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In vivo protein turnover rates in varying oxygen
tensions nominate MYBBP1A as a mediator of the
hyperoxia response
Xuewen Chen1,2,3, Augustinus G. Haribowo1,2, Alan H. Baik1,4, Andrea Fossati1,5,6,
Erica Stevenson1,5,6, Yiwen R. Chen7, Nabora S. Reyes8, Tien Peng8,9, Michael A. Matthay10,11,
Michela Traglia12, Alexander R. Pico12, Daniel F. Jarosz7,13, Abigail Buchwalter10,14,15,
Sina Ghaemmaghami16,17, Danielle L. Swaney1,5,6, Isha H. Jain1,2,9,10*

Oxygen deprivation and excess are both toxic. Thus, the body’s ability to adapt to varying oxygen tensions is
critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational
effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover
rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome
is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are
stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron
transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models
by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator,
particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen
tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.
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INTRODUCTION
Oxygen deprivation underlies countless pathological conditions in-
cluding ischemic heart disease, hypoxic lung disease (e.g., emphy-
sema), and stroke (1–3). Oxygen excess is also pathological in the
context of hyperoxic lung injury, retinopathy of prematurity, and
mitochondrial disorders (4–7). Variations in tissue oxygen levels
trigger a multitude of adaptive and maladaptive signaling cascades.
Most prior research in this space has focused on transcriptional re-
sponses mediated by the hypoxia-inducible factors (HIFs) (3, 8, 9).
However, it is becoming increasingly clear that post-translational
effects are also key regulators of the hypoxia response (10–12).
There are several known hypoxia adaptations that involve mod-

ulating protein turnover rates. Recently, researchers discovered an
oxygen-sensing mechanism regulated by cysteamine dioxygenase
(ADO) that is conserved from plants to mammals (11, 13, 14). In

normoxic conditions, oxygen-dependent ADO modifies the N-ter-
minal cysteines of target proteins, resulting in degradation via the
N-end rule. In hypoxia, this reaction is inhibited, thereby stabilizing
targets (11). Furthermore, hypoxia inhibits mammalian target of ra-
pamycin (mTOR) signaling and activates the unfolded protein re-
sponse (UPR) (15, 16). These pathways decrease overall protein
turnover rates in extreme hypoxia to conserve adenosine 50-triphos-
phate (ATP) and alleviate endoplasmic reticulum stress (16).
On the other hand, oxygen-dependent changes in protein turn-

over can also be maladaptive. For example, we recently found that
specific iron-sulfur (Fe-S)–containing protein complexes are desta-
bilized and degraded in hyperoxia, leading to downstream bio-
chemical defects (17). In particular, a substructure of electron
transport chain (ETC) complex 1 (the matrix-facing arm that in-
cludes the N and Q modules) contains eight Fe-S clusters and is de-
stabilized in hyperoxia. The resulting ETC dysfunction causes
progressive hyperoxia, ultimately damaging additional Fe-S–con-
taining proteins. Thus, the ETC is the “weakest link” in hyperoxia
and is a primary cause of pathophysiology (17). In addition, post-
translational disulfide bond formation is oxygen-dependent.
Extreme hypoxia inhibits this reaction, causing protein misfolding
and degradation (18).
Thus, there are clues in the literature that variations in oxygen

levels can affect protein turnover rates in a manner that is adaptive
or maladaptive. However, we lack a comprehensive investigation of
protein turnover rates as a function of oxygen in vivo. More gener-
ally, most in vivo protein turnover studies have focused on baseline
conditions rather than physiological responses to stress. It is also
unknown how different organs cope with proteotoxic stress in
hypoxia or hyperoxia. Lastly, while HIF is a well-studied transcrip-
tional regulator of the hypoxia response, it is unclear whether there
are analogous mediators of the hyperoxia response.
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We set out to answer these questions using organism-level stable
isotope-labeling proteomics (19). We focus on the lung, heart, and
brain because these organs are particularly sensitive to pathologic
conditions related to tissue hypoxia or hyperoxia. Our study high-
lights the tissue-specific responses to varying oxygen tensions and
nominates MYB-binding protein 1a (MYBBP1A) as a transcrip-
tional regulator of hyperoxia response. These findings are of partic-
ular relevance to states of pulmonary oxygen toxicity, including
bronchopulmonary dysplasia in neonates and hyperoxic lung
injury in adults.

RESULTS
Protein half-lives are determined by tissue-specific and
protein-intrinsic features in normoxia
To systematically study protein turnover rates in different oxygen
tensions, we conducted stable isotope labeling of amino acids in
mice (SILAM) (Fig. 1A). This approach relies on the assumption
that the proteome is at steady state throughout the experiment.
Thus, we first exposed wild-type mice to three different fractions
of inspired oxygen (FiO2) for 1 week: chronic hypoxia (8% FiO2),
normoxia (21% FiO2), or hyperoxia (60% FiO2). Throughout this
pretreatment period, we placedmice on a control algae diet contain-
ing the standard 14N isotope. After 1 week, we switched the mice in
different oxygen tensions to a 15N-containing algae diet and collect-
ed all major organs after 1, 2, 4, 8, 16, and 32 days. Tissue lysates
were analyzed by data-independent acquisition (DIA) proteomics
(20) to quantify the incorporation of labeled amino acids into the
proteome of the lung, heart, and brain.
As previously shown, the incorporation of 15N into the proteome

over time leads to broad MS1 spectra (21), which poses a challenge
for accurate modeling and quantification of peptide turnover rates.
Instead, it has been shown that protein turnover rates can be calcu-
lated by quantifying the decay of 14N peptides (due to 15N incorpo-
ration) (19). Therefore, to estimate protein degradation rates, we
first quantified the decay of the 14N fraction over time.We then nor-
malized the peptide abundance to that of 10 long-lived housekeep-
ing proteins (table S1) that have previously been reported to have
half-lives of greater than 2 months in mouse heart (Fig. 1B and
fig. S1A) (22). We fitted these normalized data to a first-order
kinetic model to estimate the protein degradation rate (Kd) and
applied a linear mixed-effects model to compare turnover rates
across oxygen tensions (Fig. 1B and fig. S1A).
This allowed for the estimation of protein degradation rates and

half-lives for 4152, 2536, and 3877 proteins in lung, heart, and brain,
respectively (Fig. 1C, fig. S1B, and table S2). For greater than 50% of
these proteins, the half-life was calculated using at least three detect-
ed peptides (fig. S1C). We observed a strong correlation of half-lives
across biological replicates in each organ (Pearson correlation coef-
ficient r: median = 0.95; range = 0.73 to 0.99), demonstrating the
reproducibility of the dataset (fig. S1D).
We first examined normoxic tissues and observedmarked differ-

ences in the distribution of protein half-lives across organs. The
median half-life was 7.2 days in the heart, 8.0 days in the brain,
and 3.9 days in the lung (Fig. 1D and fig. S1B). This may reflect
more direct exposure of lung to the atmosphere. In addition, the
lung has several cell types (e.g., epithelial cells, endothelial cells,
etc.) that show greater overall turnover rates compared to terminally

differentiated cell types in other organs (e.g., neurons and cardio-
myocytes) (23–25).
Regardless of the overall distribution of protein half-lives, it is

possible that the relative half-lives within the proteome are dictated
at least partially by protein-intrinsic features. In line with this, we
observed positive correlations of protein half-lives between nor-
moxic brain, heart, and lung (r2 range: 0.35 to 0.59) (Fig. 1C), con-
sistent with previous findings in primary cells and tissues (21, 26).
We further examined the intrinsic biophysical features of proteins,
including peptide length, hydrophobicity, intrinsic disordered frac-
tion, and charge patterns. We found that a larger intrinsic disor-
dered fraction, less hydrophobicity, and larger fractions of
negatively charged amino acids are associated with faster turnover
rates in all three tissues (fig. S2A). Together, our data indicate that
protein half-lives are dependent on intrinsic biophysical features of
proteins but vary across organs.

