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Abstract: Spatial navigation patterns in indoor space usage can reveal important cues about the
cognitive health of participants. In this work, we present a low-cost, scalable, open-source edge
computing system using Bluetooth low energy (BLE) beacons for tracking indoor movements in a
large, 1700 m2 facility used to carry out therapeutic activities for participants with mild cognitive
impairment (MCI). The facility is instrumented with 39 edge computing systems, along with an
on-premise fog server. The participants carry a BLE beacon, in which BLE signals are received and
analyzed by the edge computing systems. Edge computing systems are sparsely distributed in the
wide, complex indoor space, challenging the standard trilateration technique for localizing subjects,
which assumes a dense installation of BLE beacons. We propose a graph trilateration approach
that considers the temporal density of hits from the BLE beacon to surrounding edge devices to
handle the inconsistent coverage of edge devices. This proposed method helps us tackle the varying
signal strength, which leads to intermittent detection of beacons. The proposed method can pinpoint
the positions of multiple participants with an average error of 4.4 m and over 85% accuracy in
region-level localization across the entire study area. Our experimental results, evaluated in a clinical
environment, suggest that an ordinary medical facility can be transformed into a smart space that
enables automatic assessment of individuals’ movements, which may reflect health status or response
to treatment.

Keywords: ambient health monitoring; Bluetooth low energy; indoor localization; edge computing;
cloud computing

1. Introduction

Over the past decade, the presence of smart connected devices has led to a new
wave of ambient monitoring of patients in clinical environments. Patients’ movements
in indoor spaces play a vital role in assessing health, particularly cognitive health [1]. A
range of solutions has been proposed to support tracking a patient’s location using various
sensors, such as radio-frequency identification (RFID) [2], infrared (IR) [3], WiFi [4], and
Bluetooth [5] signals. Among them, Bluetooth low energy-based (BLE-based) systems
have gained popularity for their unique advantages, offering a low-cost, low-power, and
privacy-preserving solution. Despite their many successes, BLE-based localization systems
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require a dense, uniform distribution of BLE receivers to track detailed movements in space.
Even then, they struggle in noisy environments [6,7].

For large indoor spaces with complex structures, like hospitals, BLE solutions have
been primarily used as a room-level localization technique, limiting the understanding of
detailed behaviors of individuals [8]. Conventionally, the received signal strength indicator
(RSSI) is used for BLE-based localization as it is a function of the distance between the
receiver and the BLE beacons/transmitters [9]. However, in wide indoor spaces with
multiple regions and furniture of varying materials, RSSI can be inconsistent and unstable
across the area. This is due to environmental factors, such as absorption, diffraction,
reflection, and interference. This inconsistency and instability significantly hamper the
localization accuracy [10].

In this work, we introduce a novel indoor localization system that can accurately
localize multiple subjects while they navigate in a space of 1700 m2 in area, designed to
carry out therapeutic services for participants with Mild Cognitive Impairment (MCI). MCI
is a clinically recognized stage between normal aging and dementia, which is marked by
a decline in cognitive functions like memory and attention. A key feature of our system
is its ability to perform reliably, even in environments with sparse distribution of edge
devices. This irregularity is further exacerbated by architectural features, yet our system
is engineered to hedge against such challenges. Within the study space, participants
with varying degrees of MCI engaged in various therapeutic activities, including physical
exercise and memory training, while fostering social interaction opportunities. Automated
patient localization and tracking during diverse activities can provide important clues
about cognitive health.

The proposed BLE-based localization method, graph trilateration, is developed with
sparsely distributed edge computing systems that use the temporal information of RSSI
received from the beacons over time. Graph trilateration effectively tackles the non-uniform
RSSI coverage resulting from the aforementioned environmental factors, coupled with a
sparse distributions of BLE receivers in the study space, and provides precise and robust
localization solutions in noisy environments. The proposed privacy-preserving framework
is also cost-effective and easy to install, owing to the low cost of edge computing devices
(approximately $200 per device). Our system is versatile and can be applied to analyze the
movement and interactions of participants in various contexts, such as healthcare facilities,
where this study was conducted. We expect the proposed framework to transform typical
indoor spaces into smart environments, providing low-cost, opportunistic services for
ambient behavior assessments.

2. Related Work

Indoor localization using BLE is an active area of research and is deployed largely in
two different approaches, fingerprinting [11–17] and trilateration [18–22]. Fingerprinting is
known for its simplicity with bounded positioning error. This method first captures the ra-
dio frequency patterns at regularly spaced locations within an area, which are subsequently
used as fingerprints of radio frequencies. The BLE beacons carried by individuals are local-
ized by matching their detected patterns from a database of radio frequency fingerprints.
The error bound is determined by the resolution of the reference radio frequency grid map
collected in the database. Hence, it is difficult to scale this method as the size of the indoor
space increases. Also, BLE beacons are required to be stationed in fixed regions and any
slight alteration in the beacon’s position can lead to mismatches and inaccuracies, requiring
recalibrating and collecting radio frequency fingerprints in the spaces [23,24]. In our study
site (https://empowerment.emory.edu/how-we-help/environment.html accessed on 16
November 2023), our edge devices had to be replaced or repositioned frequently making
the fingerprinting method infeasible for a BLE-based localization system.

