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Association between e​lec​tro​
enc​eph​alo​gra​m‑based sleep 
characteristics and physical health 
in the general adult population
Masao Iwagami 1,2,3,11*, Jaehoon Seol 1,4,5,11, Tetsuro Hiei 6, Akihiro Tani 6, Shigeru Chiba 1,7,8, 
Takashi Kanbayashi 1,7, Hideaki Kondo 1,9, Takashi Tanaka 10 & Masashi Yanagisawa 1,6*

We examined the associations between electroencephalogram (EEG)-based sleep characteristics and 
physical health parameters in general adults via a cross-sectional study recruiting 100 volunteers 
aged 30–59 years. Sleep characteristics were measured at home using a portable multichannel 
electroencephalography recorder. Using the k-means +  +  clustering method, according to 10 EEG-
based parameters, participants were grouped into better (n = 39), middle (n = 46), and worse (n = 15) 
sleep groups. Comparing 50 physical health parameters among the groups, we identified four 
signals of difference (P < 0.05), including systolic (sBP) and diastolic blood pressure (dBP), γ-glutamyl 
transpeptidase (γ-GTP), and serum creatinine, where sBP reached a Bonferroni-corrected threshold 
(P < 0.001). The sBP was higher by 7.9 (95% confidence interval 1.9–13.9) and 15.7 (7.3–24.0) mmHg 
before adjustment and 5.4 (− 0.1–10.9) and 8.7 (1.1–16.3) mmHg after adjustment for age, sex, body 
mass index, smoking, drinking habits, and 3% oxygen desaturation index in the middle and worse 
sleep groups, respectively, than in the better group. As another approach, among 500 combinations of 
EEG-based and physical health parameters, there were 45 signals of correlation, of which 4 (N1% and 
sBP, dBP, γ-GTP, and triglycerides) reached a Bonferroni-corrected threshold (P < 0.0001). Thus, EEG-
based sleep characteristics are associated with several physical health parameters, particularly sBP.

Accumulating evidence suggests that subjectively and objectively measured sleep parameters are associated 
with physical and mental health conditions1–7. In previous epidemiological studies, self-reported sleeping time 
and sleep symptoms were associated with the prevalence and incidence of various diseases and mortality1–4. 
Recently, some sleep parameters objectively measured by actigraphy8–10, such as sleep duration and irregular-
ity, were associated with subclinical diseases and the prognosis of study participants5–7. However, without the 
electroencephalogram (EEG) function, actigraphy does not provide information about sleep architecture, such 
as the duration and proportion of rapid eye movement (REM) and non-REM sleep, including stages N1, N2, 
and N3 (i.e. slow-wave sleep)11.

Polysomnography is the gold standard for measuring quantitative sleep parameters. However, extensive time 
and efforts are required by both examiners and examinees. Therefore, polysomnography is mostly conducted in 
inpatient settings, targeting unhealthy patients with serious sleeping problems, such as sleep apnea syndrome 
and narcolepsy. A few studies have conducted polysomnography in home settings in the general population and 
identified associations between EEG-based sleep parameters and mortality and morbidity, including metabolic 
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syndrome12–14. However, these studies were often limited by the dichotomization of disease status (e.g. presence 
or absence of hypertension and diabetes). Thus, a more detailed measurement of physical health parameters 
(e.g. blood pressure, HbA1c, and blood lipids), even in the normal range, is warranted to discuss the biological 
mechanisms connecting sleeping and signs of illness.

A portable multichannel electroencephalography recorder (InSomnograf K2; S’UIMIN Inc., Tokyo, Japan) 
was recently developed to measure EEG-based sleep parameters of healthy and unhealthy people at home (Sup-
plementary Fig. 1)15. Using this modality, we aimed to examine the associations between EEG-based sleep 
characteristics and 50 physical health parameters (including blood pressure and blood and urine parameters), 
which can be generally measured at private health check clinics in Japan, in the general population of adults aged 
30–59 years via a cross-sectional study. Without particular hypotheses, we used data-driven approaches to (i) 
identify clusters or groups of people with similar characteristics according to EEG-based sleep parameters and 
compared the physical health parameters among these groups and (ii) explore which EEG-based sleep param-
eters and physical health parameters were more strongly correlated than other combinations for the purpose of 
hypothesis generation.

Results
Study participants
Of the 100 study participants aged 30–59 years (mean age 44.0 years, standard deviation [SD] 8.6 years; men, 
n = 50; women, n = 50), 91, 8, and 1 completed the 5-, 4-, and 3-night sleep measurements using InSomnograf K2, 
respectively. There were 2, 1, 1, and 1 patients receiving treatment for hypertension, diabetes, hyperuricemia, and 
dyslipidemia, respectively. In the following analyses, these patients were excluded from the relevant analyses on 
blood pressure, diabetes, uric acid, and blood lipids because their values were likely to be affected by the drugs.

Clustering the study participants based on EEG‑based sleep parameters
We classified the study participants into groups (“clusters”) according to 10 EEG-based sleep parameters (i.e. 
total sleep time [TST], sleep efficiency, sleep onset latency, N1%, N2%, N3%, REM%, wake after sleep onset 
[WASO], arousal index, and sleep stage transitions) using the k-means +  + clustering method16. The optimal 
number of clusters (k) was determined to be three, based on the elbow method (Supplementary Fig. 2). Con-
sequently, the study participants were categorized into three groups, including 39, 46, and 15 participants, and 
were named the “better sleep group,” “middle sleep group,” and “worse sleep group,” respectively, based on the 
findings shown below.

Basic characteristics and sleep‑related parameters of study participants
The distribution of the basic characteristics and EEG-based sleep parameters is shown in Table 1 and Sup-
plementary Fig. 3. The age distribution was similar between the groups, whereas the middle and worse sleep 
groups included a higher proportion of men than the better sleep group. Body mass index (BMI) and 3% oxygen 
desaturation index (ODI) were the highest in the worse sleep group.