Tissue-specific features are the main determinant of
protein half-lives in hypoxia and hyperoxia
We next determined how variations in oxygen tension affect protein
turnover rates across the three organs. We observed only modest
changes in protein half-lives at the global level (Fig. 1E). Instead,
most changes occurred in specific proteins. The lung had the great-
est number of significantly affected proteins [fold changes > 1.3,
false discovery rate (FDR) < 0.05]: 12.7% for hypoxia and 9.7%
for hyperoxia (Fig. 2A). On the other hand, in the heart and
brain, less than 4% of the proteins we monitored had significantly
different turnover rates in hyperoxia or hypoxia (Fig. 2A).
There are two possible explanations for the marked effects on

lung protein turnover rates: (i) The lung is directly exposed to en-
vironmental oxygen, so the local tissue partial pressure of oxygen
(PO2) is most sensitive to changes in inhaled oxygen level, while
for other tissues, oxygen levels are buffered by hemoglobin and par-
tially normalized by physiological adaptations such as changes in
hematocrit and vascular density; (ii) the overall cellular turnover
rates in the lung may intrinsically be greater, requiring increased
protein turnover (27). We observed minimal overlap between the
significantly changed proteins across the three organs (Fig. 2B).
In addition, we assessed the effects of protein-intrinsic properties.
We found that the biophysical properties were not strong predictors
of oxygen-dependent changes in protein turnover (fig. S2B). These
results indicate that oxygen-dependent changes in protein turnover
are highly variable across organs and are likely linked to tissue-spe-
cific physiological responses to hypoxia or hyperoxia.

ECM proteins exhibit oxygen-dependent turnover rates
in lung
We performed pathway enrichment analysis for proteins showing
significant changes in turnover rates. In the lung, we found that pro-
teins with slower turnover rates were enriched for extracellular
matrix (ECM) remodeling pathways in both hypoxia and hyperoxia,
including ECM-receptor interaction and collagen formation
(Fig. 3A and table S3). In particular, collagen proteins (COL1A1,
COL1A2, and COL6A1) and laminin proteins (LAMC2 and
LAMB2) exhibit slower turnover rates in both hypoxia and hyper-
oxia than in normoxia (Fig. 3, B, C, and D, and table S3). Collagen
and laminin are both critical components of the ECM, and have im-
portant roles in maintaining tissue integrity, providing structural
support, and regulating cell behavior (28). There are different
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types of collagen and laminin proteins, with unique structural prop-
erties and functions. Of note, some laminin proteins, such as
laminin subunit alpha 5 (LAMA5), showed higher turnover rates
in hypoxia and hyperoxia than in normoxia (Fig. 3, B and C, and
table S2), suggesting that different laminin subunits are regulated
differently in response to oxygen changes. Our data reveal that
these proteins are likely to be regulated post-translationally in
varying oxygen tensions, potentially contributing to lung ECM re-
modeling. Notably, collagen is known to undergo oxygen-depen-
dent prolyl hydroxylation, which affects protein stability (29).
Our data revealed distinct changes in protein dynamics in the

heart and brain (fig. S3). In the heart, we observed increased

degradation rates of proteins involved in ubiquinone (coenzyme
Q) synthesis in hypoxia (fig. S3A, including COQ3 and COQ9;
and table S3). In the brain, we found that proteins involved in re-
ceptor-mediated endocytosis, such as EFNB1 and EFNB2, a cell
surface transmembrane ligand for Eph receptors, were stabilized
under hyperoxic conditions (fig. S3D and table S3). Overall, our
study provides insights into the tissue-specific responses to
changes in oxygen that will serve as a broadly useful resource for
the field.

Fig. 1. Pulsed SILAM reveals variations of protein half-lives across organs. (A) Schematic of the pulsed SILAM study design. Micewere acclimatized with the 14N algae
diet in respective oxygen tensions for 7 days before the start of the experiment. At day 0, all mice were switched to the 15N-labeled algae diet to label all the newly
synthesized proteins. Tissues were harvested at different time points following the start of the labeling. Lung, heart, and brain samples were analyzed using LC/MS-MS. (B)
Data analysis schematics. The fraction of peptides made of 14N amino acids only was quantified and normalized at each time point to the values of 10 long-lived proteins
(22). Following normalization, 14N fractions were fitted by linear mixed-effects models to estimate protein degradation rates for each protein in a given condition. To
compare degradation rates between oxygen tensions, a linear mixed-effects model was applied where oxygen and time were set as fixed effects and peptides were
random variables. (C) Study coverage, inter-organ overlap, and correlations. The circles represent the number of proteins in normoxia (21% O2) whose degradation rates
were estimated in the study. The Venn diagrams represent the overlap of proteins measured in the study across organs. The scatterplots show the correlations of protein
half-lives across organs, and the coefficients of determination (r2) are shown in the figures. (D) Density plots of protein half-lives and median half-lives in lung (3.9 days),
heart (7.3 days), and brain (8.0 days) in normoxia across the three organs. (E) Protein half-lives across oxygen tensions. Statistical analysis was performed using the
Kolmogorov-Smirnov test. *P < 0.05, **P < 0.01, and ****P < 0.0001.
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Oxygen-dependent effects on protein turnover rates vary
across protein complex subunits
In our previous work, we found that hyperoxia destabilizes specific
protein complexes containing Fe-S clusters (17). For example, the
entire matrix-facing arm of mitochondrial ETC complex 1 was de-
pleted in hyperoxia, suggesting complex-level effects, not just
subunit-level changes (17). To determine whether this occurs
more broadly, we searched all mammalian protein complexes
using the CORUM database (30). This analysis confirmed that
most ETC complex 1 subunits had shorter half-lives in hyperoxia
in the lung (Figs. 3D and 4, B and C, and table S4). Among the
17 complex 1 subunits measured in this study, 11 subunits exhibited
faster turnover rates in hyperoxia (2.1- to 3.7-fold) (Fig. 4, B and C).
This was less evident in the brain and heart (table S2), likely because
the inhaled hyperoxia is buffered by hemoglobin. Of note, tissue hy-
peroxia can also result from biochemical ETC deficiency [e.g.,
genetic mitochondrial disease (4)]. In this case, internal organs
such as brain and heart will likely showmore marked hyperoxia-de-
pendent effects. A previous study demonstrated that subunits in the
matrix-facing N-module of complex 1 are degraded at faster rates
because of oxidative damage (31, 32). In line with this, we found
that the matrix-facing modules had significantly faster turnover
rates than the membrane-bound module (fig. S4).
In contrast, in many other protein complexes, only one or two

subunits are sensitive to varying oxygen levels (Fig. 4, A and B, and
table S4). For example, the chaperonin complex contains eight sub-
units, but only t-complex 1 (TCP1) has faster turnover rates in both

hypoxia and hyperoxia (Fig. 4D). This may be due to subunit-spe-
cific susceptibility to oxidation or protein-protein interactions. In
the case of chaperonin, TCP1 is known to interact with von
Hippel-Lindau tumor suppressor (VHL), an E3 ligase, to facilitate
its folding (33). It is possible that there is increased oxygen-depen-
dent interaction between TCP1 and VHL, resulting in increased
ubiquitination and proteasomal degradation of TCP1. Alternatively,
it is possible that the protein stability of specific proteins is affected
before incorporation into the larger protein complex. In summary,
oxygen-dependent changes in turnover rate do not always correlate
across all proteins of a given complex.