Trilateration determines individuals’ positions by calculating the relative distance
from known locations of multiple BLE beacons. To find the location accurately, RSSI
values must be stable and at least three beacons need to be detected. This is challenging in
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real-world conditions, as many real-world indoor facilities have complex interiors, which
include metallic structures and furniture. In such an environment, BLE signals become
absorbed, diffracted, or interfered with, leading to severe degradation in localization
accuracy [7,25,26]. This hampers the application of BLE-based localization techniques to
monitor subject navigation in complex indoor spaces like hospitals. Our study site also
had significant environmental challenges. We had edge devices that were located in the
ceiling, surrounded by intricate metallic structures, which interfered with the Bluetooth
signal paths, resulting in fluctuating RSSI values as subjects navigated around edge devices.
Furthermore, BLE beacons have a limited range of signal propagation. This requires dense
installation of BLE beacons across the facility to ensure that a minimum of three beacons
are detected at any location. However, such a dense installation of BLE beacons requires
specialized instrumentation and modification of existing infrastructure, which is costly and
inapplicable in resource-limited environments.

In response to the complexities presented by standard trilateration, the proposed work
introduces a graph trilateration approach applicable to complex, vast indoor spaces, even
when RSSI signals are inconsistent and noisy and BLE beacons are sparsely distributed.
We tackle the challenges by incorporating the temporal context of RSSI with the graph-
based technique.

3. Method
3.1. Indoor Localization Using Graph Trilateration

We proposed a novel BLE-based indoor localization technique that adapted a trilatera-
tion method using RSSI signals from multiple BLE beacons. The RSSI, measured in decibels
(dB), reflects the received signal strength and is influenced by the Free Space Path Loss
(FSPL), which quantifies the loss of signal strength as an electromagnetic wave propagates
through free space. Our beacons broadcast at a power of −12 dBm, and the distance to an
edge device, d, is calculated from the RSSI values according to the FSPL model [27]:

FSPL (dB) = 20 log10(d) + 20 log10( f ) + 20 log10

(
4π

c

)
(1)

The FSPL can be adapted to account for indoor environments by incorporating the
path loss exponent N, which adjusts for the environmental impact on signal propagation.
Thus, the distance d can be estimated using the modified FSPL equation [28]:

d = 10
MRSSI−IRSSI

10N (2)

where MRSSI is the RSSI at the reference distance of 1 m from the beacon, and IRSSI is
the instantaneous RSSI measured by the receiver. f represents the frequency of the BLE
signal, and c is the speed of light. We should note that variations in the path loss exponent
N due to obstacles (e.g., complex ceiling structures), human movement, and multipath
propagation could cause modeling errors here.

N represents environmental surroundings near and between the receiver and transmit-
ter, which is not only affected by the medium for electromagnetic wave propagation, such
as air ducts or metal structures in the ceiling where edge computing devices are located
but also is affected by the angular position between the BLE beacon and the stationary
transmitter on the ceiling. We determined the value of N through manual measurements
of MRSSI for each edge computing device, taking into account there is a different metallic
structures surrounding each device in the ceiling. The study determined that the range of
variation for N spanned from 2 to 4, with the consistently optimal value being 3.5, leading
to its choice as a fixed value for all cases.

Due to the sparse distribution of edge computing devices, it is highly likely that
less than three edge computing devices are detected from a BLE beacon at the same
time while the subject navigates the space, which prevents the application of standard
trilateration. Our graph trilateration integrates a sliding window approach with a graph-
inspired technique to tackle noisy environments with sparse BLE receiver distributions.
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Due to the structural complexities, RSSI is not consistent around the edge device, and RSSI
can be very small even when a subject is close to the edge computing device, which can
significantly distort the localization outcome with standard trilateration. We tackle this
challenge by additionally using the received hits strength index (RHSI), which considers
the number of hits (or detections) made by edge computing devices independently from the
RSSI within a given time window t s, while a subject navigates in the space. Furthermore,
within a certain time window (time window (a.k.a window size (or τ) in the following
section) is a hyperparameter and could not be less than 0.5 s as the BLE beacons’ frequency
is 2 Hz), we could receive multiple hits from a particular edge device. As mentioned
earlier, relying solely on the RSSI value for determining the subject’s location can lead
to inaccuracies. Primarily this problem arises because, even when the subject is near the
edge computing device, the RSSI value might be low due to a complex ceiling structure.
However, if we include the count of hits from the computing edge device in the algorithm,
it has the potential to greatly enhance the accuracy of the localization process. In the
following section, we are going to investigate this idea by solving the trilateration problem
as a graph-based approach, considering all edge devices detecting a BLE beacon as nodes,
{p1, p2, · · · , pM}, and their pair-wise connectivity as edges, pij, where 1 ≤ i, j ≤ M and
i 6= j, when M edge devices detect BLE beacon.