The average values of most EEG-based sleep parameters were the best in the better sleep group and the worst 
in the worse sleep group, while the values in the middle sleep group were between those in the better and worse 
sleep groups. However, TST was not significantly different among the three groups according to the analysis of 
variance (ANOVA). Among the EEG-based sleep parameters, some were strongly correlated with each other, 
such as sleep efficiency and WASO (r = − 0.848) and arousal index and sleep stage transitions (r = 0.769) (Sup-
plementary Table 1).

Figure 1 shows the cumulative displays of sleep architecture, illustrating the percentage of people in each 
sleep stage of awake, N1, N2, N3, and REM (on the Y-axis) according to the time from bed (on the X-axis) by 
EEG-based sleep cluster. There were apparent differences in sleep architecture, such as the low percentage of N3 
in the middle and worse sleep groups and less distinct REM sleep cycles in the worse sleep group.

Comparison of physical health parameters among the EEG‑based sleep clusters
Comparing the 50 physical health parameters among the three groups by ANOVA, we identified four signals 
of difference based on P < 0.05: systolic blood pressure (sBP), diastolic blood pressure (dBP), γ-glutamyl trans-
peptidase (γ-GTP), and serum creatinine (Supplementary Table 2), of which sBP reached a Bonferroni-corrected 
significance threshold of P < 0.001 (i.e. 0.05 divided by 50). The mean sBP was the highest in the worse sleep 
group (119.0 mmHg, SD 14.5 mmHg), followed by that in the middle (111.2 mmHg, SD 14.1 mmHg) and better 
sleep (103.3 mmHg, SD 13.2 mmHg) groups.

According to our proposed direct acyclic graph to determine the confounding factors to be adjusted (Fig. 2), 
we conducted univariable and multivariable regression analyses for sBP (Fig. 3). In the univariable model, sBP 
was higher by 7.9 (95% confidence interval [CI] 1.9–13.9) and 15.7 (95% CI 7.3–24.0) mmHg in the middle 
and worse sleep groups, respectively, than that in the better group. In the multivariable model, adjustments for 
age, sex, BMI, smoking history, drinking habits, and 3% ODI substantially diluted the associations (i.e. β coef-
ficients), suggesting that these factors confounded the association between EEG-based sleep clusters and sBP, 
in line with the direct acyclic graph. However, there was still an independent association: sBP was higher by 5.4 
(95% CI − 0.1–10.9) and 8.7 (95% CI 1.1–16.3) mmHg in the middle and worse sleep groups, respectively, than 
that in the better group.

The results of multivariable linear regression analyses for other physical health parameters with signals of 
difference (i.e. dBP, γ-GTP, and serum creatinine) are shown in Supplementary Table 3, suggesting that the 
associations were diluted to null after adjusting for the aforementioned confounding factors.
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Subgroup analysis by sex
We repeated the analyses according to sex subgroups. The baseline characteristics and results of the multi-
variable linear regression analyses are shown in Supplementary Tables 4 and 5, respectively. The results in each 
subgroup were generally similar to those in the main analysis, although the analyses might be underpowered. 
For example, the average sBP (SD) was 110.2 (12.1), 115.6 (11.7), and 120.7 (16.7) mmHg in men in the better 
(n = 13), middle (n = 26, excluding 1 patient on medication for hypertension), and worse (n = 10) sleep groups, 
respectively (P = 0.1602). Meanwhile, it was 99.9 (12.6), 104.9 (15.3), and 115.6 (9.4), in women in the better 
(n = 26), middle (n = 18, excluding 1 patient on medication for hypertension), and worse (n = 5) sleep groups, 
respectively (P = 0.0574).

Subgroup analysis by self‑reported Athens insomnia scale (AIS)
Focusing on sBP, we conducted a subgroup analysis using the self-reported AIS, a commonly-used subjective 
sleep quality scale17. Supplementary Fig. 4 shows the distribution of participants according to AIS and EEG-based 
sleep clusters. The mean AIS score (SD) was 4.9 (3.1), 5.9 (3.5), and 5.9 (3.7) in the better, middle, and worse 
sleep groups, respectively (ANOVA P-value of 0.435). Only a weak correlation was found between the AIS and 
EEG-based sleep cluster, with a Spearman’s rank correlation coefficient of 0.123.

In the subgroup with AIS scores < 6 and ≥ 6 (a commonly used cut-off to define insomnia17), the association 
with sBP was more prominent for the EEG-based sleep clusters than that for the AIS (Fig. 4). Putting the AIS 
and EEG-based sleep clusters together in the multivariable linear regression model (adjusted for age, sex, BMI, 
smoking history, and drinking habits, and 3% ODI), there was almost no association for AIS (adjusted β coef-
ficient per 1 increase of AIS 0.04 [95% CI − 0.7–0.8]), whereas sBP was higher by 4.9 (95% CI − 0.7–10.5) and 
8.7 (95% CI 0.9–16.6) mmHg in the middle and worse sleep groups, respectively, than that in the better group.

Sensitivity analyses
Sensitivity analyses (i) excluding one patient (in the middle sleep group) using sleeping medication and (ii) 
adjusting for the average 3% ODI of two nights (in the fully-adjusted model) instead of the worse value in the 
main analysis (where the correlation between the average and worse values was very high [r = 0.979]) showed 
almost the same results to the main analysis, including the results for sBP (Supplementary Table 6).

Table 1.   Basic characteristics and sleep parameters of the study participants overall and by 
electroencephalogram-based sleep cluster. EEG electroencephalogram, SD standard deviation, ODI oxygen 
desaturation index, REM rapid eye movement, WASO wake after sleep onset. a 2 participants quitted 
smoking ≥ 10 years ago.  b 6, 1, 1, and 1 participants quitted smoking ≥ 10, 7–9, 4–6, and 1–3 years ago, 
respectively.  c 2 and 1 participants quitted smoking 4–6 and 1–3 years ago, respectively.