Hyperoxia-induced protein destabilization may exacerbate
monogenic disorders
We previously reported that hyperoxia can worsen the disease pro-
gression of a mouse model of mitochondrial disease caused by
genetic ETC defects, leading to respiratory failure and premature
death (4, 34). Moreover, hypoxia rescues disease and significantly
improves survival, likely by acting on a fragile complex 1. In this
study, we identified 434 proteins that were destabilized in hyperoxic
lung. To investigate which other monogenic disorders may be exac-
erbated by hyperoxia, we crossed this list with the OnlineMendelian
Inheritance in Man (OMIM) database, a compendium of human
monogenic disorders. Consistent with our previous findings, we
identified many mitochondrial disease genes as hits (Table 1). In
addition, we identified multiple disease genes that cause glycogen
storage disease, spastic paraplegia, and Charcot-Marie-Tooth

Fig. 2. Protein turnover rates have different sensitivities to varying oxygen tensions in different organs. (A) Volcano plots of log2(fold changes) and−log10(FDR) of
turnover rates (Kd) for each protein calculated using a linear mixed-effects model. Oxygen and time were set as the fixed variables, and peptides were set as the random
variables. Proteins with fold changes >1.3 and FDR < 0.05 are highlighted in blue (for proteins with slower turnover) or red (for faster turnover). Statistical analysis was
performed using the linear mixed-effects model with Benjamini-Hochberg correction. (B) Venn diagrams of significantly changed proteins (fold change >1.3, FDR < 0.05).
Proteins detected in all three organs were compared. The color gradients indicate the number of proteins that were significantly changed in lung (L), heart (H), or/and
brain (B).
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disease (Table 1). Patients with these conditions may be more sen-
sitive to the use of supplemental oxygen and amenable to rescue by
hypoxia exposure. Future work is needed to investigate the clinical
and preclinical significance of these findings.

Transcription cofactor MYBBP1A is stabilized in hyperoxic
lung tissue
Hypoxia is known to stabilize HIF1α and HIF2α, which are critical
transcription factors that drive hypoxia adaptations. We wondered

whether there are specific transcriptional regulators that are similar-
ly stabilized in hyperoxia, andmay serve as mediators of a hyperoxia
response. We searched for all transcription factors and cofactors in
our dataset using the Animal TFDB 3.0 database (35). We found
three such proteins with decreased turnover, indicating increased
stability in lung tissue from hyperoxic mice: NOTCH2,
MYBBP1A, and SND1 (Fig. 5, A and B, and fig. S5A). To investigate
whether these transcription factors accumulate in hyperoxia, we re-
analyzed an abundance proteomics dataset in lung homogenate

Fig. 3. Extracellularmatrix proteins exhibit oxygen-dependent turnover rates in lung tissue. (A) Enrichment analysis for proteins with significant changes in protein
degradation rates (FDR < 0.05, fold change >1.3) in lung tissues using the STRING functional analysis method. The size of the dots represents−log10(FDR) for each term. (B
and C) Protein-protein physical interaction network of extracellular matrix proteins in lung constructed using the STRING network function in Cytoscape (confidence score
cutoff at 0.70). The plots show the laminin and collagen proteins and their first-degree neighbors in the network. Each node represents a protein that is measured in the
lung, and edges represent the physical interactions. The color represents the fold change in protein degradation rates, and the size represents the significance level
determined using the linear mixed-effects model. The proteins with FDR < 0.05 are bolded. (D) Representative scatterplots of 14N protein decay over time in the three
oxygen tensions. Each dot represents the average abundance of all peptides in each subject. The fitted lines were calculated using the linear mixed-effects model, where
the absolute numbers of the slopes correspond to the degradation rates.
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from wild-type mice that were exposed to 21% O2 or 80% O2 for 5
days from our previous study (17). We also included samples from
mice that were exposed to hyperoxia for 5 days and returned to nor-
moxia for 1 or 5 days.We found thatMYBBP1A protein levels in the
lung progressively increased over the 5 days of exposure to hyper-
oxia (Fig. 5C). We validated this finding by Western blot of whole-
lung homogenate from these same samples (Fig. 5D). The protein

level remained elevated 1 day after the mice were transferred from
80 to 21% O2, as expected, because the protein’s half-life is ~2 days
in normoxia. However, it normalized after 5 days of recovery in nor-
moxia (Fig. 5C). These results demonstrate that MYBBP1A is stabi-
lized under hyperoxia in lung tissue, resulting in its progressive
accumulation. Moreover, this stabilization is reversible when the
mice are returned to normoxic conditions. Next, to interrogate

Fig. 4. Effects of oxygen on protein complex turnover rates in lung tissue. (A and B) Network representation of protein complexes generated using Cytoscape. The
protein complexes were retrieved from the CORUM database. Protein complexes with four or more subunits measured in the study are shown. The color gradient rep-
resents the differential protein degradation rates between oxygen tensions. Statistical analysis was performed using the linear mixed-effects model with Benjamini-
Hochberg correction. Proteins with FDR < 0.05 are highlighted in blue (for proteins with slower turnover) or red (for faster turnover). The sizes of the nodes indicate
the significance level. The edges represent the physical interactions among subunits in a protein complex. (C) Crystal structure and schematic of ETC complex 1 (79, 80).
The color gradient represents the fold changes of protein turnover rates in hyperoxia versus normoxia for the proteins thatwere significantly changed (FDR < 0.05) in their
turnover rates. Oxygen labile Fe-S clusters are shown. (D) Crystal structure and schematic of chaperonin (79, 81). TCP1, which had faster turnover rates in hypoxia and
hyperoxia than in normoxia, is highlighted in red. Statistical analysis for all panels was performed using the linear mixed-effects model with Benjamini-Hochberg
correction.
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whether MYBBP1A is up-regulated in different lung cell types
(Fig. 5E), we isolated lung fibroblasts and alveolar type II (ATII)
cells from mice exposed to 21 or 80% O2. We demonstrated that
MYBBP1A level was elevated in both cell types (Fig. 5, F and G).
The timing of up-regulation varied: ATII cells responded after 3
days of hyperoxia, whereas fibroblasts showed an increase after 5
days (Fig. 5, F and G). This suggests varying sensitivities to hyper-
oxia among cell types. Furthermore, primary lung fibroblasts and
ATII cells isolated from human patients also displayed increased
MYBBP1A expression after being cultured in hyperoxic conditions
(Fig. 5, H and I), highlighting the clinical relevance and evolution-
ary conservation of this response. These features make MYBBP1A a
strong candidate for a regulator of the hyperoxia response. There-
fore, we next focused on MYBBP1A and its downstream
consequences.