The graph trilateration technique takes a two-step approach. It first considers edge-
based BLE beacon locations derived from all pairs of edge devices and then derives the final
location of the BLE beacon by aggregating edge-based locations. We propose two different
approaches for graph trilateration depending on how RHSI is used, either by aggregating
the estimation of pairwise edge-base BLE beacon locations with the RHSI-based weighted
sum, RHSI-Agg, or by incorporating the RHSI-based weights into the pairwise edge-based
BLE beacon localization and computing the final location by taking the average, RHSI-
Edge. In the graph trilateration methodology, using either RHSI-Agg or RHSI-Edge, the
estimated location is further refined by incorporating the previous estimation with defined
weights, known as a smoothing artifact. In other words, the BLE beacon location detected
at consecutive T windows, {Lt, Lt+1, · · · , Lt+T} is further smoothed in time with temporal
weights for temporarily consistent spatial navigation of detected BLE beacons.

3.1.1. Node Property

Each edge computing device of the graph, pi = (hi, di), is defined as RHSI, hi, and
the distance, di, between the detected beacon and edge computing device, pi over the
t sec time window. Due to the fluctuations and inconsistency in RSSI, the number of
RSSI hits, hi, within t sec varies according to the subject’s navigation path and we con-
sider the representative RSSI of pi as the average of RSSIs observed in the time window,
RSSIi =

1
hi

∑hi
k=1 RSSIk, where {RSSI1, · · · , RSSIhi

} is detected within t s. For each pi, di is
derived from RSSIi using Equation (2).

3.1.2. RHSI-Agg Trilateration

We first geometrically derive the lateral distance, ri, between the detected beacon and
edge computing device, pi, from di and the height of the ceiling, measured from the waist
(approximated as 2 m), as shown in Figure 1A. Then, the potential location of the BLE
beacon, mi,j, between every edge from edge device pairs, pi,j, using a weighted average of
lateral distance, ri from each edge computing device is given by:

mi,j = (xi +
ri

ri + rj
(xj − xi), yi +

ri
ri + rj

(yj − yi)) (3)

where pi = (xi, yi) and pj = (xj, yj) are 2D coordinate locations of the top-down view of
our study site. The locations of BLE beacons are considered as the weighted average of
the overall RHSI observed from pi,j, wi,j = hi + hj, since a higher RHSI indicates a higher
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likelihood of the BLE beacon being closer to an edge device. The final estimated location of

the BLE beacon is LRHSI−Agg =
∑n

i ∑n
j wi,jmi,j

∑n
i ∑n

j wi,j
.

A

B
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Figure 1. Graph trilateration approach. (A) RHSI-Agg trilateration method, first calculates potential
locations, mi,j, between each pis (i.e., pi and pj). Then mi,js are aggregated with weights (wi,j = hi + hj)
that computed based on the RHSIs, hi and hj, where i, j = 1, 2, 3, 4, to localize the subject (purple
star in this illustration). (B) RHSI-Edge trilateration method first incorporates RHSIs, hi, to calculate
the distance between the subject and the positions of the pis. Then, it computes the average of all
estimated edge-based locations to pinpoint the subject’s location. Note: In the figure, for the sake of
simplicity, we just considered i = 1 and j = 2 for the visualization part.

3.1.3. RHSI-Edge Trilateration

Here, we use RHSI when deriving edge-based BLE beacon location, mi,j, to consider
RSSI fluctuations for each pi separately. For an edge device pair, pi,j, di and dj are first

weighted with the ratio of the RHSIs for each device pair, Wi,j =
hi

hi+hj
and Wj,i =

hj
hi+hj

, as
shown in Figure 1B. Then, the weighted lateral distances, ri and rj, are geometrically derived
as Wi,jdi and Wj,idj, with the height of the ceiling from a subject’s waist approximated as
2m. The potential location of the BLE beacon, mi,j, between every edge from edge device
pairs, pi,j, is estimated similarly to RHSI-Agg trilateration, mi,j = (xi +

ri
ri+rj

(xj − xi),

yi +
ri

ri+rj
(yj − yi)). Finally, the location of the BLE beacon is derived by averaging all mi,j:

LRHSI−Edge =
1

N(N − 1) ∑
i 6=j

mi,j.

