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Abstract 
Background.   Medulloblastoma is the most common pediatric brain malignancy. Patients with the Group 3 sub-
type of medulloblastoma (MB) often exhibit MYC amplification and/or overexpression and have the poorest prog-
nosis. While Group 3 MB is known to be highly dependent on MYC, direct targeting of MYC remains elusive.
Methods.   Patient gene expression data were used to identify highly expressed EYA2 in Group 3 MB samples, as-
sess the correlation between EYA2 and MYC, and examine patient survival. Genetic and pharmacological studies 
were performed on EYA2 in Group 3 derived MB cell models to assess MYC regulation and viability in vitro and in 
vivo.
Results.   EYA2 is more highly expressed in Group 3 MB than other MB subgroups and is essential for Group 3 MB 
growth in vitro and in vivo. EYA2 regulates MYC expression and protein stability in Group 3 MB, resulting in global 
alterations of MYC transcription. Inhibition of EYA2 tyrosine phosphatase activity, using a novel small molecule 
inhibitor (NCGC00249987, or 9987), significantly decreases Group 3 MB MYC expression in both flank and intracra-
nial growth in vivo. Human MB RNA-seq data show that EYA2 and MYC are significantly positively correlated, high 
EYA2 expression is significantly associated with a MYC transcriptional signature, and patients with high EYA2 and 
MYC expression have worse prognoses than those that do not express both genes at high levels.
Conclusions.   Our data demonstrate that EYA2 is a critical regulator of MYC in Group 3 MB and suggest a novel 
therapeutic avenue to target this highly lethal disease.

Key Points

•	 EYA2 regulates MYC levels transcriptionally and post-translationally in Group 3 
medulloblastoma (MB).

•	 Inhibition of the EYA2 Tyr Phosphatase, using a novel allosteric small molecule inhibitor 
NCGC00249987 (9987), which crosses the blood-brain barrier and inhibits MYC, leads to 
decreased MB growth both in the flank and in the orthotopic site.

•	 Identified new means to inhibit MYC in Group 3 MB.

Medulloblastoma (MB) is the most common malignant brain 
tumor in children and adolescents. Transcriptional profiling 
of human tumor samples has enabled the identification 

of 4 distinct molecular groups in the disease: WNT, Sonic 
Hedgehog (SHH), Group 3, and Group 4.1,2 Despite this clas-
sification, molecular heterogeneity and differences in clinical 
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outcome are observed within groups.3,4 Taylor and col-
leagues used a multifactorial approach to categorize MB 
into 12 different subtypes across the 4 main groups: 2 WNT, 
4 SHH, 3 Group 3, and 3 Group 4.3 Group 3 tumors make 
up 19%–25% of MB diagnoses, commonly exhibit c-MYC 
(MYC) amplification and/or overexpression, and have the 
poorest clinical outcomes compared to other groups.3,4 
Recent re-analysis of Group 3 and Group 4 tumors has 
classified them into a continuum of 8 subtypes based on 
molecular and clinicopathological features.5 Consistent 
with previous studies, the high MYC-expressing sub-
types (II, III) in this re-analysis demonstrated the highest 
risk features.5 In comparison, WNT-driven tumors, which 
also express MYC at relatively high levels, have an overall 
5-year survival of 97%–100%, suggesting that in Group 3 
tumors, high MYC expression may be accompanied by 
other factors that make this Group particularly aggressive. 
Furthermore, those patients who do survive the disease 
experience long-term morbidity and secondary tumors 
that are associated with current treatment modalities (sur-
gery, radiation and chemotherapy).1 As such, there is a crit-
ical need to identify novel therapeutic targets for MB, with 
a specific emphasis on MYC-amplified Group 3/subtype II.5

The eyes absent family of transcriptional coactivators 
and phosphatases (EYA) are essential for the development 
of numerous organs in mammals, including the eyes, kid-
neys, lungs, and brain, amongst others.6,7 As transcrip-
tional coactivators, EYAs are recruited to the nucleus by 
binding to the SIX family of homeodomain-containing 
transcription factors, and modulate the expression of SIX 
target genes.6,8 EYA proteins have a conserved C-terminal 
EYA domain, which harbors intrinsic tyrosine phospha-
tase (Tyr Ptase) activity. The Tyr Ptase activity of EYA pro-
teins has been shown to act together with SIX proteins to 
transactivate genes and is also implicated in tumor main-
tenance and progression in part by promoting stem-like 
characteristics and cellular migration.6,8–10 While few di-
rect EYA Ptase targets are known, those that are known 
have important implications in cancer. For example, in 
response to DNA damage, EYA proteins dephosphorylate 
tyrosine-142 on histone variant H2A.X (pY142-H2AX), 
promoting DNA repair instead of apoptosis.11,12 In breast 
cancer cells, EYA2 has been shown to dephosphorylate ty-
rosine-36 on estrogen receptor beta (pY36-ERβ) to inhibit 
the transcription of genes that suppress tumor progres-
sion.13 In addition, the Tyr Ptase activity of EYA1 is required 
to activate GLI1-mediated transcription in SHH-driven MB, 
although the direct target(s) of EYA1 in this context is un-
known. Nonetheless, these and other data demonstrate 

that EYAs, both through transcriptional and Ptase activ-
ities, can be critical regulators of tumor growth and pro-
gression in multiple contexts.7,9,10,14–18