Variables
Overall
 (n = 100)

(i) Better sleep group
 (n = 39)

(ii) Middle sleep group
 (n = 46)

(iii) Worse sleep group
 (n = 15)

P value comparing the 3 
groups

Age (years), mean ± SD 44.0 ± 8.6 42.0 ± 9.4 45.2 ± 8.2 45.5 ± 7.0 0.1769

Sex (men), n (%) 50 (50.0) 13 (33.3) 27 (58.7) 10 (66.7) 0.0248

Body mass index, mean ± SD 22.2 ± 3.7 21.7 ± 3.6 22.0 ± 2.9 24.0 ± 5.8 0.1243

Smoking habit, n (%) 0.1653

 Non-smokers 75 (75.0) 34 (87.2) 32 (69.6) 9 (60.0)

 Past smokers 14 (14.0) 2 (5.1)a 9 (19.6)b 3 (20.0)c

 Current smokers 11 (11.0) 3 (7.7) 5 (10.9) 3 (20.0)

Drinking habit, n (%) 0.1238

 None 29 (29.0) 16 (41.0) 11 (23.9) 2 (13.3)

  ≤ 1 day/week 35 (35.0) 12 (30.8) 19 (41.3) 4 (26.7)

 2–5 days/week 19 (19.0) 8 (20.5) 7 (15.2) 4 (26.7)

  ≥ 6 days/week 17 (17.0) 3 (7.7) 9 (19.6) 5 (33.3)

3%ODI (times/hour), 
mean ± SD 7.3 ± 8.6 5.5 ± 7.4 7.3 ± 8.3 11.9 ± 11.0 0.0500

EEG-based parameters, mean ± SD

 Total sleep time (min) 348.6 ± 58.4 347.6 ± 52.0 348.4 ± 58.5 352.1 ± 75.6 0.9680

 Sleep efficiency (%) 90.8 ± 5.3 93.8 ± 3.0 90.2 ± 4.3 84.7 ± 7.2  < 0.0001

 Sleep latency (min) 11.2 ± 9.7 7.9 ± 6.7 12.7 ± 9.9 15.4 ± 13.3 0.0142

 N1% 8.6 ± 4.8 5.7 ± 2.5 8.9 ± 3.2 15.1 ± 6.6  < 0.0001

 N2% 54.2 ± 7.1 49.2 ± 5.5 58.2 ± 5.6 55.3 ± 7.4  < 0.0001

 N3% 10.1 ± 7.7 17.0 ± 5.6 4.7 ± 3.9 8.8 ± 7.4  < 0.0001

 REM% 26.9 ± 4.9 28.0 ± 4.2 28.2 ± 4.3 20.2 ± 3.0  < 0.0001

 WASO (min) 24.4 ± 19.3 14.9 ± 9.5 25.0 ± 16.0 47.1 ± 27.6  < 0.0001

 Arousal index (/hour) 11.8 ± 4.6 9.2 ± 3.0 11.4 ± 3.1 19.5 ± 3.6  < 0.0001

 Sleep stage transitions (/hour) 7.7 ± 2.2 6.9 ± 1.5 7.3 ± 1.9 10.6 ± 2.2  < 0.0001
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Figure 1.   Cumulative displays of sleep architecture by electroencephalogram-based sleep cluster. The X-axis 
indicates the time from bed, whereas the Y-axis indicates the percentage of people in each sleep stage: awake 
(“W”), N1, N2, N3, and REM (“R”).

Figure 2.   Direct acyclic graph in the association between electroencephalogram-based sleep characteristics and 
physical health. BMI body mass index, ODI oxygen desaturation index, EEG electroencephalogram.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21545  | https://doi.org/10.1038/s41598-023-47979-9

www.nature.com/scientificreports/

Correlations between each EEG‑based sleep parameter and physical health parameter
As another approach with a highly exploratory purpose, we comprehensively estimated the correlation coef-
ficients of all 500 combinations between the 10 EEG-based sleep parameters and 50 physical health parameters. 
In total, 45 signals of correlations were identified based on P < 0.05 (Supplementary Table 7), of which 4 combi-
nations reached a Bonferroni-corrected significance threshold of P < 0.0001 (i.e. 0.05 divided by 500): N1% and 
sBP, dBP, γ-GTP, and triglycerides. In the linear regression models for these combinations, adjustment for age, 
sex, BMI, smoking history, drinking habits, and 3% ODI diluted the associations to the null for sBP and dBP. In 
contrast, independent associations were found for γ-GTP and triglycerides, with adjusted β coefficients of 6.4 
(95% CI 0.8–11.9) IU/L and 13.7 (95% CI 3.4–24.1) mg/dL, respectively, per 1 SD increase of N1%.

The results of multivariable linear regression analyses for all combinations with signals of correlations 
(P < 0.05) are shown in Supplementary Table 8. Most associations were diluted to the null after adjusting for the 
aforementioned confounding factors, while some independent associations (as indicated by 95% CIs of adjusted 
β coefficients not overlapping with zero) were found: (i) TST and total homocysteine, (ii) sleep efficiency and 
fasting blood glucose, (iii) sleep efficiency and zinc, (iv) sleep efficiency and blood urea nitrogen (BUN), (v) 
WASO and fasting blood glucose, (vi) WASO and HbA1c, and (vii) sleep stage transition and ferritin levels.

Discussion
We comprehensively examined the associations between EEG-based sleep parameters and physical health in the 
general adult population. The key findings are as follows. Among the 50 physical health parameters, there were 
four signals of difference (sBP, dBP, γ-GTP, and serum creatinine) in the EEG-based sleep clusters, of which sBP 
reached a Bonferroni-corrected threshold. After adjusting for potential confounding factors, the EEG-based 
sleep clusters were independently associated with sBP. In addition, subjective (AIS) and objective (EEG-based) 
sleep qualities were often discrepant, and sBP was associated with EEG-based sleep clusters but not with AIS. 
In another data-driven analysis, among 500 combinations between each EEG-based sleep parameter and each 
physical health parameter, we identified 45 signals of correlations, of which 4 (N1% and sBP, dBP, γ-GTP, and 
triglycerides) reached a Bonferroni-corrected significance threshold. Notably, sleep quantity (TST) was similar 
among the EEG-based sleep clusters and was not correlated with most physical health parameters. The current 

EEG-based sleep cluster Better sleep group Middle sleep group Worse sleep group

No. of people 39 44 15

Crude values (mm Hg), mean SD 103.3 13.2 111.2 14.1 119.0 14.5

Crude coefficient (95% CI) Ref. 7.9 (1.9 – 13.9) 15.7 (7.3 – 24.0)