MYBBP1A is associated with rRNA processing in hyperoxic
lung tissue
MYBBP1A has been studied in several cancer cell lines and Droso-
phila, where it is reported to be localized in the nucleolus (36–40). It
has been proposed to have two primary roles: (i) as a cofactor of
multiple transcription factors and (ii) as a regulator of ribosomal
RNA (rRNA) processing/transcription (41). In the former case,
MYBBP1A translocates to the nucleoplasm under stress conditions,

where it represses the activity of certain transcription factors (e.g.,
PGC1α andMYB) and activates that of others (e.g., p53) (40–42). In
the latter case, it is proposed to affect rRNA levels in the nucleolus
(36, 37). To better understand MYBBP1A’s function in an unbiased
manner, we searched for genes that are coessential with MYBBP1A
using the DepMap Genetic Dependency database. This resource
identifies essential genes across hundreds of cancer cell lines
using genome-wide CRISPR knockout screens (43). Genes that
are most coessential across these cell lines are likely to be function-
ally related. We found that MYBBP1A is coessential with many
other players in the rRNA biogenesis pathway (including
WDR18, PELP1, POP5, BOP1, and TSR1), supporting the findings
from previous literature (Fig. 6B and table S5).
To identify the potential effects of MYBBP1A in hyperoxia, we

performed unbiased transcriptomics (using 30 untranslated region
mRNA sequencing, Quant-seq) to compare gene expression in nor-
moxic versus hyperoxic mouse lung, matched to our previous abun-
dance proteomics dataset. We found that genes that were up-
regulated in lung tissue after exposure to 80% oxygen for 5 days
were enriched in ribosome processing and rRNA biogenesis
(Fig. 6A and tables S6 and S7). Moreover, we observed a moderate
up-regulation of p53 targets in hyperoxia, including p21 (fig. S5B).
Thus, it is possible that MYBBP1A up-regulation also promotes the
p53-mediated transcriptional response. On the other hand, targets

Table 1. Monogenic diseases that may be exacerbated by hyperoxia. Significantly destabilized proteins in hyperoxic lung with known monogenic disorders
and phenotype MIM numbers.

Gene
symbol

Gene name Phenotypes and MIM numbers

GYG1 Glycogenin 1 Glycogen storage disease XV, 613507 (3), autosomal recessive; polyglucosan body myopathy 2,
616199 (3), autosomal recessive

GYS1 Glycogen synthase Glycogen storage disease 0, muscle, 611556 (3), autosomal recessive

NDUFB10 NADH-ubiquinone oxidoreductase
subunit B10

Mitochondrial complex I deficiency, nuclear type 35, 619003 (3), autosomal recessive

NDUFA13 NADH-ubiquinone oxidoreductase
subunit A13

Mitochondrial complex I deficiency, nuclear type 28, 618249 (3), autosomal recessive

NDUFA2 NADH-ubiquinone oxidoreductase
subunit A2

Mitochondrial complex I deficiency, nuclear type 13, 618235 (3), autosomal recessive

NDUFS8 NADH-ubiquinone oxidoreductase core
subunit S8

Mitochondrial complex I deficiency, nuclear type 2, 618222 (3), autosomal recessive

NDUFA10 NADH-ubiquinone oxidoreductase
subunit A10

Mitochondrial complex I deficiency, nuclear type 22, 618243 (3), autosomal recessive

NDUFA9 NADH-ubiquinone oxidoreductase
subunit A9

Mitochondrial complex I deficiency, nuclear type 26, 618247 (3), autosomal recessive

NDUFA8 NADH-ubiquinone oxidoreductase
subunit A8

Mitochondrial complex I deficiency, nuclear type 37, 619272 (3), autosomal recessive

NDUFV2 NADH-ubiquinone oxidoreductase core
subunit V2

Mitochondrial complex I deficiency, nuclear type 7, 618229 (3), autosomal recessive

NDUFS3 NADH-ubiquinone oxidoreductase core
subunit S3

Mitochondrial complex I deficiency, nuclear type 8, 618230 (3), autosomal recessive

B4GALNT1 β-1,4-N-acetylgalactosaminyltransferase 1 Spastic paraplegia 26, autosomal recessive, 609195 (3), autosomal recessive

CAPN1 Calpain, large polypeptide L1 Spastic paraplegia 76, autosomal recessive, 616907 (3), autosomal recessive

MTMR2 Myotubularin-related protein 2 Charcot-Marie-Tooth disease, type 4B1, 601382 (3), autosomal recessive

PRX Periaxin Charcot-Marie-Tooth disease, type 4F, 614895 (3), autosomal recessive; Dejerine-Sottas disease,
145900 (3), autosomal recessive, autosomal dominant
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of MYB or PGC1⍺ were not significantly changed (fig. S5B). There-
fore, we hypothesized that up-regulation of MYBBP1A in hyperoxia
primarily affects rRNA processing in hyperoxia.
The rRNA precursor is a polycistronic sequence that is tran-

scribed from rDNA and undergoes complex processing to
produce three of the four mature rRNAs (18S, 5.8S, and 28S) in
the nucleolus. The mature rRNAs are then assembled into the ribo-
some and are required for its function in protein translation (45). To
investigate the effects of hyperoxia on rRNA biogenesis, we

designed polymerase chain reaction (PCR) primers targeting the
three mature rRNA and internally transcribed sequences (ITS) of
the 47S rRNA precursor (Fig. 6C). We performed quantitative
reverse transcription polymerase chain reaction (qRT-PCR) for
pre-rRNA and mature RNA in mouse lung tissues exposed to
21% O2 or 80% O2 for 5 days. We found that lung tissues had a
nearly 10-fold increase in pre-rRNA expression in hyperoxia com-
pared to normoxia, whereas there were no significant changes in the
expression of mature rRNAs (Fig. 6D). Thus, stabilization of

Fig. 5. MYBBP1A is stabilized and accumulates in hyperoxic lung tissue. (A) Volcano plots of proteins with changes in protein turnover rates in the lung. Transcription
factors and cofactors with significant changes are highlighted in blue (for proteins with slower turnover) or red (for faster turnover) in respective oxygen tensions. Stat-
istical analysis was performed using the linear mixed-effectsmodel with Benjamini-Hochberg correction. (B) 14N protein decayover time ofMYBBP1A in lung tissues. Each
dot represents the average abundance of all peptides in each subject. The corresponding fitted lines were calculated using the linear mixed-effects model, where the
absolute numbers of the slopes correspond to the degradation rates. (C) Abundance proteomics data for MYBBP1A in mouse lung (n = 6 biological replicates per group)
(17). Micewere exposed to 21 or 80% FiO2. For the recovery groups, micewere first exposed to 80% FiO2 for 5 days and brought back to 21% FiO2 for 1 or 5 days. Datawere
analyzed using unpaired t test following log transformation. *P value (with Benjamini-Hochberg correction) < 0.05. (E) Main cell types in lung tissues. Illustration made
with Biorender. (D, F, and G) Western blots of MYBBP1A in mouse lung homogenates (D), isolated mouse lung fibroblasts (F), or mouse ATII cells (G) (n = 3 biological
replicates per group). Mice were exposed to 21 or 80% FiO2 for up to 5 days. (H and I) Western blots of MYBBP1A in primary human ATII cells (H) and lung fibroblasts (I).
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MYBBP1A is associated with increased rRNA precursors in the hy-
peroxic lung.
Next, we set out to understand which lung cell types show

MYBBP1A-mediated transcriptional changes. We analyzed a previ-
ously published single-cell RNA-sequencing (RNAseq) data for
mouse lung exposed to 21 or 85% oxygen from birth to postnatal
day 14 (46). We found that most endothelial, epithelial, and
stromal cell types showed a significant increase in expression of
genes involved in ribosomal biogenesis (fig. S5C), which is in con-
cordance with our bulk Quant-seq data in hyperoxic lung tissue. In
particular, ATII cells, pulmonary vein endothelial cells, and peri-
cytes showed the most substantial fold changes (Fig. 6E). In addi-
tion, we crossed the single-cell RNAseq dataset with genes down-
regulated in MYBBP1A knockout K562 cells (47). These genes are

likely regulated by MYBBP1A-mediated transcription responses. In
support of our overarching hypothesis, these genes are enriched in
most of the lung cell types in hyperoxia, including ATII cells, pul-
monary vein endothelial cells, and fibromyocytes (fig. S5D). To-
gether, these analyses support the idea that MYBBP1A-mediated
changes occur in a range of lung cell types during hyperoxia.