Intriguingly, MYC is a known target of EYA proteins, 
though the relevance of this regulation has never been 
explored in MB. In the context of development and other 
tumor types, multiple groups have demonstrated EYA’s 
Tyr Ptase activity is required for transcriptional regulation 
of MYC.6,18 However, the regulatory mechanism between 
EYAs Tyr Ptase activity and transcriptional activity remains 
unclear. Recent breast cancer studies from our laboratory 
demonstrated that EYA3, through an interaction with the 
serine/threonine phosphatase, PP2A, can stabilize MYC 
by dephosphorylating threonine 58 (pT58), preventing 
its degradation.16 Intriguingly, in vitro dephosphorylation 
assays using purified regions of EYA1 have shown the 
EYA domain, which harbors the Tyr Ptase active site, has 
moderate threonine Ptase activity on its own, but also co-
operates with the N-terminal threonine/serine Ptase ac-
tivity to dephosphorylate MYC peptides on pT58.19 Since 
EYA proteins regulate MYC at the transcriptional and 
post-translational level,6,16,19 we hypothesized that one or 
more members of the EYA family may play a previously 
unappreciated role in Group 3 MB by enhancing MYC 
levels, thereby increasing MYC-dependent transcriptional 
programs. Indeed, this function of EYA could contribute to 
the increased aggressiveness and MYC-dependency ob-
served in Group 3 MB, making EYA proteins particularly 
attractive potential therapeutic targets for this disease, as 
drugging MYC has remained elusive.

Here we provide evidence that the EYA family member, 
EYA2, is significantly upregulated in Group 3 MB, com-
pared to other subgroups. We further show that EYA2 is 
essential for Group 3 MB growth in vitro and in vivo, and 
that its loss dramatically decreases MYC-associated gene 
expression. We find that EYA2 positively regulates both 
the expression of MYC, as well as the stability of the MYC 
protein, and is thus an important component of MYC reg-
ulation even when MYC is amplified. Using a novel inhib-
itor to EYA2 developed by our laboratory, NCGC00249987 
(9987),20–23 we demonstrate that inhibition of the EYA2 Tyr 
Ptase significantly inhibits in vitro MB growth. In xeno-
graft models, mice implanted in either the flank, or in the 
brain, with Group 3 MB cells exhibited reduced expression 
of MYC, reduced tumor growth, and prolonged survival 
when treated with 9987, suggesting that this inhibitor, if de-
veloped for the clinic, may be efficacious for Group 3 MB 
patients. Given the diminished expression of EYA2 after 
embryonic development is complete,24 and the limited 

Importance of the Study

In this study, we identify EYA2 as a critical regulator of 
Group 3 medulloblastoma (MB) growth, likely in large 
part through regulation of MYC gene expression and 
protein stability. We demonstrate that EYA2 is essential 
for Group 3 MB growth in vitro and in vivo. Importantly, 
we show that our novel EYA2 inhibitor, which allo-
sterically targets EYA2 tyrosine phosphatase activity, 

increases survival and reduces MYC protein levels in 
vivo, both in the flank and orthotopic sites, suggesting 
a novel means to inhibit Group 3 MB. Given that MYC 
targeting remains elusive and that Group 3 MB is highly 
dependent on MYC, our studies suggest an alternative 
means by which this key oncogene can be targeted to 
control disease progression.
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toxicity of 9987 in animal models,18 our data identify the 
EYA2 Tyr Ptase as a viable target for group 3 MB, likely in 
large part due to its ability to regulate the key driver of the 
disease, MYC.

Materials and Methods

Ethical Statement

Medulloblastoma tumors were obtained from Children’s 
Hospital Colorado (Aurora, CO) in compliance with the 
Colorado Multiple Institutional Review Board (COMIRB 
95-500) regulations. All animal studies were performed at 
the University of Colorado Anschutz Medical Campus. All 
surgery was performed with approval from the University 
of Colorado Anschutz Medical Campus IACUC committee. 
The statistics used are provided in the figure legends and 
Supplementary Methods.

Cell Lines and Culture Conditions

Medulloblastoma cells D425, D458. D283, DAOY, and ONS-
76 cells were cultured according to ATCC culture condi-
tions at 37°C and 5% CO2.

Patient Data

Medulloblastoma tumors were obtained from Children’s 
Hospital Colorado (Aurora, CO) in compliance with the 
Colorado Multiple Institutional Review Board (COMIRB 
95-500) regulations. Clinical data from Weishaupt et al. 
(GSE124814) or from Cavalli et al. (GSE85217) was analyzed 
in R (version 4.2) using Tidyverse and ggplot2 packages.