3.1.4. Handling Corner Cases

The proposed method uses a sliding window approach to aggregate RSSI and RHSI
over time so that at least three edge computing devices detect BLE hits to apply graph
trilateration. Yet, due to the sparse distribution of edge computing devices and noisy
environments common in real-world conditions, corner cases arise where fewer than three
edge devices detect hits in a given t sec window. We handle such cases as follows:
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• Within a given time window, t, when only a single edge computing device is detected,
we assume the BLE beacon location to be directly beneath the edge computing device,
regardless of RSSI, Lt = pt

i = (xi, yi)
t.

• When two edge computing devices are detected, we approximate the BLE beacon
location as the edge-based localization, Lt = mt

i,j for pi,j from either RHSI-Agg or
RHSI-Edge, accordingly.

In rare cases, consecutive T time windows, {t, t + 1, · · · , t + T}, may contain the
same single or two edge computing devices detected, which is possible where power and
network sources are extremely sparse in the region to install edge computing devices. In
such cases, we temporally interpolate the locations between the first, Lt, and the last, Lt+T ,

timestamps, Lt+k = kLt+(T−k)Lt+T

T .

3.1.5. Enhancing Temporal Consistency

While incorporating additional information from prior estimated locations has negli-
gible effects when their associated temporal weights are small, assigning higher temporal
weights to these previous estimates will significantly enhance the correlation between the
next prediction and its predecessors. In terms of not facing this issue, we ended up using the
previous estimated location information at most three times (i.e., T = 3). More specifically,
for this T = 3 consecutive locations, Lt:t+T = {Lt, Lt+1, · · · , Lt+T} detected either from
RHSI-Agg or RHSI-Edge trilateration along with temporal interpolation for corner cases, we
further apply weighted smoothing for temporal consistency in BLE beacon locations, as it
is unlikely for subjects to navigate in a zig-zag manner. The localization at time t + T is
estimated as Lt+T = S · Lt:t+T , where S = {s1, s2, · · · , sT} such that s1 < s2 < · · · ,< sT , as
illustrated in Figure 2C.

Sl
id

e
St

ep

𝑳𝟑 =	𝒔𝟏 𝑷𝟑+ 𝒔𝟐 𝑳𝟐 + 𝒔𝟑 𝑳𝟏

𝑳𝟐 =	𝑷𝟐

𝑳𝟏 =	𝑷𝟏

A B C

𝜏

Figure 2. Hyperparameters used in graph trilateration. (A) τ represents the size of the time window
to consider the temporal context in the proposed method. (B) The step method uses non-overlapping
sliding windows, where the window size and sliding interval are the same. The sliding method
indicates overlaps in sliding windows to induce more temporally smooth BLE localization. (C) The
weighting factor applies temporal smoothing to BLE locations estimated over T = 3 timesteps using
the weighted average. We explore various weighting values with s1 < s2 < s3.

4. Benchmark Data Collection

The therapeutic space consists of various regions, including a gym, kitchen, library,
dining area, open theatre, maker lab, and other bespoke regions designed to facilitate
therapeutic activities for cognition for participants with MCI (see Figure 3A). To track
movements in a wide space with a complex structure, we designed an edge computing
framework that comprises 39 edge computing units, each containing a Raspberry Pi 4
model B (4GB of RAM) equipped with a BLE 4 antenna that is placed on the ceiling [29,30],
shown in Figure 3B, where network and power sources are accessible nearby. The edge
computing devices were placed non-uniformly and sparsely throughout the space to work
with the existing network and power sources of the infrastructure, thereby avoiding any
modifications to the existing infrastructure. Our subjects were equipped with a belt bag



Sensors 2023, 23, 9517 7 of 16

containing a BLE beacon (Smart Beacon SB18-3 by Kontact.io). As the subjects move around,
edge computing devices within proximity record the received signal strength indicator
(RSSI) transmitted from the BLE Beacon. BLE beacons are scanned at a sampling frequency
of 2 Hz using the Bleak [31] Python package. This RSSI data were subsequently relayed to
an on-premise server, compliant with the Health Insurance Portability and Accountability
Act (HIPAA). This was done in real-time through the wired network. The on-premise
server analyzed the collected RSSI from all edge computing devices to localize subjects
using the proposed method. Our centralized approach for indoor localization and data
management allowed a secure system to prevent data breaches or leaks of sensitive data.

A B
Left Corridor Right Corridor

Activity 
Area

Figure 3. Study site and data collection. (A) Study sites are designed to include various utility spaces.
(B) The locations of 39 edge computing devices (Raspberry Pi v4 model B) in the ceiling.

Our benchmark dataset was gathered with the assistance of three young and healthy
participants (aged 26.3± 4.02 years, with an average height of 173.3± 5.9 cm) following
specified paths in the study site, as depicted in Figure 4. To improve the accuracy of our
ground truth data throughout the data collection process, we have placed markers (A phys-
ical or visual indicators that serve as a reference point for measurements or observations,
allowing for precise and consistent data collection) at one-meter intervals throughout the
entire space in our facility where most of our therapeutic activities take place.