Adjusted coefficient (95% CI) in Model 1 Ref. 3.9 (-1.8 – 9.7) 10.7 (2.8 – 18.5)

Adjusted coefficient (95% CI) in Model 2 Ref. 5.0 (-0.4 – 10.3) 9.5 (2.1 – 17.0)

Adjusted coefficient (95% CI) in Model 3 Ref. 5.4 (-0.1 – 10.9) 8.7 (1.1 – 16.3)

Figure 3.   Dot and box plots for systolic blood pressure by electroencephalogram-based sleep cluster and results 
of univariable and multivariable linear regression analyses. EEG electroencephalogram, CI confidence interval, 
SD standard deviation. Model 1 is adjusted for age and sex; Model 2 is further adjusted for body mass index, 
smoking history, and drinking habits; and Model 3 is further adjusted for the 3% oxygen desaturation index. 
In Model 3, two participants with missing values of 3% oxygen desaturation index are excluded. Each box plot 
shows the median, interquartile range, and minimum and maximum scores. Two patients receiving treatment 
for hypertension are excluded.
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study highlights the importance of objective sleep quality rather than sleep quantity, as well as subjective sleep 
quality.

To the best of our knowledge, this is the first study to measure EEG-based sleep parameters at home in the 
general adult population using InSomnograf K2, a newly developed portable multichannel electroencephalogra-
phy recorder. The novelty of the present study includes our application of clustering approach to sleep evaluation. 
The study participants were classified into three groups using the k-means +  + clustering method. We believe 
that clustering, one of the unsupervised machine learning methods18, is a reasonable approach because of the 
following reasons. First, there are many EEG-based sleep parameters that are correlated with each other, such 
that no single parameter should not be used to classify people. Second, there is no universally established criteria 
to differentiate “good” and “bad” sleep based on EEG-based sleep parameters. We believe that our clustering 
was successful, because most EEG-based sleep parameters were significantly different among the three groups.

We found significant differences in sBP among the EEG-based clusters. The sBP was higher by 7.9 mmHg 
and 15.7 mmHg before adjustment and by 5.4 mmHg and 8.7 mmHg after adjustment for age, sex, BMI, smok-
ing history, drinking habits, and 3% ODI in the middle and worse sleep groups, respectively, than in the better 
sleep group. The considerable decrease in the estimates after the adjustment indicate that these factors indeed 
served as “confounding factors,” as we expected with our proposed direct acyclic graph. For example, obesity and 
drinking are likely to affect both EEG-based sleep parameters and some physical health parameters. However, 
even after adjustment of these factors, there was an independent association between the EEG-based clusters and 
sBP. This fact may suggest that, regardless of obesity and drinking, sleep quality itself affects sBP. For example, 
poor sleep quality could damage the balance between the sympathetic and parasympathetic nerves and stress 
the blood vessels, increasing blood pressure19.

Previous studies examined the association between EEG-based sleep parameters and blood pressure. In a 
cross-sectional study of 62 normal adults without sleep apnea, focusing on nocturnal blood pressure dipping, 
deeper and less-fragmented sleep was associated with more blood pressure dipping20. In another study, 11 healthy 
adults were selectively deprived of slow-wave sleep, leading to significantly attenuated mean arterial bloop pres-
sure dipping during the first half of total sleep21. In the Study of Women’s Health Across the Nation Sleep Study, 

Self-reported Athens insomnia scale <6 (better subjective sleep quality) ≥6 (worse subjective sleep quality)

EEG-based sleep cluster Better Middle Worse Better Middle Worse

No. of people 26 23 7 11 19 8

Crude values (mm Hg), mean SD 102.9 14.4 112.7 14.8 116.6 19.0 103.0 11.7 109.9 14.2 121.1 10.1

Crude coefficient (95% CI) Ref. 9.8
(1.7– 17.9)

13.7
(1.6– 25.7)

0.1
(-10.1–10.2)

7.1 
(-1.5–15.6)

18.2 
(6.7–29.6)

Adjusted coefficient (95% CI) in Model 1 Ref. 3.1 
(-4.8–11.0)

6.4
(-5.0–17.9)

-1.8 
(-11.1–7.5)

4.1
(-3.7–12.0)

13.5
(2.9–24.1)

Adjusted coefficient (95% CI) in Model 2 Ref. 3.8 
(-3.7–11.2)

6.2 
(-4.3–16.7)

-2.1
(-10.5–6.4)

4.0 
(-3.1–11.1)

11.5 
(1.5–21.5)

Adjusted coefficient (95% CI) in Model 3 Ref. 3.4
(-4.1–10.8)

4.6
(-6.1–15.2)

-2.5
(-10.9–5.9)

4.7
(-2.5–11.9)

10.7 
(0.7–20.7)

Figure 4.   Subgroup analyses for systolic blood pressure according to the Athens insomnia scale. EEG 
electroencephalogram, CI confidence interval, SD standard deviation. Model 1 is adjusted for age and sex; 
Model 2 is further adjusted for body mass index, smoking history, and drinking habits; and Model 3 is further 
adjusted for the 3% oxygen desaturation index. In Model 3, two participants with missing values of 3% oxygen 
desaturation index are excluded. Each box plot shows the median, interquartile range, and minimum and 
maximum scores. Two patients receiving treatment for hypertension and four patients with missing values of 
Athens insomnia scale are excluded.
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the EEG total beta power during non-REM sleep was positively associated with hypertensive status, whereas 
sleep duration and efficiency were not associated with  blood pressure cross-sectionally or longitudinally22. These 
studies, as well as the present study, suggest that sleep quality measured by EEG affects blood pressure.

The participants, only two of whom were receiving treatment for hypertension, in the current study were 
even healthier than those in previous studies targeting the general population12, 13. However, it is noteworthy 
that EEG-based sleep clusters showed this level of difference in sBP among adults aged 30–59 years. If their sleep 
quality remains unchanged, the difference in sBP between the groups may become higher with aging, eventually 
leading to cardiovascular events (e.g. stroke and myocardial infarction) in the worse sleep group.