The role of NAD+/NADH in mediating MYBBP1A
stabilization in hyperoxia
Destabilization of ETC complex 1 causes reductive stress resulting
from decreased NADH recycling to NAD+ (48). To interrogate the
effects of complex 1 loss on MYBBP1A stabilization, we expressed
yeast NADH dehydrogenase (NDI1) protein in cells to restore the
NAD+/NADH ratio in hyperoxia. Unlike mammalian complex 1,

Fig. 6. MYBBP1A up-regulation is associated with increased rRNA biogenesis in hyperoxia. (A) Top enriched pathways for up-regulated genes in hyperoxic lung
[FDR < 0.05, log2 (fold change) > 1.5] using EnrichR. The color gradient represents the number of significantly up-regulated genes in each pathway. The Gene Ontology
terms are ranked on the basis of the FDR values. (B) Coessentiality gene network of MYBBP1A in the DepMap database. The network was generated with the FIREWORKS
web tool (44). Top 30 genes positively correlated with MYBBP1A are shown in red (primary), and the genes with the secondary interactions are shown in yellow. The
thickness of the edges corresponds to Pearson correlations between two nodes (range = 0.21 to 0.65). Genes involved in rRNA biogenesis (GO:0042254) are circled with
blue outlines. (C) Schematic of the rRNA precursor and mature ribosomal rRNA. (D) qRT-PCR of internal transcribed spacers (ITS1 and ITS2) of rRNA and mature rRNA,
including 18S, 5.8S, and 28S. The RNA expression levels relative to Hprt1 are shown. Each data point represents the average value of technical duplicates (n = 4 animals per
group). Statistical analysis was performed using unpaired t test. **P < 0.01. (E) Genes in each cell type were ranked on the basis of the fold changes in the single-cell
RNAseq data (46) (from the most up-regulated to the most down-regulated in hyperoxia). The genes involved in ribosome biogenesis (GO:0042254) were analyzed using
the GSEA algorithm in each lung cell type. The cell types with the most significant enrichment are shown. NES, normalized enrichment score.
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NDI1 does not contain Fe-S clusters but instead contains flavin
adenine dinucleotide (FAD) as the electron carrier (49). We
showed that expressing NDI1 in multiple cell lines increased the
basal mitochondrial respiration rates and rotenone-resistant respi-
ration rates in hyperoxia, demonstrating that NDI1 can at least par-
tially complement the decrease in NADH-linked ETC respiration in
hyperoxia (fig. S5, E and F). To test whether impaired NADH recy-
cling underlies elevated MYBBP1A levels in hyperoxia, we trans-
duced primary human lung fibroblasts with NDI1 and exposed
them to different oxygen levels. NDI1 expression failed to reverse
the up-regulation of MYBBP1A in hyperoxia (Fig. 7A). In addition,
we treated the cells with sodium pyruvate to restore the NAD
+/NADH ratio by increasing lactate dehydrogenase activity. The ad-
dition of pyruvate did not reverse the up-regulation of MYBBP1A
(Fig. 7B). Therefore, impaired NADH recycling in hyperoxia is not
sufficient to explain the up-regulation of MYBBP1A. Future work
will be needed to decipher the signaling cascades linking hyperoxia
to MYBBP1A accumulation and the downstream consequences.

DISCUSSION
Oxygen plays a critical role in protein turnover rates via post-trans-
lational modifications. However, it is unclear how varying oxygen
tensions affect protein turnover in vivo. In this study, we found
that oxygen-dependent changes in protein turnover rates under
hypoxic and hyperoxic conditions were highly tissue-specific. The
lung, in particular, showed the most marked changes. We uncov-
ered that oxygen-dependent changes of turnover rates in protein
complexes were not always correlated. Furthermore, our results
nominate MYBBP1A as a transcriptional regulator in hyperoxic
lung, which may have important implications for lung
pathophysiology.
Changes in protein turnover rates reveal tissue-specific prote-

ome dynamics in response to hypoxia or hyperoxia. The proteins
with significant changes in turnover rates showed minimal
overlap across the three tissues. The top changing pathways were
associated with tissue-specific responses to varying environmental
oxygen levels. Our results demonstrated that in lung tissue, many
ECM proteins showed changes in both hypoxia and hyperoxia, in-
cluding collagen proteins and laminin proteins. ECM determines
the architecture of lung via biochemical and biomechanical
signals (50). Changes in the ECM composition and protein modi-
fications occur in several chronic lung diseases (50). Previous liter-
ature has revealed that hypoxia and hyperoxia can have substantial
effects on the ECM remodeling in the lung, via post-translational
regulations. In hypoxia, collagen-modifying enzymes are up-regu-
lated in a HIF-mediated manner, including prolyl 4-hydroxylase α-
subunit isoform 1 and 2 (P4HA1/2), procollagen-lysine 2-

oxyglutarate 5-dioxygenase 2 (PLOD2), and lysyl oxidase (LOX)
(51, 52). On the other hand, hyperoxia modulates matrix metallo-
proteinase (MMP) activities via transforming growth factor–β
(TGFβ) signaling, resulting in increased stiffness of ECM (53, 54).
It is possible that these enzymes modify collagen and laminin pro-
teins post-translationally, resulting in their stabilization in hypoxia
or hyperoxia. This may contribute to increased collagen deposition
and basement membrane disruption in lung ECM in varying
oxygen tensions (53, 55). Future studies should explore which
post-translational modifications contribute to ECM protein stabili-
zation in these contexts.
We found that protein turnover changes in protein complexes

are not always correlated. Our previous study showed that most
ETC complex 1 subunits are degraded in hyperoxia in cell lines
and in mouse lung tissue (17). Consistent with this, we found that
in the hyperoxic lung, most detected complex 1 subunits exhibited
increased protein turnover rates. However, to our surprise, in other
complexes, such as the chaperonin and proteasome, only specific
proteins showed significant changes. The labile subunits in these
complexes may be regulated by interactions with other proteins
or post-translational modifications (33, 56).
In addition, our findings shed light on potential therapeutic

targets for diseases related to chronic hypoxia or hyperoxia, includ-
ing chronic lung disease, hyperoxic lung injury, ischemic heart
disease, and mitochondrial disease. We found that ETC complex
1 subunits were destabilized in hyperoxic lung, which is in accor-
dance with our previous studies demonstrating that hyperoxia exac-
erbates and hypoxia rescues mitochondrial complex 1 disease. In
addition, we nominated three other monogenic diseases that may
be worsened by tissue hyperoxia, including glycogen storage
disease, spastic paraplegia, and Charcot-Marie-Tooth disease.
Furthermore, we nominated MYBBP1A, a transcriptional regu-

lator, as a dynamic mediator of the hyperoxia response. We found
that MYBBP1A was stabilized in hyperoxic lung tissue, resulting in
its accumulation in multiple lung cell types. Notably, the protein
level returned to baseline levels after return to normoxia.
MYBBP1A is predominantly localized in the nucleolus, where it
regulates rRNA biogenesis and plays a critical role in the assembly
of ribosomes (37). Our data showed an up-regulation of rRNA bio-
genesis genes in hyperoxic lung homogenates, as well as several key
lung cell types, suggesting that MYBBP1A may play a role in rRNA
regulation in hyperoxia. It has been shown that knockdown of
Mybbp1a in Drosophila affects pre-rRNA and mature rRNA levels
and causes developmental defects (36). In contrast,Mybbp1a over-
expression suppresses RNA polymerase I activities (37), indicating
its complex regulatory role in rRNA biogenesis. Therefore, we in-
vestigated the levels of rRNA in varying oxygen tensions. We
found that in hyperoxic lung tissues, the pre-rRNA level was