Biochemical Analysis

Total RNA was extracted from D425, D458, D283, ONS-76, 
and DAOY cells or from EYA2 KD D425 and D458 cells using 
the RNAeasy RNA isolation kit (Qiagen). cDNA synthesis 
was performed using iScript. qRT–PCR assays were per-
formed using ssoFast Evagreen supermix (BioRad). RNA 
sequencing was performed by the University of Colorado 
Genomics Shared Resource. Primer sequences used for 
RT-qPCR, RNA-seq library preparation, and cell sorting are 
listed in Supplementary Methods.

For immunoblot analysis, whole cell lysates were pre-
pared using standard methods. Antibodies used are listed 
in Supplementary Methods. For in vitro drug studies, 1 × 
106 D458 or 1.5 × 106 DAOY-MYC cells were cultured with 
DMSO (Sigma) or 24 µM 9987 for 72 hours. MYC RNA and 
protein were assessed by qRT–PCR and western blot as de-
scribed in Supplementary Methods.

Generation of shEYA2 Knockdown and CRISPR 
Knock-out Cell Lines

shRNA vectors, non-targeting controls (Transomic, 
shERWOOD Ultra), and packaging (pSPAX2 and pMD2.G) 

plasmids were transfected into HEK293T cells using 
Lipofectamine 2000 according to manufacturer’s proto-
cols. The top 10% of zsGreen-positive cells were sorted 
by fluorescence-activated cell sorting. EYA2 knockdown 
was validated by qRT–PCR and immunoblot. D425 cells 
constitutively expressing firefly luciferase (D425-LUC) 
were used to generate EYA2 knock-out (KO) clones. D425-
LUC cells were transfected with 1 of the 2 all-in-one 
sgRNA/Cas9 construct (GeneCopoeia) targeting EYA2 
using Lipofectamine 2000 (ThermoFisher) according to 
manufacturer’s protocols. Cells were sorted into 96-well 
plates as single cells in growth media and expanded into 
clonal populations. EYA2 KO was assessed by Sanger 
sequencing. sgRNAs and sequencing primers are listed in 
Supplementary Methods.

Cell Growth Assays

CellTiterGlo (Promega) was used to assess growth of 
EYA2 KD and control D425 and D458 cells according to the 
manufacturer’s protocol. CellTiterGlo was also used to as-
sess the growth of DAOY-Ctrl and DAOY-MYC cells cultured 
with and without 24 µM 9987 for 120 hours, according to 
the manufacturer’s protocol. In vitro growth analysis of 
D341, D425, and D458 cells cultured with 9987 was per-
formed using Incucyte. Methylcellulose assays were per-
formed using 2.6% methylcellulose mixed at a 1:1 ratio 
with D458/D425 growth medium.

Immunohistochemistry

Tumor tissues were harvested and fixed in 4% 
paraformaldehyde for 24 hours followed by 24 hours in 
70% ethanol. FFPE blocks were made from tumors and pro-
cessed by established protocols.

Animal Studies

For EYA2 KD, KO, and D458 orthotopic studies in which an-
imals were treated with 9987, 2 × 105 cells were intracra-
nially transplanted and monitored by MRI or luciferin. For 
flank studies, 2.5 × 106 cells were subcutaneously injected, 
and tumor growth was measured by calipers.

See Supplementary Methods for additional details on all 
methods.

Results

EYA2 is Highly Expressed in Group 3 
Medulloblastoma

To determine whether EYA family members (EYA1-4), which 
are known to control MYC transcription and stability,6,16 
play a role in Group 3 MB we first interrogated our pre-
viously generated differential gene expression microarray 
dataset, containing SHH and Group 3 MB as well as con-
trol, non-cancerous brain tissue obtained from epileptic 
patients (GSE94349).25 This analysis identified EYA2 (Figure 
1A) and EYA3 (Supplementary Figure 1A), as significantly 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
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increased in Group 3 MB, which, as expected and previ-
ously observed, showed increased MYC expression com-
pared to SHH-driven tumors and brain tissue controls 
(Supplementary Figure 1B3,4). To confirm whether EYA2 and 
EYA3 overexpression, specifically in Group 3 MB, could be 
observed in a larger human dataset we assessed the ex-
pression of all 4 EYAs and MYC in a publicly available MB 

batch-normalized gene expression dataset (GSE124814)26 
from 1350 MB patient tumors and 291 control brain tissue 
samples from epileptic patients. In corroboration with our 
own data shown in Figure 1A, we found that in this larger 
dataset, EYA2 was significantly overexpressed in Group 3 
MB samples compared to control brain tissue and other 
MB subtypes (Figure 1B). As previously reported,3,4,7,27 
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Figure 1.  EYA2 is highly expressed in Group 3 medulloblastoma. (A) Normalized EYA2 expression by microarray in Group 3 MB, SHH-driven MB, 
or brain tissue from epileptic patients. Statistical analysis: One-way ANOVA with Tukey’s post hoc analysis for multiple comparisons. (GSE94349)25 
(B) EYA2 expression in Group 3 MB (GSE124814)26 compared to other subgroup tumors or brain tissue from epileptic patients. Statistical analysis: 
One-way ANOVA with Tukey’s post hoc analysis for multiple comparisons. (C) EYA2 and (D) MYC expression in SHH-driven (DAOY, ONS-76) and 
Group 3 (D425, D458, and D283) MB models. Statistical analysis: ANOVA with sum contrasts in R for 4 independent experiments, each performed in 
technical triplicate. (E) Western blot of EYA2 and MYC protein expression in SHH-driven and Group 3 medulloblastoma cell models, representative 
of four independent experiments.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
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MYC is most highly expressed in Group 3 and WNT tu-
mors and EYA1 is most highly expressed in the SHH MB 
subtype (Supplementary Figure 1C, 1D). In contrast to 
our microarray data, in this larger dataset, EYA3 did not 
display robust differential expression between subtypes 
(Supplementary Figure 1E). EYA4 showed no differential 
expression between subtypes, in line with our microarray 
data (Supplementary Figure 1F).