Figure 4. Study site and data collection—the location of individuals occupied in our data collection.
(A) activity area, (B) left corridor, (C) right corridor, (D) kitchen, and (E) lounge.

An observer identified and recorded the nearest marker to each participant as they
moved. The subjects were asked to move within no later than 10 s to simulate realistic
spatial navigation that normally occurs in our therapeutic facility. This procedure yielded a
dataset that comprehensively covers our therapeutic spaces comprising 105 data points for
each participant, allocated as follows: 28 locations in the right corridor, 28 locations in the
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left corridor, 21 locations in the kitchen, 8 locations in the lounge, and 20 locations in the
activity area. These regions are highlighted in Figure 3A.

5. Evaluation Metrics
5.1. Evaluating Multi-Person Localization

We evaluated the performances of the proposed method on two levels: positioning-
level and region-level localization. The positioning error was calculated as Euclidean
distance in meters between the estimated and ground-truth locations to understand the
error margin of tracking fine-grained movements. The region-level localization was com-
puted as the percentage of times each region was predicted correctly while the subject
moved within the regions specified in Figure 4A–C. As much as granular movements are
essential, understanding region-dwelling profiles can help understand the routine activities
of subjects while participating in therapeutic activities. To assess the generalizability of
our proposed methods, RHSI-Agg and RHSI-Edge, we employed a leave-two-subject-out
cross-validation approach. This allowed us to fine-tune parameters that were tradition-
ally kept constant in the localization algorithm, as illustrated in Figure 2. In the process
of fine-tuning and optimization, we employed the grid search method to minimize the
mean square error using a leave-two-subject-out cross-validation approach. The average
positioning error and room-level accuracy, are summarized in Tables 1 and 2, along with
their corresponding standard deviations. These hyperparameters are listed below:

• Window Size (τ): The size of the time window considered for localization, varying
between 0.5 to 60 s (Figure 2A).

• Slide/Step: Interval of sliding window in time (Figure 2B). For the sliding method,
we used a 1-second sliding interval to ensure overlaps in sliding windows as short
as τ = 2 sec. For the step method, we used the same size of the sliding interval
with τ to avoid overlaps in windows. The sliding method provides more temporally
smoothed BLE localization results due to overlapping temporal context in subsequent
sliding windows.

• Weighting Factors (S; Section 3.1.5): Temporal smoothing weights for T consecutive
localizations (Figure 2C). We explored seven weighting factors (i.e., S1, S2, · · · , S7),
where each weighting factor is a vector with three elements (e.g., S1 = [s11 , s12 , s13 ])
for T = 3, indicating the degree of dependency from past locations. We set Si to
have more dependency on the temporally further Lt with increasing i = 1, · · · , 7
(S1 = [0.0, 0.0, 1.0], S2 = [0.0, 0.1, 0.9], S3 = [0.0, 0.2, 0.8], S4 = [0.0, 0.3, 0.7],
S5 = [0.0, 0.4, 0.6], S6 = [0.1, 0.2, 0.7], S7 = [0.1, 0.3, 0.6]).

Table 1. Evaluation of localization accuracy across the entire study site with different trilateration
approaches.

Method RHSI Applied Time Window Strategy Error ± STD (m)

Standard Trilateration N/A Slide 6.39± 0.94
N/A Step 6.48± 1.58

Graph (w/o Interpolation)

RHSI-Agg Slide 5.01± 0.41
RHSI-Agg Step 4.47± 0.77
RHSI-Edge Slide 5.18± 0.44
RHSI-Edge Step 4.44 ±0.59

Graph (with Interpolation)

RHSI-Agg Slide 5.02± 0.41
RHSI-Agg Step 4.60± 0.26
RHSI-Edge Slide 5.04± 0.15
RHSI-Edge Step 4.57± 0.47

Bold values indicate the highest accuracy or the lowest error for each method.
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Table 2. Positioning error (in meters) and room level localization accuracy (in %) in different regions
using BLE.

Right Left Activity

Method Corridor Corridor Kitchen Lounge Area Average

Number of edge devices

6 4 5 3 7

Region size (m2)

50 66 70 176 312

Positioning Error (m)

Standard Trilateration 6.43 4.11 5.99 7.27 8.18 6.39
Graph (w/o Interpolation) 4.81 2.51 3.78 4.93 6.15 4.44
Graph (with Interpolation) 4.62 3.91 3.99 3.76 6.56 4.57

Room Level Localization Accuracy (%)

Standard Trilateration 47.98 77.06 73.97 54.39 63.98 65.74
Graph (w/o Interpolation) 94.44 97.53 78.57 66.66 83.33 84.11
Graph (with Interpolation) 93.82 96.29 77.77 66.67 91.38 85.19

Bold values indicate the highest accuracy or the lowest error for each area.