In addition, the AIS, a subjective measure of sleep quality, was not strongly correlated with EEG-based sleep 
clusters. This finding aligns with previous studies suggesting that EEG-based sleep quality is not reliably predic-
tive of self-reported sleep quality in healthy adults23, 24. Importantly, there was almost no association between 
AIS and sBP, whereas the EEG-based clusters were still independently associated with sBP after co-adjustment 
of AIS scores. From a research perspective, the current study highlights the importance of objective, rather than 
subjective, measures of sleep quality in epidemiological studies on the association between sleep and physical 
health. From a clinical perspective, our findings indicate that it would be ideal to measure EEG-based sleep 
quality, instead of self-reported sleep quality.

This study also provides hypotheses for further research on the association between EEG-based sleep char-
acteristics and physical health. Correlation analysis suggested that, among the 10 EEG-based sleep parameters, 
N1% showed a relatively strong correlation with blood pressure, γ-GTP, and triglycerides. Furthermore, despite 
multiple testing, an independent association was observed for (i) TST and total homocysteine, (ii) sleep efficiency 
and fasting blood glucose, (iii) sleep efficiency and zinc, (iv) sleep efficiency and BUN, (v) WASO and fasting 
blood glucose, (vi) WASO and HbA1c, and (vii) sleep stage transition and ferritin levels. These findings suggest 
that certain EEG-based sleep characteristics are not only associated with blood pressure, but also with meta-
bolic functions and inflammation, in line with previous results25–27. Both sleep duration and efficiency mediate 
the connection between homocysteine levels and oxidative stress25. One possibility for this is that frequent and 
repeated WASO might lead to increased concentrations of ferritin levels due to oxidative stress28.

The current study has some limitations. First, this was a cross-sectional study, and thus, a temporal relation-
ship between EEG-based sleep parameters and physical health parameters could not be established. Based on 
previous studies suggesting that sleep quality was associated with the future incidence of metabolic disorders5, 

7, 13, 29, we assumed that sleep quality affected physical health. However, the opposite may also be true, that is, 
physical conditions may also affect sleep quality30. Prospective cohort studies or Mendelian randomization 
studies (an instrumental variable analysis regarding genetic variants as instrumental variables) are warranted to 
examine any causal relationship and direction of causation, especially by focusing on the combinations with the 
strong correlation suggested in the current study. Second, misclassification of the studied parameters is possible. 
EEG-based parameters were measured by InSomnograf K2, which may be less accurate than those measured 
with the gold-standard method of polysomnography15. Blood samples were measured in the morning, although 
some parameters (e.g. blood cell counts) could change within a 24-h period.

Third, the sample size in this study was not very large. We were unable to calculate the necessary or sufficient 
sample size in advance because this was an exploratory, data-driven study without any particular hypothesis. The 
number of participants per group was automatically determined in the clustering analysis. Consequently, the 
worse sleep group included a relatively small number of participants, limiting the power of statistical analysis. 
We conducted Bonferroni corrections for our multiple testing in the crude comparison and found “statistically 
significant” associations or correlations. However, the study did not have enough statistical power to conclude 
that the adjusted associations in the multivariable analyses were “statistically significant” if multiple tests were 
considered. In addition, in our clustering analysis, we had to set the number of clusters to be three because four 
or more clusters would include a small number of people and limit meaningful comparisons. A clustering analy-
sis with a relatively larger sample size may identify a cluster of people with more specific sleep characteristics. 
Further studies with relatively larger sample sizes, including unhealthier people, are warranted to test whether 
these hypotheses are true or only a chance finding. Finally, although we collected and adjusted for potential 
confounding factors in the association between the EEG-based sleep clusters and sBP according to our proposal 
of direct acyclic graph, residual confounding is still possible due to rough categorization and potential misclas-
sification of the variables. Therefore, the independent association we detected may be partly explained by the 
residual confounding.

Conclusions
In this cross-sectional study measuring EEG-based sleep parameters at home, objectively measured sleep qual-
ity, rather than sleep quantity and subjectively measured sleep quality, was associated with several aspects of 
physical health, particularly sBP, in the general population of adults aged 30–59 years. This study highlights 
the importance of measuring EEG-based sleep quality in clinical practice and epidemiological studies. Further 
prospective cohort studies are warranted to examine whether these sleep characteristics are associated with long-
term disease incidence and prognosis and, ultimately, whether modifying objectively measured sleep quality 
could prevent diseases.

Methods
Study design, setting, and participants
In this cross-sectional observational study, we recruited study participants from a private health check clinic 
in Tokyo, Japan between October and December 2021. The clinic offers comprehensive medical checkups as a 
private service. For the current study, we recruited voluntary participants aged 30–59 years, on-site and from the 
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Internet, who agreed to receive comprehensive medical checkups and measurement of EEG-based sleep param-
eters using InSomnograf K2. To ensure a balanced age-sex distribution, we recruited up to 17 participants from 
each sex and 10-year age stratum from 30 to 59 years, in a total of 100 individuals. We did not set any exclusion 
criteria for study participants to represent the general population. The participants were not paid, but they could 
receive the comprehensive medical checkup for free. We were unable to conduct any sample size calculation 
because this was an exploratory study without particular hypotheses and also because we could not predict the 
number of people in each group in the clustering analysis. Thus, the sample size of 100 was determined realisti-
cally with respect to time and cost.

Ethical approval
This study was conducted according to the principles of the Declaration of Helsinki. The study was approved 
by the Institutional Review Board of Daichinokai Medical Corporation. Informed consent was obtained from 
all study participants.

Measurements of sleep characteristics
Details of the InSomnograf K2 are described in a previous study using this modality for older people15. In 
brief, InSomnograf K2 is a newly developed modality to measure brain waves during sleep, with five soft stick-
ing electrodes placed on the head in the frontal and occipital locations and connected to a portable recording 
machine (Supplementary Fig. 1). The modality was validated against a typical polysomnography device with 
a concordance rate of 86.9% and kappa coefficient of 0.8015. In addition, there was a high correlation between 
InSomnograf K2 and self-reported questionnaires on bedtime (r = 0.935), waking time (r = 0.933), and midpoint 
of sleep time (r = 0.967)15.