Having observed increased EYA2 expression in human 
Group 3 MB samples, we assessed EYA2 and MYC expres-
sion in multiple MB human cell lines derived from Group 
3 (D425, D458, D283) and SHH tumors (DAOY, ONS-76) 
to determine whether commonly used cell line models 
would mimic what was observed in human MB. We chose 
Group 3 cell lines known to exhibit MYC amplification 
(D425, D458), as well as a non-MYC amplified, Group 3/4 
cell line (D283).28 Indeed, EYA2 and MYC were both ele-
vated (at the mRNA and protein levels) in the Group 3 and 
Group 3/4 MB cell lines compared to the SHH lines (Figure 
1C–E). Due to the relatively lower levels of MYC protein ob-
served in D283 cells and their characterization as Group 
3/4 medulloblastoma, we chose to move forward using the 
MYC-amplified Group 3 D425 and D458 cell lines. Taken to-
gether, these data demonstrate that EYA2 is more highly 
expressed in high MYC-expressing Group 3 MB cells.

EYA2 Transcriptionally and Post-translationally 
Regulates MYC in Group 3 MB

To determine whether EYA2 regulates MYC levels in Group 
3 MB, we generated control (shNC) and EYA2 knockdown 
cell lines (KD1, KD2) in both D425 and D458 cell lines 
(Figure 2A–C). To enrich for cell populations with robust 
EYA2 KD, we used shRNA vectors containing a ZsGreen 
gene upstream of the shRNA. We then used fluorescence-
activated cell sorting to select the top 10% zsGreen-positive 
cells for use in subsequent experiments. EYA2 knockdown 
in D425 and D458 cells consistently led to decreased MYC 
mRNA expression, suggesting the transcriptional regula-
tion of MYC by EYA2 in Group 3 MB (Figure 2A, B). To deter-
mine if EYA2 post-translationally regulates MYC in Group 
3 MB via its ability to dephosphorylate phospho-threonine 
58 (pT58), likely through its association with PP2A,16 we as-
sessed EYA2, MYC, and MYC-pT58 levels by Western blot 
analysis. Our results demonstrate that EYA2 KD leads to a 
decrease in MYC protein levels, and that a greater propor-
tion of the remaining MYC protein is phosphorylated on 
T58 in EYA2 KD cells when compared to shNC cells (Figure 
2C, D). Because pT58-MYC marks the protein for degrada-
tion,29,30 this alteration of MYC phosphorylation is likely to 
be partially responsible for the decreased levels of total 
MYC protein. These data support the hypothesis that in ad-
dition to regulating MYC mRNA, EYA2 regulates MYC sta-
bility in group 3 MB by promoting dephosphorylation of 
pT58.

As MYC KD or targeting of MYC via BET bromodomain 
inhibitors, such as JQ1, dramatically diminishes the 
growth and progression of MYC-amplified MB,31,32 we 
asked whether EYA2, like MYC, is required for group 3 MB 
growth. As expected, given the profound regulation of MYC 
by EYA2, KD of EYA2 in D425 and D458 cells dramatically 

reduced growth, as determined by a CellTiterGlo assay 
(Figure 2E). In addition, when growth was assessed with 
methylcellulose assays, thought to better mimic the condi-
tions in the brain,33 we also observed dramatic decreases 
in growth with EYA2 KD (Figure 2F, G). The growth defects 
of EYA2 KD were so profound in vitro that we were unable 
to maintain stable KD lines, and thus KD lines were con-
tinually reestablished for assays described throughout this 
manuscript.