5.2. Baseline Method: Standard Trilateration

We compare the proposed method with the standard trilateration method [32], which
estimates the location of the BLE beacon at a given timestamp at the intersection of circles
with radius ri centered at each edge device, pi. To identify the exact location of the BLE
beacon, at least three edge devices need to detect RSSI from the BLE beacon. The accuracy of
the estimated location increases as more edge device detects the BLE beacon. Considering
the sparse distribution of edge computing devices in our study area, we also apply a sliding
window approach to the locations detected by standard trilateration, Lt

std, at time t, for a
fair comparison with the proposed method. The hyperparameters are optimized using the
above-mentioned cross-validation approach.

6. Results

Table 1 shows the overall positioning errors with standard deviation across the entire
study site using our proposed method compared to the baseline method. Standard trilater-
ation is evaluated with a sliding or step window approach. Graph trilateration method is
compared with and without interpolation, with RHSI-Agg or RHSI-Edge, and with a sliding
or a step window approach. Overall, the lowest positioning error was 4.44 m when graph
trilateration with RHSI-Edge was used without interpolation, which was 2 m lower than
when using the standard trilateration method with sliding windows. On average, across
varying graph trilateration methods, RHSI-Agg showed 0.03 m lower error than RHSI-Edge,
the step window-based approach showed 0.5 m lower error than the sliding window-based
approach, and applying temporal interpolation across corner cases showed 0.3 m higher
errors compared to the methods without interpolations.

Table 2 shows the positioning error and room-level localization accuracy in different
regions for the best methods using standard trilateration and graph trilateration from
Table 1. We also show the number of edge computing devices and the size of each region
for signal coverage. Positioning error and room level accuracies varied across the regions in
our facility. The proposed graph trilateration method significantly outperformed standard
trilateration across all regions. The region-by-region performance also varied for graph
trilateration, with and without temporal interpolation. For the right corridor and lounge
regions, temporal interpolation for corner cases decreased the positioning error to 0.68 m on
average, whereas for other regions, the positioning error increased to 0.67 m. For room-level
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localization, introducing temporal interpolation resulted in an overall improvement of the
model performance by 1.08%.

7. Discussion
7.1. Indoor Localization Performance

We observed a significant improvement in performance using graph trilateration
instead of standard trilateration (resulting in a 2 m decrease in positioning error). Our
work demonstrates that RHSI is useful in noisy environments where RSSI is inconsistent
because it also considers weak RSSIs (potentially due to the noisy environment) when
subjects are navigating near edge computing devices. We hypothesize that this is because
standard trilateration considers all edge computing devices at the same time to find a global
solution for the BLE beacon location, which can be distorted if a subset of recorded RSSIs
does not represent the distance of the beacon accurately. On the other hand, the graph
trilateration method takes a two-step approach to first find local solutions between pairs of
edge computing devices, which is aggregated afterward. This shows that it is important
to provide an adaptive approach to consider the contribution of each edge computing
device, as they interact non-linearly with BLE beacons in the noisy environment. Also, the
RHSI-Edge considers pair-wise RSSI for every beacon that is additionally integrated with
RHSI, and RHSI-Agg only uses RHSI when aggregating RSSI-based pairwise localizations,
mi,j. Both approaches were comparable but with a slight decrease in positioning error
(0.03 m) for RHSI-Agg, which demonstrates that considering RHSI is more useful when
taking into account every edge computing device involved for BLE beacon localization
once pairwise local solutions have been derived.

We also analyzed the impact of the density of the edge devices with regard to lo-
calization performance. From Table 2, we define the density of the edge devices at each
region, ρ = #

m2 , as the number of edge devices, #, per unit region size (m2).The device
density and positioning error showed a negative correlation (with a slope of −0.33). This
demonstrates the significance of challenges faced when sparse coverage of edge computing
devices is used for BLE-based localization. Yet, our results could localize BLE beacons
as low as 2.51 m positioning error (Left Corridor) and over 90% room-level localization
accuracy (Right Corridor, Left Corridor, and Activity Area). This average positioning error
represented in Table 2 serves as indicative metrics that inherently capture the system’s
adaptability to varying indoor conditions.

7.2. Impact of Hyperparameters

Interestingly, temporal interpolation applied to handle corner cases showed mixed
results. The positioning error slightly increased in the left corridor, kitchen, and activity
area and decreased in the right corridor and lounge as show in Table 3.