The recording system consisted of five electroencephalogram derivations (Fp1–M2, Fp2–M1, Fp1–average 
M, Fp2–average M, and Fp1–Fp2). The recorded nights were divided into 30 sequential periods and manually 
classified into REM sleep and non-REM sleep, which were further classified into light sleep (N1 and N2, sepa-
rately) and slow-wave sleep (N3).

Using this modality, in line with the sleep quality recommendations of the National Sleep Foundation11, we 
listed and measured the following sleep parameters for five nights: TST; sleep efficiency (%), defined as divid-
ing TST by total bedtime; sleep onset latency (min), defined as the duration from the time in bed to the sleep 
onset; percentage of stage N1, N2, N3, and REM, dividing the duration of each by TST; WASO (min), defined as 
the amount of time spent awake after sleep had been initiated and before final awakening; and arousal index (/
hour), defined as the average number of arousals (an abrupt change from “deeper” stage of non-REM sleep to a 
“lighter” stage or from REM sleep toward wakefulness) per hour of sleep11. The scores were determined according 
to the American Academy of Sleep Medicine criteria31. In addition, we measured sleep stage transitions (/hour), 
defined as the frequency of transitions among waking, non-REM sleep, and REM sleep, as they were associated 
with self-reported restlessness and light sleep independent of the arousal index32.

For these 10 parameters, the average values from the 5 nights were calculated and used in the following 
analyses. Most participants completed the measurements on five nights, but some failed on one or more nights. 
For these participants, we took the average of the sleeping parameters for all available nights. During the five 
nights, the study participants were asked to maintain their usual/regular activities, including drinking and sports 
activities.

In addition, the study participants were asked to fill in the electronic form that included questions to calculate 
the AIS score. Briefly, the AIS is a validated self-assessment psychometric instrument designed for quantifying 
sleep difficulty based on the International Classification of Disease-10 criteria. It consists of eight items: sleep 
induction, awakenings during the night, final awakening, total sleep duration, sleep quality, well-being, function-
ing capacity, and sleepiness during the day17. Each item is scored from 0 to 3, and the total score ranges from 0 
(denoting absence of any sleep difficulty) to 24 (denoting most severe sleep difficulty). The electronic form also 
included questions on smoking and drinking habits and use of medications for sleeping and other conditions 
such as hypertension and diabetes.

The 3% ODI, defined as the number of oxygen desaturations ≥ 3% per hour of sleep33, 34, was measured using 
a portable pulse oximeter (RingO2; Neuroceuticals Inc., Tokyo, Japan) for two nights, and the higher (i.e. worse) 
value of the two nights was selected.

Clustering the study participants based on EEG‑based sleep parameters
Using the k-means +  + clustering method, we classified the study participants into several groups (“clusters”) of 
people with similar characteristics, according to 10 EEG-based parameters, namely, TST, sleep efficiency, sleep 
onset latency, N1%, N2%, N3%, REM%, WASO, arousal index, and sleep stage transitions. All of these were 
standardized as mean 0 and standard deviation 1. K-means clustering is a method of vector quantization that 
aims to partition the observations or study participants into k (i.e. the number of clusters) clusters, in which 
each observation belongs to the cluster with the nearest mean. K-means +  + is a modified version of the k-means 
method, with an algorithm for choosing the initial values before proceeding with the standard k-means optimi-
zation iterations for the results of clustering to be more stable than the original k-means method16. The optimal 
number of clusters (k) was determined based on the elbow method showing the “distortion” according to the 
number of clusters, as well as the number of people in each cluster to avoid too small clusters. After the clustering 
analysis, we interpreted the characteristics of each group and named each group if possible.
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Measurements of physical health parameters
Physical health parameters were measured in the morning (around 8–10 AM), without breakfast except for 
a cup of water, with the participants requested to have the last meal before 9 PM on the day before measure-
ment. Blood pressure measurements were conducted twice using an automated machine (MPV-5500; NIHON 
KOHDEN Co., Tokyo, Japan) and averaged. Blood and urine samples were collected and measured at a central 
laboratory affiliated with the study site. The measured hematological parameters included fasting blood glucose, 
hemoglobin A1c (national glycohemoglobin standardization program); glycoalbumin; 1,5-anhydro-D-glucitol; 
hemoglobin; white blood cell count; platelet count; total iron-binding capacity; unsaturated iron-binding capac-
ity; ferritin; serum iron; serum copper; C-reactive protein (CRP); ceruloplasmin; zinc; 25-hydroxyvitamin D; 
1,25-dihydroxyvitamin D; calcium; magnesium; sodium; potassium; chloride; uric acid; total protein; albumin; 
aspartate aminotransferase; alanine transaminase; γ-GTP; lactate dehydrogenase; alkaline phosphatase; total, 
direct, and indirect bilirubin; serum amylase; choline esterase; creatinine; BUN; total cholesterol; triglyceride; 
high-density lipoprotein cholesterol; low-density lipoprotein (LDL) cholesterol; small dense LDL cholesterol; 
phospholipid; total homocysteine; free fatty acids; serum pepsinogen I; and serum pepsinogen I/II ratio. Urine 
measurements were conducted for urine albumin per 1 g of creatinine. In total, 50 physical health parameters 
were assessed. Red blood cell count and hematocrit were excluded because they were largely correlated with 
hemoglobin levels (r = 0.837 and 0.974, respectively).

Statistical analysis
First, we described the basic characteristics, EEG-based sleep parameters, and physical health parameters of 
the overall study participants and by EEG-based sleep clusters. The three groups were compared using ANOVA 
for continuous variables and χ2 tests for sex, smoking history, and drinking habits. In addition, the correlation 
coefficients among the EEG-based sleep parameters were estimated. All sleep and physical parameters in the 
current study were continuous; therefore, they were summarized as the mean ± SD. The parameters suggestive 
of log-normal distribution, including CRP and urine albumin, were log-transformed with a base of 10.

In each group, we illustrated the cumulative displays of sleep architecture, showing the percentage of people in 
each sleep stage of awake, N1, N2, N3, and REM (on the Y-axis) according to the time from bed (on the X-axis)15.