Fig. 7. Effects ofmanipulatingNADH recycling onMYBBP1A induction in hyperoxia. (A and B) Western blotting of human lung fibroblasts in 21% versus 80% oxygen
for 6 days with NDI1 expression or pyruvate treatment. Biological duplicates are shown.
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increased. This increase may lead to MYBBP1A retention and sta-
bilization in the nucleolus. Overall, our findings shed light on the
critical role of MYBPP1A in rRNA biogenesis in hyperoxic lung.
Future studies will causally delineate the complex role of
MYBBP1A in hyperoxic transcriptional regulation by knocking
out the gene in different lung cell types.
Future studies will also investigate the mechanisms underlying

MYBBP1A stabilization in hyperoxia and test whether this is adap-
tive or maladaptive. We demonstrated that impaired NADH oxida-
tion due to impaired complex 1 activity is not required for
hyperoxic stabilization of MYBBP1A. Follow-up studies will inves-
tigate the role of several known regulators of MYBBP1A turnover in
hyperoxia signaling—for example, PREP1 and USP29 have been
shown to stabilize MYBBP1A, whereas VHL degrades it (57–59).
Limitations of our study include the fact that it spans from 1 day

to 32 days, which only allows us to estimate protein half-lives that
fall into that range. If proteins have half-lives shorter than 12 hours
or longer than 32 days, we are not able to accurately estimate half-
lives. As a result, we may miss some proteins with oxygen-depen-
dent half-lives. The model we use is based on the assumption that
protein abundance is constant over the course of the study. We have
previously shown that acute hypoxia causes marked changes in be-
havior and tissue oxygenation, but these functions are normalized
after ~1 week (60). Thus, we acclimatized the mice in respective
oxygen tensions for 1 week before the start of the isotope labeling.
However, we cannot rule out that the expressions of some proteins
fluctuate (e.g., circadian proteins) throughout our experiment. We
showed that the stabilization of MYBBP1A is associated with hyper-
oxia responses including alterations in rRNA biogenesis and in-
creased expressions of p53 targets. However, future studies are
needed to causally prove this.
In summary, our study provides a comprehensive analysis of in

vivo protein turnover rates in varying oxygen tensions. This is rel-
evant for a broad range of clinical conditions including chronic lung
disease, hyperoxic lung injury, ischemic heart disease, and mito-
chondrial disease. This work sheds light on hypoxia and hyperox-
ia-labile protein complexes and subunits that may be relevant for
several monogenic disorders. Moreover, it serves as a valuable re-
source for future studies of hypoxia and hyperoxia responses that
are mediated by changes in protein stability. As a key example, we
nominate MYBBP1A as a regulator of the hyperoxia response that is
associated with changes in rRNA homeostasis. By discovering me-
diators of oxygen-dependent responses, we can identify therapeutic
targets for states of mismatched oxygen supply and demand.

MATERIALS AND METHODS
Animal model
C57BL/6J (IMSR_JAX: 000664) male mice (7-week-old) were pur-
chased from the Jackson Laboratory. Upon delivery, the mice were
housed in the University of California, San Francisco (UCSF)
animal facility. Different oxygen levels (8, 60, or 80% O2) were
created by mixing N2 (Airgas), O2 (Airgas, Praxair), and room air
carefully controlled by gas regulators. The O2 and CO2 levels were
continuously monitored with wireless sensors and checked daily.
To prevent CO2 buildup in the chambers, soda lime (Fisher Scien-
tific, A1935236) was placed inside the chambers to absorb CO2. All
experiments were performed on C57BL/6J mice between the ages of

8 and 12 weeks. All animal studies were approved by the Institution-
al Animal Care and Use Committee Program at UCSF.

Cell models
K562 [American Type Culture Collection (ATCC), CCL-243] and
A549 (ATCC, CCL-185) cells were purchased from ATCC and
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco/Life Technologies, 11995073) supplemented with
10% fetal bovine serum (FBS; Corning/Fisher Scientific,
MT35015CV) and 1% penicillin-streptomycin (Fisher Scientific,
15140122). Human lung fibroblasts (HLFs; Sigma-Aldrich Inc.,
506-05A) were maintained in DMEM/F-12 (Thermo Fisher Scien-
tific, 11330032) supplemented with 10% FBS and 1% penicillin-
streptomycin. Human ATII epithelial cells were isolated from
human lungs declined for transplantation by the Northern Califor-
nia Transplant Donor Network as previously described (61). Cells
were plated at 1 × 106 cells per well on collagen I–coated Transwell
plates (Corning, CLS3495, Sigma-Aldrich) in an air-liquid inter-
face. Cells were maintained in 50% DMEM high-glucose/50% F-
12 mix supplemented with 1% penicillin-streptomycin, 1% fungi-
some, and 0.1% gentamicin. Mycoplasma tests were performed
quarterly on all cell lines. All cells were maintained in cell culture
incubators (37°C, 5% CO2). The oxygen tension in the hyperoxia
cell culture incubator was created by mixing compressed air and
100% O2 (Praxair).

Isotope labeling of mice and tissue collection
C57BL/6J male mice (four to six mice per time point) were fed on
14N and 15N mouse chow (obtained from Silantes). Animals were
first acclimatized in respective oxygen tension with 14N (normiso-
topic) food for 1 week. Mice in the hypoxia group were first accli-
matized in 11% O2 for 1 week before transferring to 8% O2. The
animals were then transitioned to 15N chow throughout the labeling
period (for 1, 2, 4, 8, 16, and 32 days). Mice were sacrificed by iso-
flurane inhalation. The animals were perfused via the left ventricle
with ice-cold PBS for 2 min. Heart, lung, and brain tissues were
flash-frozen in liquid nitrogen.

Proteomics sample preparation
Tissues were processed using the SPEED (sample preparation by
easy extraction and digestion) preparation method (62). Briefly,
40 μl of trifluoroacetic acid (TFA) was added and incubated for 3
min at 70°C. TFAwas neutralized by adding 10 volumes of neutral-
ization buffer (2 M Trizma base in H2O). Cysteines were reduced
and alkylated with 5 mM Tris(2-carboxyethyl)phosphine (TCEP)
and 10 mM chloroacetamide, and the samples were incubated at
95°C for 5 min. Protein quantification was performed via the Brad-
ford assay, and all samples were adjusted at 100 μg. The resulting
volumes were diluted 1:1, and 1 μg of trypsin was added. Proteins
were digested overnight at 37°C on a thermo-shaker (600 rpm). Pep-
tides were desalted using a 96-well format C18 plate (Nest group)
following the manufacturer’s instruction and dried under vacuum.