Given the demonstration that EYA2 regulates MYC 
mRNA and protein levels in Group 3 MB, we investigated 
whether MYC-associated gene expression is altered glob-
ally by EYA2 KD in this context. To this end, we performed 
RNA-sequencing on shNC and EYA2 KD (KD1 and KD2) 
D425 and D458 cells in biological triplicate and performed 
differential gene expression analysis and pathway enrich-
ment using GSEA (gene set enrichment analysis) to iden-
tify gene sets enriched in EYA2 KD cells. The top up- and 
down-regulated gene sets upon EYA2 reduction in D425 
and D458 cell lines are shown in Figure 3A and C. In both 
cell lines, MYC target gene sets were among the most sig-
nificantly enriched gene sets in shNC versus EYA2 KD lines 
(Figure 3A–D), supporting our hypothesis that EYA2 is a key 
regulator of MYC activity in group 3 MB. Additional path-
ways significantly altered with EYA2 KD include E2F target 
and G2/M checkpoint pathways, both associated with 
MYC-driven proliferation.34–36 Heat maps depicting the av-
erage z-scores from three biological replicates of EYA2 KD 
and shNC show clear global alterations of MYC-regulated 
genes with EYA2 loss in both D425 and D458 cells (Figure 
3E, F, individual replicates are shown in Supplementary 
Figure 2A). Additionally, we performed transcription factor 
analysis of our DEGs. We found that many of the differen-
tially expressed genes with EYA2 KD contained binding 
motifs for SIX proteins (EYAs cognate transcription factor 
binding partner8,37). In addition, a large number of MYC 
target genes were identified, a subset of which can be 
bound by both SIX proteins and MYC (Supplementary 
Figure 2B). These data demonstrate that gene expression 
changes observed with EYA2 KD encompass both direct 
targets of MYC, as well as additional targets of the EYA 
proteins. Taken together, our data demonstrate for the first 
time that EYA2 regulates MYC levels and transcriptional 
output specifically in Group 3 MB cells, suggesting that it 
may be critical for regulating survival and/or growth for 
this subtype of MB, given its high dependence on MYC.

EYA2 Loss Decreases Group 3 MB Growth In Vivo

Given the profound effects of EYA2 KD on growth in vitro, 
we further examined the effects of decreased EYA2 levels on 
Group 3 MB growth in vivo. To this end, we orthotopically 
transplanted control (shNC) or EYA2 KD D458 or D425 cells 
into brains of NSG mice. Mice that received D458 EYA2 KD 
cells exhibited reduced tumor growth and had a survival 
advantage compared to mice that received D458 shNC tu-
mors (Figure 4A–C). However, all tumors eventually grew, 
and the mice receiving D458 EYA2 KD cells ultimately suc-
cumbed to the disease (Supplementary Figure 3A). In the 
context of D425 EYA2 KD cells, we did not observe a sta-
tistical difference in tumor growth or survival, although 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
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Figure 2.  EYA2 is required for Group 3 MB growth and regulates MYC transcription and protein stability. (A) EYA2 and MYC mRNA expression 
in D425 shNC and EYA2 KD cells. (B) EYA2 and MYC mRNA expression in D458 shNC and EYA2 KD cells. Data in Figures 2A and B are normalized 
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a modest trend towards decreased growth and survival 
was observed (Supplementary Figure 3B-D). IHC analysis 
of both D425 and D458 end-point tumors for EYA2 and 
MYC protein revealed no difference in EYA2 or MYC pro-
tein levels between shNC and EYA2 KD tumors, suggesting 
that the cells capable of growing out had escaped EYA2 KD 
and the associated decrease in MYC levels (Supplementary 
Figure 3E-H).

To overcome this technical barrier observed in EYA2 KD 
cells, we used CRISPR-Cas9 to develop clonal EYA2 KO 
lines in D425 cells stably expressing firefly luciferase (D425-
LUC) (Figure 4D, Supplementary Figure 4A). EYA2 KO cells 
exhibited decreased EYA2 and MYC protein (Figure  4E) 
compared to D425-LUC cells. In line with the EYA2 KD 
lines, D425 EYA2 KO cells exhibited growth defects in the 
methylcellulose growth assays (Figure 4F). To test if KO of 
EYA2 affects tumor growth in vivo, we orthotopically trans-
planted D425-LUC -or D425 EYA2 KO cells into the brains 
of NSG mice and monitored tumor growth and survival, 
finding that EYA2 loss led to a significant survival advan-
tage in NSG mice (Figure 4G, H). Intriguingly, IHC analysis 
of end-point EYA2 KO tumors revealed a significant re-
duction in EYA2 protein levels, but not MYC protein levels 
(Supplementary Figure 4B–D). These data underscore the 
dependence of Group 3 MB on MYC for in vivo growth, 
and suggest that even in the absence of EYA2, there are 
mechanisms by which the EYA2 KO cells compensate and 
upregulate MYC. Taken together, our data strongly sug-
gest that EYA2 regulates MYC and is important for tumor 
growth in vivo.

Targeting EYA2 as a Therapy for Group 3 MB

Tyrosine phosphatase (Tyr Ptase) activity of EYA is known 
to promote tumor growth and maintenance through mul-
tiple different mechanisms.6,9–13 Importantly, the EYA Tyr 
Ptase has been linked to both MYC transcription6 and pro-
tein stability,19 though the precise mechanism by which 
it influences these activities is not known. Having shown 
that EYA2 regulates MYC both on the mRNA and protein 
levels in Group 3 MB, we asked whether inhibiting the 
EYA2 Tyr phosphatase activity may elicit similar growth 
phenotypes as EYA2 KD. We have previously identified a 
class of small molecule allosteric inhibitors of EYA2’s Tyr 
Ptase activity,20–23 which are highly specific to EYA2 within 
the family of EYAs, and are not known to target other 
phosphatases.20–23 Thus, we tested the lead compound, 
NCGC00249987 (9987),20–23 in Group 3 MB cells.