Then, we crudely compared the physical health parameters among the three groups using ANOVA. Signals 
of difference were identified based on P < 0.05 and a Bonferroni-corrected statistical significance threshold of 
P < 0.001 (i.e. 0.05 divided by 50). The parameters with signals of difference were included in the univariable and 
multivariable linear regression analyses in which the exposure was the EEG-based sleep cluster (with reference to 
the better sleep group) and the outcome was each physical health parameter. According to our proposed direct 
acyclic graph to determine confounding factors to be adjusted (Fig. 2), we adjusted for age (as a continuous 
variable) and sex (Model 1); further for BMI (as a continuous variable), smoking history (non-smokers, past 
smokers, and current smokers), and drinking habits (none, ≤ 1 day/week, 2–5 days/week, and ≥ 6 days/week) 
(Model 2); and further for 3% ODI (as a continuous variable) (Model 3) because sleep apnea was a well-known 
risk factor for impaired physical health35, 36. We also conducted a subgroup analysis by sex.

In addition, the AIS scores were compared among the clusters, and the Spearman’s correlation coefficient 
between the AIS and EEG-based clusters was estimated. Then, for the subgroup analysis, we differentiated par-
ticipants with AIS scores < 6 and ≥ 6 and conducted univariable and multivariable linear regression analyses to 
compare the six groups according to the AIS and EEG-based sleep clusters. Further, we included both the AIS 
(as a continuous variable) and EEG-based sleep clusters in the multivariable linear regression model.

Sensitivity analyses (i) excluding one patient using sleep medication and (ii) adjusting for the average 3% ODI 
of two nights (in the fully-adjusted model) instead of the worse value were also conducted.

As another data-driven approach, we comprehensively estimated the correlation coefficients of all the combi-
nations between the 10 EEG-based parameters and 50 physical health parameters to identify signals of correla-
tion based on P < 0.05 and a Bonferroni-corrected statistical threshold of P < 0.0001 (i.e. 0.05 divided by 500). 
For combinations with signals of correlation, univariable and multivariable linear regression analyses in which 
the exposure was the EEG-based sleep parameter (per 1 SD increase) and the outcome was the physical health 
parameter were also conducted.

We used STATA version 17 for the statistical tests, Python version 3.7.7 (“sklearn” package) to conduct the 
K-means +  + clustering, Microsoft Excel version 2021 to illustrate Fig. 1, and GraphPad Prism 9 to illustrate 
Figs. 3 and 4 and Supplementary Fig. 3.

Data availability
The data used in this study were licensed by S’UIMIN Inc. The data have not been made publicly available and 
could be used in future projects to develop medical devices and diagnostic technologies. Proposals and requests 
for data access should be directed to the corresponding author via email.

Received: 25 March 2023; Accepted: 20 November 2023

References
	 1.	 Troxel, W. M. et al. Sleep symptoms predict the development of the metabolic syndrome. Sleep 33, 1633–1640 (2010).
	 2.	 Khan, H., Kella, D., Kunutsor, S. K., Savonen, K. & Laukkanen, J. A. Sleep duration and risk of fatal coronary heart disease, sudden 

cardiac death, cancer death, and all-cause mortality. Am. J. Med. 131, 1499-1505.e2 (2018).
	 3.	 da Silva, A. A. et al. Sleep duration and mortality in the elderly: A systematic review with meta-analysis. BMJ Open 6, e008119 

(2016).



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21545  | https://doi.org/10.1038/s41598-023-47979-9

www.nature.com/scientificreports/

	 4.	 Deng, H. B. et al. Short sleep duration increases metabolic impact in healthy adults: A population-based cohort study. Sleep https://​
doi.​org/​10.​1093/​sleep/​zsx130 (2017).

	 5.	 Huang, T., Mariani, S. & Redline, S. Sleep irregularity and risk of cardiovascular events: The multi-ethnic study of atherosclerosis. 
J. Am. Coll. Cardiol. 75, 991–999 (2020).

	 6.	 Dennison, C. A. et al. Association of genetic liability for psychiatric disorders with accelerometer-assessed physical activity in the 
UK Biobank. PLoS One 16, e0249189 (2021).

	 7.	 Domínguez, F. et al. Association of sleep duration and quality with subclinical atherosclerosis. J. Am. Coll. Cardiol. 73, 134–144 
(2019).

	 8.	 Marino, M. et al. Measuring sleep: Accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 
36, 1747–1755 (2013).

	 9.	 Smith, M. T. et al. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American 
Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep Med. 14, 1231–1237 (2018).

	10.	 Smith, M. T. et al. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American 
Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 14, 1209–1230 (2018).

	11.	 Ohayon, M. et al. National Sleep Foundation’s sleep quality recommendations: First report. Sleep Health 3, 6–19 (2017).
	12.	 Haba-Rubio, J. et al. Objective sleep structure and cardiovascular risk factors in the general population: The HypnoLaus Study. 

Sleep 38, 391–400 (2015).
	13.	 Leary, E. B. et al. Association of rapid eye movement sleep with mortality in middle-aged and older adults. JAMA Neurol. 77, 

1241–1251 (2020).
	14.	 Bertisch, S. M. et al. Insomnia with objective short sleep duration and risk of incident cardiovascular disease and all-cause mortal-

ity: Sleep Heart Health Study. Sleep 41, 047 (2018).
	15.	 Seol, J. et al. Bidirectional associations between physical activity and sleep in older adults: A multilevel analysis using polysom-

nography. Sci. Rep. 12, 15399 (2022).
	16.	 Arthur, D. & Vassilvitskii, S. k-means++: The advantages of careful seeding (PDF). In Proceedings of the Eighteenth Annual ACM-

Siam Symposium on Discrete Algorithms (eds Arthur, D. & Vassilvitskii, S.) 1027–1035 (Society for Industrial and Applied Math-
ematics, 2007).

	17.	 Soldatos, C. R., Dikeos, D. G. & Paparrigopoulos, T. J. Athens insomnia scale: Validation of an instrument based on ICD-10 criteria. 
J. Psychosom. Res. 48, 555–560 (2000).

	18.	 Eckhardt, C. M. et al. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg. Sports Trau-
matol. Arthrosc. 31, 376–381 (2023).