Mass spectrometry acquisition
The lung samples were resuspended in buffer A [0.1% formic acid
(FA)], and approximately 200 ng was analyzed by DIA-PASEF (par-
allel accumulation-serial fragmentation combined with data-inde-
pendent aquisition) (63) on a Bruker TimsTof Pro 2 interfaced
with an Ultimate3000 UHPLC. The peptides were separated on a
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PepSep column (15 cm length, 150 μm inner diameter) using a 38-
min gradient at 0.5 μl/min. Following loading, the peptides were
eluted with a 5 to 30% buffer B [0.1% FA in acetonitrile (ACN)]
in 20 min. The column was then washed for 5 min at 90% and
high flow (1 μl/min) and reequilibrated with 5% ACN for the next
run. The peptides were sprayed on a glass capillary kept at 1700 V
and 200°C. The mass spectrometer was operated in a positive mode
using the DIA-PASEF acquisition (63). Briefly, four PASEF scans
(0.85 1/K0 to 1.30 1/K0) were acquired and divided each precursor
range into 24 windows of 32 Da [500.7502 to 966.67502 mass/
charge ratio (m/z)] overlapping 1 Th.
The heart and brain samples (approximately 500 ng) were di-

rectly loaded on an Evosep C18 tip and separated using the
Evosep One using the 60 spd method (Evosep, Odense,
Denmark). Peptides were eluted and ionized using a Bruker
Captive Spray emitter. A Bruker TimsTof Pro 2 mass spectrometer
running in DIA-PASEF mode (63) was used for acquisition. The
acquisition scheme used for dia-PASEF consisted of 6 × 3 50 m/z
windows per PASEF scan.

Lung cell isolation
C57BL/6J male mice were sacrificed by isoflurane inhalation,
soaked in 70% ethanol for 1 min, and then perfused with PBS.
The heart tissues were removed, and the trachea was tied with a
loose knot. The lungs were insufflated with dispase, collagenase,
and deoxyribonuclease I. Next, the lungs were removed and im-
mersed in dispase in 37°C for 45 min on a rocker to digest the
lungs. To prepare for sorting, the suspension was filtered through
a 70-μm filter and rinsed with sorting buffer (DMEM/F12, no
phenol red, with 2% FBS, and 1% penicillin-streptomycin). The
cells were spun down at 550g at 4°C for 5 min and resuspended
in red blood lysis buffer. The cells were filtered through a 40-μm
filter, rinsed, and spun down at 550g at 4°C for 5 min. Cells were
mixed with rat serum at 4°C for 10 min to block nonspecific
binding. Cells were incubated in biotin-conjugated primary anti-
bodies (CD45, CD31, CD46, and Ter199) for 30 min at 4°C and
Streptavidin beads at room temperature (RT) for 3 min to remove
immune and endothelial cells. Cells were then stained with Epcam,
integrin B4, and major histocompatibility complex class II (MHC-
II) for 30 min at 4°C. Live AT2 cells (lin− Epcam+ B4− MHC-II+)
and line fibroblast (lin− Epcam−) were sorted with a flow cytometer
(64, 65). See table S8 for the catalog numbers and dilutions of the
antibodies. Biological triplicates were analyzed in the study, and two
mice were pooled for each replicate. Cells were pelleted and stored at
−80°C.

Western blotting
C57BL/6J mice were exposed to room air or 80% O2 (n = 3 animals
per group). Tissues were perfused with chilled Dulbecco’s phos-
phate-buffered saline (DPBS; Corning). Lung tissues were collected
and flash-frozen in liquid nitrogen. Lung tissues were homogenized
using the Qiagen Tissue Lyser II (30 Hz, 1 min) in radioimmuno-
precipitation assay (RIPA) buffer (Thermo Fisher Scientific,
PI89901) with cOmplete Protease Inhibitor Cocktail (Roche), fol-
lowed by sonication. Cell pellets were lysed in RIPA buffer with
cOmplete Protease Inhibitor Cocktail. Protein concentrations
were determined using the Rapid Gold BCA Protein Assay Kit
(Thermo Fisher Scientific, A53225). Equal amounts of protein
were mixed with 6× Laemmli SDS sample buffer (Fisher Scientific,

AAJ61337AD), and samples were boiled at 95°C for 5 min. Protein
lysates were run on SDS–polyacrylamide gel electrophoresis gels
(Mini-PROTEAN TGX Precast Protein Gels) at 200 V and were
transferred onto polyvinylidene difluoride membranes. Membranes
were blocked with 3% nonfat milk (Genesee Scientific Corporation,
20-241) in Tris-buffered saline, 0.1% Tween 20 (TBST) (Fisher Sci-
entific, 28360) for 1 hour at RT on a rocker. The membranes were
probed with primary antibodies overnight at 4°C (anti-MYBBP1A,
Proteintech, 14524-1-AP, 1:1000; anti-HK1, Cell Signaling Technol-
ogy, 2024, 1:1000). The corresponding secondary antibodies were
applied to the membranes for 1 hour at RT (anti-rabbit horseradish
peroxidase, VWR 95017-556; 1:5000). Bands were visualized using
enhanced chemiluminescence (Fisher Scientific, PI32106) on the
Western Blot Imaging System (Azure Biosystems) or x-ray films
(GE Healthcare). Uncropped blot images have been deposited to
Mendeley Data (doi: 10.17632/jx73jbnj3g.1).

RNA extraction
Mouse lung tissues were perfused with cold DPBS and flash-frozen
in liquid nitrogen. Tissues were homogenized in TRIzol reagent
(Thermo Fisher Scientific, 15596026) using the Qiagen Tissue
Lyser II (30 Hz, 2 min). RNA extraction was performed according
to the manufacturer’s instructions. RNA purity and integrity were
determined using NanoDrop One (Thermo Fisher Scientific) and
Bioanalyzer (Agilent), respectively.

Quant-seq 30 mRNA-seq
The Quant-seq library preparation was carried out using the
Lexogen Quant-seq 30 mRNA-Seq V2 Library Prep Kit with
unique dual index (UDI; #191.96). Equal amounts of RNA (500
ng) from samples (n = 7 for normoxia and n = 6 for hyperoxia)
were used for the preparation, according to the manufacturer ’s
guide. Following the PCR amplification, the complementary DNA
(cDNA) concentrations were examined using a Qubit double-
stranded DNA High Sensitivity and Broad Range Assay Kit (Invi-
trogen Q32851) on a Qubit 4 fluorometer (Thermo Fisher Scien-
tific). The average library sizes were determined using
TapeStation 4200 (Agilent). Next, equal amounts of cDNA with
UDIs were pooled and sequenced on an Illumina’s NovaSeq 6000
System in the UCSF Center for Advanced Technology (CAT).

Quantitative reverse transcription polymerase chain
reaction
RNA was reverse-transcribed using the QuantiTect Reverse Tran-
scription Kit (Qiagen, 205311) according to the manufacturer’s in-
structions. The qPCR reactions were performed using qPCR
primers targeting different loci of the rRNA (Fig. 6C and table
S8) (66) and Maxima SYBR Green/ROX qPCR Master Mix
(Thermo Fisher Scientific, K02222) on a QuantStudio 5 real-time
PCR machine (Applied Biosystems). Hprt1 was used as the house-
keeping gene. RNA expressions relative to Hprt1 were calculated
using the delta Ct method. The experiments were performed in
four biological replicates and technical duplicates. Unpaired t test
was used for statistical analysis.