Treatment of D458 cells with 9987 led to reduced MYC 
mRNA (Figure 5A) and protein (Figure 5B) and increased 
pT58-MYC relative to total MYC (Figure 5B). In addition, 
D458 cell growth in vitro was inhibited after treatment with 
9987 (Figure 5C). We further tested 9987 on two other MYC-
amplified Group 3 MB lines, D425 and D431. Similar to what 
was observed in D458 cells, 9987 reduced the in vitro growth 
of D341 cells (Supplementary Figure 5A). Surprisingly, D425 
cells did not exhibit growth inhibition when cultured with 
9987 at the same dose as D341 or D458 cells (Supplementary 
Figure 5B). As EYA2 KD in D425 cells reduced MYC RNA, 
protein, and in vitro growth (Figure 2A-D), and EYA2 KO in 
D425 cells reduced MYC RNA, protein, and tumor growth 

(Figure 4D-H), these data suggest that either multiple activ-
ities of EYA2 are required in D425 cells to regulate MYC and 
D425 growth (in addition to the Tyr Phosphatase activity), or 
that much higher levels of the 9987 compound may be re-
quired to inhibit EYA2 in this context.

To determine whether 9987 has any off-target effects, we 
cultured DAOY cells, which are an SHH MB cell line that ex-
press relatively lower levels of EYA2 and MYC (Figure 1C, 
E), with 9987, and found that EYA2 inhibition had no effect 
on DAOY growth (Supplementary Figure 5C). Furthermore, 
to test whether 9987 directly affects MYC-mediated 
growth, we ectopically expressed MYC from an artificial 
promoter in DAOY cells (DAOY-MYC) and cultured them 
with 9987 to assess growth. We found 9987 had no effect 
on growth of DAOY-MYC cells, but we did observe a de-
crease in MYC protein in the DAOY-MYC cells cultured with 
9987 (Supplementary Figure 5D-E). These data confirm our 
above findings that EYA2 Tyr Ptase inhibition can regulate 
MYC stability at the post-translational level, even in SHH-
driven DAOY cells, which are not highly dependent on MYC 
for growth.

To determine the biological relevance of inhibiting the 
EYA2 Tyr Phosphatase on Group 3 MB growth in vivo, we 
first implanted D458 cells into the flank of NSG mice, as 
proof of concept, to avoid complications associated with 
the BBB. After transplanting the D458 cells, mice were 
treated with vehicle or 25 mg/kg 9987, delivered via oral 
gavage. Importantly, mice that received 9987 exhibited a 
significant reduction in tumor growth which resulted in a 
survival advantage (Supplementary Figure 6A, B), and did 
not exhibit weight loss compared to vehicle-treated mice 
(Supplementary Figure 6C). Furthermore, tumors from 
mice treated with 9987 exhibited reduced MYC protein 
levels by IHC (Supplementary Figure 6D, E), suggesting 
that our compound is able to reduce MYC expression and 
stability in vivo.

As our allosteric inhibitor was able to decrease Group 
3 MB when grown in the flank, we further investigated 
whether this compound may have utility in a more clini-
cally relevant setting (the brain). To this end, we performed 
pharmacokinetic (PK) analysis to determine if 9987 can 
cross the BBB. To assess whether 9987 crosses the blood-
brain barrier (BBB), mass spectrometry analysis was per-
formed on plasma and brain tissue of mice treated orally 
with 25 mg/Kg 9987. We found that for up to 24 hours, brain 
tissue contained 9987 at levels comparable to that seen 
in plasma, demonstrating that 9987 is able to cross the 
BBB (Figure 5D). Thus, we tested whether EYA2 Tyr Ptase 
inhibition would reduce Group 3 MB growth when cells 
were implanted intracranially. Our data show that, sim-
ilar to what was observed with the tumors grown in the 
flank, 9987 attenuated Group 3 MB growth when present 
in the orthotopic site, prolonging survival (Figure 5E, F). 
Furthermore, end-point tumors demonstrated a significant 
reduction in MYC protein, as measured by IHC, when mice 
were treated orally with 9987 (Figure 5G, H). This study is 
the first to demonstrate that our novel, allosteric EYA2 Tyr 
Ptase inhibitor can cross the BBB and inhibit the growth of 
Group 3 MB. Taken together, these data demonstrate that 
targeting the EYA2 Tyr Ptase activity is highly efficacious in 
inhibiting MYC expression in MYC-amplified Group 3 MB, 
resulting in diminished tumor growth.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
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Figure 4.  EYA2 is required for MB growth in vivo. (A) Representative MRIs at week 4 after mice were orthotopically transplanted with shNC or 
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EYA2 Strongly Correlates With MYC in Patient 
Tumor Samples