Additionally, the room-level accuracy improved for the lounge and activity regions,
while, it decreased in the left and right corridor and the kitchen. From our observations,
the errors came from scenarios where the closest edge computing devices are located in the
boundary of signal ranges (approximately 10 m) of BLE beacons. As the subject moves, the
BLE beacon is randomly detected by multiple edge computing devices rapidly switching
between one another, due to a significantly unstable RSSI. Figure 5A,B illustrate two cases
when not using interpolations. In Figure 5A, the nearest edge computing device from the
beacon registers four hits, while the device located further has only one hit. On the other
hand, in Figure 5B, the closer edge computing device has one hit, while the device further
away has four hits. Figure 5C shows the estimated location from temporal interpolation,
which smooths out the random detections by the edge computing devices to provide a
balanced solution between Figure 5A,B. When assuming vertical room boundaries in the
middle of two edge computing devices, Figure 5A has the lowest positioning error and
highest room-level localization accuracy, while Figure 5B has the highest positioning error
and lowest room-level localization accuracy. Consequently, Figure 5C has the positioning
error and room-level accuracy in between those from Figure 5A,B.
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Figure 5. Challenges in interpolation methods. Black and green stick figures are ground truth and
estimated locations of the subject, respectively, and the orange circle is edge computing devices
with RHSI in numbers in a given time window. When multiple edge computing devices are in the
signal boundaries from BLE beacons, as the subject moves, the BLE beacon is randomly detected by
multiple edge computing devices rapidly switching between one another. (A) When the closest “pi”
from the subject receives more hits compared to the one located further away, the error is minimized.
(B) When the closest “pi” from the subject receives the least number of hits compared to the one
located further away, the error is maximized. (C) The interpolation method provides a balanced
solution between the two extreme cases in (A,B), which reduces variations in errors with the cost of
marginally increased error compared to (A).

Interpolation relies on the strong but often unrealistic assumption of linear motion,
which can result in a substantial error dependency on both the positions of edge devices
and the movements of individuals. Our results in the following section indicate that the
non-interpolated method yields results that are nearly identical to the interpolated one.
This suggests that the underlying linear assumption lacks robust quantitative support.

Between the slide and step window methods, the sliding window showed worse
localization error increasing by 0.5 m on average. We observed that sliding windows with
overlaps derived significantly smoothed artifacts, missing the important location transition
in between.

The window size was also an important factor to consider especially when deploying
a sparsely distributed edge computing system. The trilateration-based approach requires
having at least three edge computing devices to identify the unique locations of BLE
beacons. Without a windowing approach, or not considering temporal context, only a
single or two edge computing devices were activated for the majority of the cases. We
discovered that a 40-s window was optimal for the balance between the number of cases
detecting three edge computing devices, which we used in our experiments. Further
increasing the window size could also increase the number of windows containing more
edge computing devices, but this significantly decreased localization performance, as
increasing the window size has the effect of averaging out the locations of BLE beacons
over a longer time duration.

To understand the effect of the varying weighting factors, S1:7, we explore the changes
in positioning errors in the training dataset, when the window size is varied using RHSI-
Edge trilateration experiments with slide or step method and with or without interpolation.
The results are shown in Figure 6, where a lighter color (yellow) means lower positioning
error, and vice versa. Figure 6A shows positioning errors from the slide method without
interpolation, Figure 6B shows positioning errors from the slide method with interpolation,
Figure 6C shows positioning errors from the step method without interpolation, and
Figure 6D shows positioning errors from step method with interpolation. Shown in
Figure 6A,B, across all hyperparameters, the slide method showed minimal variation
regardless of weighting factors, S1:7, or the application of interpolation. We consider that
overlaps in the temporal context in subsequent locations induce excessive smoothing error
when combined with temporal smoothing using S1:7. The overall positioning error was also
higher than the step method. For the step methods (Figure 6C,D and Table 2), weighting
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factors had a significant impact. Both with and without interpolation, the lowest positioning
error was shown for window sizes between 40 and 50 s and weighting factors of S3,4,5.
For weighting factors, S3,4,5, we only consider subsequent locations from the current and
the previous timestep. These results show that temporally smoothing across an extended
period of time can accumulate positioning errors over time. Overall, this analysis shows
the importance of finding the sweet spot for the duration of the temporal context when
using BLE-based localization to tackle challenging scenarios like those in our study.
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Figure 6. Overview of hyperparameter tuning results for RHSI-Edge. This figure illustrates the
average training error obtained during the tuning process. (A) Slide—graph trilateration without
interpolation, (B) slide—graph trilateration with interpolation, (C) step—graph trilateration without
interpolation, and (D) step—graph trilateration with interpolation.

Table 3. Positioning error for three participants in different areas of the facility using BLE and IMU.