Generation of NDI1-expressing cell lines
Retroviruses were generated by transfecting PMXS-NDI1
(Addgene, 72876) plasmid or empty vector in human embryonic
kidney 293T cells (ATCC, CRL-3216) with the packaging plasmids
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pVSVg (Addgene, 8454) and psPAX2 (Addgene, 12260). K562,
A549, and HLF cells were transduced with NDI1 or empty vector
virus by spinfection as previously described (34). Cells were selected
with blasticidin (Gibco, A1113903) at 1 μg/ml for 4 days.

Mitochondrial respiration assay
K562 cells were pretreated in 21 or 50% O2 for 4 days. Cell-Tak (25
μg/ml) was used for acute adhesion on the Seahorse XFe96 Cell
Culture Plates. On the assay day, 4.5 × 104 cells were plated per
well. The plates were centrifuged at 600g for 5 min. A549 cells
were pretreated in 21 or 50% O2 for 3 days. An equal number of
cells (1.5 × 104) were plated on the Seahorse plate and incubated
at respective oxygen tensions for an additional day. The assay
medium was composed of DMEM powder (Sigma-Aldrich,
D5030), 5 mMHepes, 30 mMNaCl, 8 mM glucose, 2 mM pyruvate,
and 2 mM glutamine (pH 7.4). Port A of the Seahorse XFe96 Sensor
Cartridges was loaded with rotenone (final concentration = 500
nM). Port B was loaded with antimycin A (final concentration =
1 μM). The experiment was performed in three biological replicates
and five technical replicates. Each well was measured five times at
baseline and after each injection. The basal oxygen consumption
rate (OCR) was determined by subtracting the average OCR by an-
timycin A injection from the average OCR in baseline. The rote-
none-resistant OCR was determined by subtracting the average
OCR after antimycin A injection from the average OCR after rote-
none injection.

MS data processing
The DIA-PASEF data were searched with DIA-NN v1.7.1 (67) using
a library-centric approach. Identified spectra with MS1 precursors
within 10 parts per million (ppm) and MS2 precursor within 15
ppm were selected, and a second library was generated (double-
pass mode). Quantification was set to robust (high accuracy)
while signal was renormalized as function of the spray stability
(RT dependent). Protein inference was disabled, and library gener-
ation was set to smart profiling. The transition level data were fil-
tered at 1% library Q-value, and transitions were summed into
precursor MS2 abundances, and precursors were averaged to a
single-peptide abundance.

Degradation rate calculation and statistical analysis
The degradation rate (Kd) is determined using a first-order kinetic
model (19), under the assumption that the protein abundance
remains constant and that protein synthesis is a zero-order
process. The fraction unlabeled peptides (without 15N) can be
modeled as a first-order kinetic model over the course the labeling
time

Fraction 14N ðtÞ ¼ e� kd�t

The unlabeled peptide abundance was first centered using pre-
viously reported long-living proteins (22) under the assumption of
fixed abundance between different conditions and labeling time.
The normalized abundance was divided by the abundance at time
0 of the labeling to calculate the fraction of unlabeled peptides at
each time point. Next, a preliminary fitting was performed to
filter peptides with good linear correlations using the Ordinary
Least Square (OLS) function from the Python (v3.11) statsmodels
package (v0.13.5). Each peptide for a given condition was fit into

the first-order kinetic model using the ordinary linear model, and
the goodness of fit was assessed by r2. For the subsequent analysis,
only peptides with r2 > 0.65 that are detected in more than five
samples in a given condition were used for the fitting.
To calculate theKd for each protein, a linear mixed-effects model

was applied using the mixedlm function from the python (v3.11)
statsmodels package (v0.13.5). For each oxygen condition and
each tissue, time was set as the fixed variable, and to account for
the variability of different peptides for a given protein, the peptides
were set as the random variable. Kd values with P values less than
0.20 were reported. Protein half-lives (t1/2) were calculated on the
basis of

t1=2 ¼
lnð2Þ
Kd

To compare Kd between oxygen tensions, a linear mixed-effects
model using mixedlm with oxygen, time, and oxygen:time as
fixed effects, and peptides as random variables was applied. The P
values of the interaction between oxygen and time (oxygen:time)
indicated the differences in the slopes, which assessed the differenc-
es of the degradation rates. Adjusted P values were calculated using
the Benjamini-Hochberg correction.

Quant-seq sequence alignment and data processing
The data alignment and analysis were carried out using the BioJu-
pies automated analysis pipeline (68). The genes were aligned and
the expressions were quantified using the kallisto pseudoaligner
(v0.46.1) (69). The data were normalized using the count per
million method. The statistics analysis was performed using
limma (v3.54.2) (70).

Biophysical feature analysis
The UniProt mouse canonical protein sequences (downloaded on
21 August 2022) were used as input to calculate various protein se-
quence features as described below. “Disordered fraction” was com-
puted on the basis of the fraction of total residues with a score above
0.5 using the DISOPRED3 method (71). “Longest disordered
stretch” refers to the length of the longest disordered domain
(defined as a continuous stretch of sequence with each amino
acid having a DISOPRED3 score above 0.5). “Disorder promoting”
was computed on the basis of the fraction of residues that is predict-
ed to be disorder promoting using the TOP-IDP–scale method (72).
“Fraction expanding” is defined by the fraction of residues that con-
tribute to chain expansion (E/D/R/K/P) calculated using CIDER
(73). “Delta” score is a parameter for protein charge patterning cal-
culated using the localCIDER algorithm (73). “Fraction charged
AA”, “Fraction AA−”, and “Fraction AA+” refer to the fraction of
charged residues (H, K, R, D, and E), the fraction of negatively
charged residues (D and E), and the fraction of positively charged
residues (H, K, and R), respectively. “Hydropathy” is the mean hy-
dropathy as calculated from a skewed Kyte-Doolittle hydrophobic-
ity scale (74). “Length” refers to the protein amino acid length.
For enrichment analysis at baseline, the proteins are ranked on

the basis of the degradation rates. The top 5% and bottom 5% of
proteins from each organ were used to compare with the back-
ground distribution (all other proteins). For the analysis for the
oxygen-dependent changes, the proteins were ranked by t-statistics
calculated using the linear mixed-effects model described above.
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The top 2% and bottom 2% of proteins from each organ were used
to compare with the background distribution (all other proteins).
The enrichment scores were calculated using the Kolmogorov-
Smirnov test.

Pathway analysis
For the pulsed-SILAM dataset, proteins with fold changes >1.3 and
FDR < 0.05 in protein turnover rates between different oxygen ten-
sions were imported into Cytoscape (3.9.1) (75). The enrichment
analysis was performed using the STRING Functional Enrichment
in the Cytoscape (confidence score cutoff: 0.70). Pathways with
fewer than 1000 proteins were selected and were ranked on the
basis of P values.
For the Quant-seq dataset, RNA transcripts with absolute

number of log2(fold change) > 1.5 and FDR < 0.05 were selected,
and the enrichment analysis was performed using EnrichR, and
the genes were mapped against the mouse Gene Ontology database
(76).
The transcription factor target lists were curated from the Cis-

trome database (77). All the datasets that were generated in mice
and passed the peak quality control were merged. The binding
targets that were found in at least 50% of all datasets were selected
for the analysis. The enrichment scores were calculated using the
Gene Set Enrichment Analysis (GSEA) (78).
For the single-cell RNAseq data (46), genes were ranked by fold

changes for each cell type. The pathway enrichment was performed
using GSEA.

Protein complex analysis
The protein complex data were retrieved from CORUM (on 3 Sep-
tember 2018) (30). The data were imported to Cytoscape (3.9.1) to
create the network representations.
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This PDF file includes:
Figs. S1 to S5
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Other Supplementary Material for this
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