To determine whether our findings in MB cell lines are rel-
evant to the human disease, we examined the relationship 
between EYA2 and MYC in human MB. To this end, we per-
formed a Pearson correlation between EYA2 expression and 
all other genes in 763 patient samples (GSE85217)3 and used 
the ranked gene list as an input for Gene Set Enrichment 
Analysis (Figure 6A). This analysis demonstrates that MYC 
target gene sets are highly positively correlated with EYA2 
expression in MB (Figure 6B). To determine how EYA2 and 
MYC expression correlate at the individual tumor level, we 
plotted MYC and EYA2 gene expression as z-scores and 
stratified group 3 tumors compared to other MB subgroups. 
This analysis demonstrates that EYA2 and MYC expression 
are highly positively correlated in group 3 MB (Figure 6C). 
Furthermore, we used the available patient survival data 
and stratified survival according to EYA2 and MYC expres-
sion among all MB subtypes. We found that patients with 
higher-than-average EYA2 expression have a trend towards 
worsened survival outcomes than patients with lower EYA2 
expression (Figure 6D, p = .063). As expected, patients with 
higher-than-average MYC had a statistically significant 
worsened overall survival than patients with lower MYC 
(Figure 6E). When stratifying patient survival by combining 
high EYA2 and MYC, we found that patients with high ex-
pression of both MYC and EYA2 had significantly worsened 
survival than patients with lower EYA2 and MYC, with a 
greater statistical significance than the group stratified only 
for high MYC (Figure 6F compared to 6G). We performed 
the same analysis specifically in Group 3 MB, though pa-
tient numbers were low and thus statistical significance 
(as defined by P < .05) was not achieved in any of the cir-
cumstances, though a clear trend towards worsened sur-
vival with high EYA2 is observed (Figure 6G, P = .059). When 
stratified by MYC expression alone in Group 3, there is no 
significant difference in patient outcome, presumably due 
to the high dependence and overall expression of MYC in 
these tumors (Figure 6H). Patients with both low EYA2/low 
MYC had a modestly improved survival outcome, though 
not statistically significant (P = .16) likely due to an under-
powered patient number (Figure 6I). Overall, these patient 
data corroborate our cell-based findings, demonstrating 
that EYA2 strongly correlates with MYC in Group 3 MB, that 
it is associated with MYC gene expression signatures, and 
that the presence of EYA2 and MYC together correlate with 
worsened survival in MB. Thus, targeting EYA2 in Group 3 
MBs may be a novel therapeutic strategy to decrease MYC 
levels and activity, thereby inhibiting the progression of 
these devastating tumors.

Discussion

Although significant efforts have been made to characterize 
the molecular drivers of WNT and SHH MB, much less is 
known about Group 3 and Group 4 MB, which present with 
molecular and genetic heterogeneity and are associated with 
relatively poor prognoses. Given the critical role of EYA1 in 
SHH-driven MB,7,14 and the fact that EYAs can regulate MYC 

gene expression and protein stability,6,16,19 we hypothesized 
that one or more EYA family members may be critical regu-
lators of MYC in MYC-amplified Group 3 MB. Here, we report 
that EYA2 is highly expressed in Group 3 MB compared to 
other subgroups, where it correlates with MYC expression. 
Using Group 3 derived cell lines, D458 and D425, our data 
demonstrate that EYA2 is a critical regulator of MYC expres-
sion, protein stability, and cell growth in vitro and in vivo. 
Loss of EYA2 results in severe growth phenotypes in vitro 
and correlates with reduced MYC expression at the RNA and 
protein levels, and an increase in pT58-MYC, in agreement 
with previously published reports.6,16 A similar growth defect 
was also observed in vivo upon intracranial transplantation 
of shNC or EYA2 KD D458 cells; however, D425 EYA2 KD cells, 
while showing a slight defect in growth, did not reach signifi-
cance. Yet, tumors that grew out in both contexts showed no 
difference in EYA2 or MYC protein levels by IHC analysis, sug-
gesting that EYA2 and MYC are required for tumor outgrowth 
in vivo, and that only the cells with sufficient EYA2, and thus 
MYC levels, were able to successfully colonize in the brain. To 
determine if this was the case, we used CRISPR-Cas9 to gen-
erate 3 independent EYA2 KO clonal cell lines. The D425 EYA2 
KO lines exhibited similar reductions in MYC protein and im-
paired growth in methylcellulose assays as the D425 EYA2 KD 
cells. When implanted orthotopically, the D425 EYA2 KO line 
conferred a significant survival advantage. Again, IHC anal-
ysis of the end-point tumors showed no difference in MYC 
protein between D425-LUC and the EYA2 KO clones, likely 
due to a compensatory mechanism established to main-
tain growth in the setting of EYA2 loss. Consistent with the 
reported heterogeneity in MB,3,38 our clonal EYA2 KO lines 
showed karyotypic variability, which could have affected the 
phenotypes of the cells (Supplementary Figure 7). We did ob-
serve an increase in double minutes, or extra-chromosomal 
fragments that have been shown to contain MYC in MB and 
other cancers,39–41 in our EYA2 KO clones. This increase in 
double minutes could contribute to re-expression of MYC 
in our in vivo study (Supplementary Figure 4B). Because of 
these karyotypic differences between clonal lines, we did not 
use these lines beyond the experiments outlined in Figure 4.