	19.	 Julius, S. & Majahalme, S. The changing face of sympathetic overactivity in hypertension. Ann. Med. 32, 365–370 (2000).
	20.	 Loredo, J. S. et al. Sleep quality and blood pressure dipping in normal adults. Sleep 27, 1097–1103 (2004).
	21.	 Sayk, F. et al. Effects of selective slow-wave sleep deprivation on nocturnal blood pressure dipping and daytime blood pressure 

regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R191-197 (2010).
	22.	 Matthews, K. A. et al. Sleep and risk for high blood pressure and hypertension in midlife women: The SWAN (Study of Women’s 

Health Across the Nation) Sleep study. Sleep Med. 15, 203–208 (2014).
	23.	 Cudney, L. E., Frey, B. N., McCabe, R. E. & Green, S. M. Investigating the relationship between objective measures of sleep and 

self-report sleep quality in healthy adults: A review. J. Clin. Sleep Med. 18, 927–936 (2022).
	24.	 Baker, F. C., Maloney, S. & Driver, H. S. A comparison of subjective estimates of sleep with objective polysomnographic data in 

healthy men and women. J. Psychosom. Res. 47, 335–341 (1999).
	25.	 Sanchez-Espinosa, M. P., Atienza, M. & Cantero, J. L. Sleep mediates the association between homocysteine and oxidative status 

in mild cognitive impairment. Sci. Rep. 7, 7719 (2017).
	26.	 Chen, T. Y. et al. Short sleep duration is associated with increased serum homocysteine: Insights from a national survey. J. Clin. 

Sleep Med. 15, 139–148 (2019).
	27.	 Morselli, L. L., Guyon, A. & Spiegel, K. Sleep and metabolic function. Pflugers. Arch. 463, 139–160 (2012).
	28.	 Orino, K. et al. Ferritin and the response to oxidative stress. Biochem. J. 357, 241–247 (2001).
	29.	 Huang, T. & Redline, S. Cross-sectional and prospective associations of actigraphy-assessed sleep regularity with metabolic abnor-

malities: The multi-ethnic study of atherosclerosis. Diabetes Care 42, 1422–1429 (2019).
	30.	 Tahmasian, M. et al. The interrelation of sleep and mental and physical health is anchored in grey-matter neuroanatomy and under 

genetic control. Commun. Biol. 3, 171 (2020).
	31.	 Berry, R. B. et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, 

Version 2.5 (American Academy of Sleep Medicine, 2018).
	32.	 Laffan, A., Caffo, B., Swihart, B. J. & Punjabi, N. M. Utility of sleep stage transitions in assessing sleep continuity. Sleep 33, 

1681–1686 (2010).
	33.	 Fietze, I. et al. Night-to-night variation of the oxygen desaturation index in sleep apnoea syndrome. Eur. Respir. J. 24, 987–993 

(2004).
	34.	 Xu, Y., Ou, Q., Cheng, Y., Lao, M. & Pei, G. Comparative study of a wearable intelligent sleep monitor and polysomnography 

monitor for the diagnosis of obstructive sleep apnea. Sleep Breath https://​doi.​org/​10.​1007/​s11325-​022-​02599-x (2022).
	35.	 Young, T. & Peppard, P. Sleep-disordered breathing and cardiovascular disease: Epidemiologic evidence for a relationship. Sleep 

23(Suppl 4), S122–S126 (2000).
	36.	 Punjabi, N. M. et al. Sleep-disordered breathing, glucose intolerance, and insulin resistance: The Sleep Heart Health Study. Am. J. 

Epidemiol. 160, 521–530 (2004).

Acknowledgements
This work was supported by the World Premier International Research Center Initiative (WPI) from Ministry 
of Education, Culture, Sports, Science and Technology (MEXT) to M.Y., Japan Agency for Medical Research 
and Development (AMED) JP21zf0127005 to M.Y. and T.K., and JP19dm0908001 and JP20dm0107162 to T.K., 
and Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research (C) 19 
K08037 and 22K07571 to T.K. We thank the staff at KRD Nihonbashi (https://​www.​krd-​nihom​bashi.​com/) for 
assisting us with the recruitment of study participants and data collection. We also thank Editage (www.​edita​ge.​
com) for the English language editing.

Author contributions
M.Y., M.I., and T.H. planned the study. T.H., A.T., and T.T. collected data. M.I. and J.S. analyzed the data and 
wrote the manuscript. J.S. prepared the figures, and M.I. prepared the tables and supplementary materials. M.Y., 
S.C., T.K., and H.K. contributed substantially to the interpretation of the results and provided feedback on the 
main manuscript text. All authors have reviewed the manuscript.

https://doi.org/10.1093/sleep/zsx130
https://doi.org/10.1093/sleep/zsx130
https://doi.org/10.1007/s11325-022-02599-x
https://www.krd-nihombashi.com/
http://www.editage.com
http://www.editage.com


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21545  | https://doi.org/10.1038/s41598-023-47979-9

www.nature.com/scientificreports/

Competing interests 
M.Y. is the CEO of S’UIMIN Inc., and holds stock in the company. T.H. and A.T. are employees of S’UIMIN 
Inc., and T.H. holds stock in the company. J.S. was partially paid by S’UIMIN Inc. Other authors do not have 
any conflict of interest.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​47979-9.

Correspondence and requests for materials should be addressed to M.I. or M.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-47979-9
https://doi.org/10.1038/s41598-023-47979-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Association between e​lec​tro​enc​eph​alo​gra​m-based sleep characteristics and physical health in the general adult population
	Results
	Study participants
	Clustering the study participants based on EEG-based sleep parameters
	Basic characteristics and sleep-related parameters of study participants
	Comparison of physical health parameters among the EEG-based sleep clusters
	Subgroup analysis by sex
	Subgroup analysis by self-reported Athens insomnia scale (AIS)
	Sensitivity analyses
	Correlations between each EEG-based sleep parameter and physical health parameter

	Discussion
	Conclusions
	Methods
	Study design, setting, and participants
	Ethical approval
	Measurements of sleep characteristics
	Clustering the study participants based on EEG-based sleep parameters
	Measurements of physical health parameters
	Statistical analysis

	References
	Acknowledgements


