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Nanocomposites, which refer to materials composed of nanoparticles dispersed in
a matrix, have gained significant attention in various fields due to their unique proper-
ties and potential applications. One important area where nanocomposites have found
extensive use is in catalysis. In this regard, nanocomposites can be tailored to enhance
catalytic activity, selectivity, and stability, making them promising candidates for numerous
catalytic applications. This is especially noticeable in various reactions of hydrocarbon
transformations [1,2].

Once the nanocomposite is fabricated, it can be used for various catalytic processes. For
example, in heterogeneous catalysis, the nanocomposite can act as a catalyst for multiple
reactions, including oxidation, reduction, hydrogenation, and dehydrogenation. The
presence of nanoparticles in the nanocomposite increases the surface area, leading to
improved catalytic activity. Moreover, the composition and properties of the nanoparticles
can be precisely controlled, allowing for the design of catalysts with specific functionalities.
In [3], Daniel Escorcia-Díaz et al. present an exhaustive review of the methods of deposition
techniques to obtain functional composites. In [4], Nesterov et al. offer a rather interesting
method for obtaining Co-Ni particles via precipitation in supercritical carbon dioxide. The
use of engineering designs in the synthesis of nanomaterials is also capable of producing a
synergistic effect, which is demonstrated in [5] using alloyed AuAg nanoparticles grafted on
MoS2 nanoflowers or MoSe2@Graphene particles that were applied in hydrogen evolution
reactions [6].

In addition to heterogeneous catalysis, nanocomposites also find applications in other
catalytic processes, such as photocatalysis and electrocatalysis. Photocatalytic nanocom-
posites utilize the unique properties of nanoparticles, such as their ability to absorb light
and generate charge carriers, to drive chemical reactions under light irradiation. For ex-
ample, the visible-light active N-doped TiO2 photocatalyst composite was used in [7],
and copper-modified titania-based photocatalysts were applied in [8] for efficient hydro-
gen production. Also, photocatalysts show promising results in the decomposition of
organic dyes, such as methylene blue or rhodamine B, as shown in [9,10]. Electrocatalytic
nanocomposites, on the other hand, facilitate electrochemical reactions by providing effi-
cient charge transfer pathways, as shown in [11] for MnCo2O4/NiCo2O4/rGO and [12] for
ZrO2/NiO/rGO systems.

Overall, the synthesis of nanocomposites and their applications in catalysis offer a
wide range of possibilities for developing efficient and sustainable catalytic systems. The
ability to tailor the composition, structure, and morphology of nanocomposites allows for
the optimization of catalytic performance, opening up opportunities for advancements in
areas such as energy generation, environmental remediation, and chemical synthesis.
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