In developmental and cancer contexts, the Tyr Ptase activity 
of EYAs has been shown to modulate at least a subset of EYA 
transcriptional targets, including MYC.6,10 Additionally, EYA 
proteins are known to regulate MYC protein stability.6,16 Yet, 
how the EYA Tyr Ptase activity affects the transactivation ac-
tivity of EYA proteins, or the associated Thr/Ser Ptase activity 
via PP2A, remains a broader, and as yet, still unanswered 
question in EYA biology. While we have previously shown 
that EYA3 regulates MYC protein stability in breast cancer via 
an interaction with PP2A16, it will be important in the future 
to determine whether EYA2 is similarly dependent on PP2A 
to stabilize MYC in the context of Group 3 MB. It should also 
be noted that the Tyr Ptase activity of EYA2 has numerous 
pro-tumorigenic roles, beyond modulating MYC levels, in 
the context of brain and other cancers.10–13 Nonetheless, be-
cause Group 3 MB is known to be exquisitely dependent on 
MYC, and because inhibition of the EYA2 Tyr Ptase with 9987 
reduced MYC mRNA and protein expression in vitro, and 
had marked effects in vivo (reducing MYC, inhibiting tumor 
growth, and prolonging survival) our data suggest that MYC 
is likely at least one of the key targets of the EYA2 Tyr Ptase 
in this context. The finding that our novel EYA2 allosteric 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad128#supplementary-data
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Figure 6.  EYA2 correlates with MYC and MYC transcriptional signatures in MB samples. (A) GSEA pre-ranked analysis on genes correlated with 
EYA2 expression in primary MB tumors (GSE85217)3 (B) GSEA plot for MYC_targets_V2 genes. (C) MYC and EYA2 gene expression in Group 3 tu-
mors. Patient survival across all MB subtypes stratified by differential (D) EYA2, (E) MYC, or F) EYA2 and MYC expression. Patient survival within 
group 3 MB stratified by high versus low (above or below the mean) (G) EYA2, (H) MYC, or (I) EYA2 and MYC expression. Statistical analysis for 
Figure 6D-I: Log-Rank analysis in R.
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inhibitor reduces MYC levels and orthotopic tumor growth in 
vivo is especially exciting, as strategies for targeting MYC in 
Group 3 MB, or any other tumor, have remained elusive.

Currently, the standard of care for patients with MB is 
tumor resection, followed by craniospinal radiation and 
subsequent adjuvant chemotherapy.42 Recently, the use 
of carboplatin in combination with radiation therapy was 
shown to improve the survival of high-risk Group 3 MB pa-
tients from 54% to 73%,43 yet the use of targeted therapies 
remains an attractive alternative to broadly cytotoxic che-
motherapy. Recent preclinical models demonstrate that 
targeting of CDKs can elicit cytostatic phenotypes in high-
risk MB,44,45 and use of such agents in combination with cy-
totoxic chemotherapies or radiotherapy could offer more 
efficacious treatment for Group 3 MB tumors. Finally, while 
BET inhibitors have been assessed for their ability to de-
crease MYC transcription,31 these inhibitors are associated 
with thrombocytopenias amongst other toxicities.46 As EYA2 
expression is typically low in developed tissue,24,37 and as 
mice treated with 9987 did not exhibit significant weight loss 
(Supplementary Figure 6C), therapeutically targeting EYA2, 
and thus MYC, could reduce the frequency of adverse ef-
fects observed in patients treated with current therapies for 
Group 3 MB. Of interest, several in vivo studies, one flank 
study in glioblastoma18 and the other an orthotopic experi-
ment in breast cancer,47 have recently shown that EYA2 Tyr 
Ptase inhibition can reduce tumor growth and progression 
in these contexts, also with limited side effects. These data 
underscore the relevance of EYA2 as a potentially druggable 
target in multiple cancer types.

While the allosteric mechanism of action of the EYA2 Tyr 
Ptase inhibitor has been elucidated,20,21,23 understanding 
precisely how the Tyr Ptase impinges on MYC transcrip-
tion and stability may enable the development of im-
proved inhibitors. For example, while the EYA Tyr Ptase 
activity is known to influence its transcriptional activity in 
some contexts, the direct target(s) of the EYA2 Tyr Ptase 
that impacts transcription is unknown. EYAs are able to 
autodephosphorylate,48,49 and the phosphorylation state of 
EYAs regulates their subcellular localization.50 The ability of 
EYAs to autodephosphorylate may thus be a means to reg-
ulate their cytoplasmic and nuclear pools, and therefore, 
inhibiting the Tyr Ptase activity could sequester EYAs to a 
specific cellular compartment, impairing transcriptional 
activity. In addition, the means by which EYA Tyr Ptase ac-
tivity impinges on its associated Thr Ptase activity, which is 
responsible for stabilizing MYC,16 is also not understood.

In conclusion, gaining an understanding of how EYA2 
Tyr Ptase contributes to tumor growth and progression 
may identify it as a key target for Group 3 MB, as well as 
for other tumors in which EYA2 plays a critical role.17,18,51 
Because of the low levels of expression of EYA2 in most 
adult tissues, its inhibition may provide a potent means to 
decrease tumor progression while conferring less toxicity 
compared to more traditional therapies.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (http://neuro-oncology.oxfordjournals.org/).
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