Signal Modality Right
Corridor

Left
Corridor Kitchen Lounge Activity

Area Average

BLE Positioning Error (m) 5.01 2.94 3.13 4.68 4.11 3.97
BLE and IMU Positioning Error (m) 4.31 3.43 2.57 4.71 3.21 3.65

BLE Room Level Accuracy (%) 88.1 91.4 92.7 89.2 90.2 90.3
BLE and IMU Room Level Accuracy(%) 90.7 90.6 93 90.4 91.6 91.2

7.3. Impact of Edge Device Distribution

In our experiments, we consistently found that in over 95% of instances, only 1–2 unique
edge devices are detectable within a 5-s timeframe. This limitation prevents the effective
use of the trilateration method and compromises the reliability of fingerprinting techniques
for localization. This constraint is further compounded by the variable signal reception
quality across the study area, as illustrated in the subsequent analysis. Figure 7 shows the
heatmap representations of the signal reception across the study area, which is collected at
the equally spaced 131 locations in our study site. The signal reception and strength across
our study site are inconsistent, with some regions such as the Right Corridor and Lounge
areas exhibiting high positioning error as shown in Table 2. RSSI can fluctuate due to
environmental factors, such as metallic structures in walls or furniture, which can block or
redirect the signal [33]. As expected, local regions with more edge devices, such as the left
corridor, kitchen, and activity area, have higher RHSI (Figure 7A) and higher average RSSI
(Figure 7B), which means more robust and more consistent signal strength from beacons.
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As a result, those areas demonstrated lower positioning errors in Table 2 compared to other
regions. Signal coverage analysis explains the poor performance of standard trilateration
in our study site, which depends on accurate distance measures between each edge devices
and beacons.

A B

Figure 7. Heatmaps showing inconsistent BLE signal coverage across the study site. The (A) RHSI
and (B) average RSSI signal depends on the density of edge devices and their surrounding structures.

7.4. Limitations and Future Works

Our proposed method assumes that all edge devices operate under the same envi-
ronmental conditions, where the same N value in Equation (2) is used across all edge
computing devices. But in reality, conditions vary from one location to another significantly
as different regions in our facility have their own specific space designs with furniture to
serve their purpose. For example, the kitchen, lounge, and activity area are designed with
varying materials. We believe a potential solution is to introduce a bias factor, validated
on the RSSI and RHSI received in each region as a function of the edge computing device
involved in the localization. This would help adjust for different conditions and their effects
on signal quality. In our study, we address the query of why longitudinal components
(z-axis) are disregarded in our measurement system, where the ceiling-to-waist distance
is fixed at 2 m for each subject. By considering the height differences with variations in
leg length and body style in different subjects, their corresponding distance to the ceiling
comes from the normal distribution with a mean of 2 m and a few centimeters difference in
its first standard deviation. A few centimeters difference could be negligible after mapping
the estimated location in the lateral distance.

While our graph trilateration approach can track spatial navigation using sparsely
distributed edge computing devices with an error bound of 4.44 m on average, it is insuffi-
cient for capturing small and more nuanced fine-grained movements while navigating our
facility, which would provide useful movement information to understand the cognitive
impairments of our subjects. The primary cause of this error comes from the implemen-
tation of a larger window size, employed to compensate for the limited coverage of edge
devices within smaller time frames. To obtain a more detailed view, we are considering
combining our current method with data from inertial measurement unit (IMU) sensors.
Previous work demonstrated a significant improvement in navigation tracking using BLE
and IMU sensor fusions [34–37].

Through this multimodal fusion, we hope to obtain a more precise picture of how
individuals move within indoor spaces.

Nevertheless, with our current algorithm, we can detect room-level localization with
an average of 85% accuracy. Monitoring room-dwelling behavior can serve to detect abnor-
mal activity in our subjects with MCI while taking therapeutic training in our facility, such
as leaving the classroom in the middle of the class or visiting the restroom more frequently
than expected. We will study the validity of our algorithm for assessing behaviors related
to MCI in future works.
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8. Conclusions

In this paper, we propose an open-source, scalable indoor localization approach using
BLE sensors and sparsely distributed edge computing systems for extensive indoor regions.
Our analysis reveals that in large indoor spaces (over 1700 m2) with intricate structures,
an uneven distribution of edge devices can lead to inconsistent signal coverage, which
poses significant challenges for BLE-based localization approaches, especially with the
standard trilateration method which inherently assumes a dense and stable RSSI coverage.
Our proposed graph trilateration method leverages the temporal density of hits from
BLE beacons, namely RHSI, integrated into a graph-based approach, which can pinpoint
subjects’ positions with an average error of 4.4 m across the entire study area. Additionally,
it achieves over 85% accuracy rate for region-level localization. In our future research,
we plan to deploy the proposed system to study spatial navigation behaviors in subjects
with MCI, which is known to provide biomarkers for cognitive impairment. We expect
that the proposed graph trilateration localization technique will help medical practitioners
transform any therapeutic facility into a smart space that can passively monitor patients’
behaviors to provide evidence-based care tailored to individual patient conditions [1,38].
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