowering plasma corticosterone levels, and
decreasing the kynurenine-to-tryptophan ratio.

+ [206]

Bifidobacterium breve A-1 for four weeks Human
Probiotics improved positive and negative syndrome scale (PANSS) scores, reduced anxiety

and depression, and increased IFN-g, IL-1R1, IL-10, and IL-22 levels while decreasing
TNF-a levels.

+ [207]

Lactobacilli and Bifidobacterium bifidum
was given with vitamin D Human

Improvement in the general and total PANSS scores, decreased circulating CRP levels and
enhanced total antioxidant capacity of plasma, indicating symptomatic improvement and

reduced inflammation.
+ [208]

Lactobacillus rhamnosus
and Bifidobacterium lactis Bb12 for 14 weeks Human Probiotics did not change PANSS scores over the course of the 14-week trial though

increased plasma BDNF. − [209]
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Table 3. Cont.

Disease Probiotics Subject Outcomes +/− Reference

Opioid
use

disorders

VSL#3 Mice

Morphine-tolerant mice displayed a reduction in Bifidobacteriaceae and Lactobacillaceae at
the family level and Bifidobacterium and Lactobacillus at the genus level. The probiotic

VSL#3 pre-treatment prevented morphine-induced dysbiosis and so attenuated morphine
tolerance in both tail flick and hot plate assays.

+ [18]

Bifidobacterium longum subspecies longum
35624™ or Lactobacillus rhamnosus GG Mice Probiotic treatment does not alter naloxone-precipitated withdrawal in

morphine-dependent mice. − [210]

Constipation

probiotic chocolate containing Streptococcus
thermophilus MG510 and Lactobacillus plantarum

LRCC5193
Rats

Loperamide-induced constipation was associated with a relative increase in the abundance
of the family Enterobacteriaceae and a decrease in the genera Bifidobacterium and
Lactobacillus, the Clostridium group (cluster IV) as well as F. prausnitzii. Probiotic

administration could modulate the gut microbiota.

+ [149]

Multi-strain probiotics containing a mixture of
(Lactobacillus plantarum PBS067, Lactobacillus
rhamnosus LRH020, Bifidobacterium animalis

subsp. lactis BL050; Roelmi HPC), L. plantarum
UALp05, Lactobacillus acidophilus DDS-1, and

Streptococcus thermophilus CKDB027

Rats

Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the
microbiome, serotonin, and short-chain fatty acids in rats. The abundances of the phylum

Verrucomicrobia, the family Erysipelotrichaceae, and the genus Akkermansia were
increased in fecal samples of the probiotic-treated groups.

+ [211]

two probiotic cocktails (One formulation with
Lactobacillus acidophilus, Bifidobacterium bifidum
and Lactobacillus rhamnosus; and another with
Lactobacillus acidophilus, Bifidobacterium bifidum,
Lactobacillus rhamnosus, Lactobacillus paracasei,
Bifidobacterium longum, Bifidobacterium lactis,
Lactobacillus casei, Bifidobacterium animallis)

Human Functional constipation symptoms improved with the two probiotic cocktails, which
increased weekly evacuation and stool quality. + [212]
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6. Conclusions and Future Perspectives

The clinically available MOR analgesics or future opioid agonists that are intended to
produce peripheral antinociception once administered orally, OIC and its consequences in
relation to dysbiosis, should be accounted for (Figure 2). Therefore, developing opioid an-
tagonists with localized action on gastrointestinal tract (gut-selective µ-opioid antagonists)
would be clinically relevant in the context of the drawback of dysbiosis in the development
of opioid-related adverse effects. That is, they would reverse the OIC-evoked dysbiosis
and meanwhile avoid affecting the central analgesia and tolerance as well as the peripheral
opioid analgesia. Current relevant opioid analgesics produce central analgesia, whereas
peripherally acting opioid agonists have been proposed as future analgesics. Opioid an-
tagonists with localized action on the gastrointestinal tract, once combined with opioid
analgesics and with or without probiotics, may have clinical value in the management
of pain.
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