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A B S T R A C T   

Background: Bone scans are often used to identify bone metastases, but their low specificity may 
necessitate further studies. Deep learning models may improve diagnostic accuracy but require 
both medical and programming expertise. Therefore, we investigated the feasibility of con
structing a deep learning model employing ChatGPT for the diagnosis of bone metastasis in bone 
scans and to evaluate its diagnostic performance. 
Method: We examined 4626 consecutive cancer patients (age, 65.1 ± 11.3 years; 2334 female) 
who had bone scans for metastasis assessment. A nuclear medicine physician developed a deep 
learning model using ChatGPT 3.5 (OpenAI). We employed ResNet50 as the backbone network 
and compared the diagnostic performance of four strategies (original training set, original 
training set with 1:10 class weight, 10-fold data augmentation for positive images only, and 10- 
fold data augmentation for all images) to address the class imbalance. We used a class activation 
map algorithm for visualization. 
Results: Among the four strategies, the deep learning model with 10-fold data augmentation for 
positive cases only, using a batch size of 16 and an epoch size of 150, achieved the area under 
curve of 0.8156, the sensitivity of 56.0 %, and specificity of 88.7 %. The class activation map 
indicated that the model focused on disseminated bone metastases within the spine but might 
confuse them with benign spinal lesions or intense urinary activity. 
Conclusions: Our study illustrates that a clinical physician with rudimentary programming skills 
can develop a deep learning model for medical image analysis, such as diagnosing bone metas
tasis in bone scans using ChatGPT. Model visualization may offer guidance in enhancing deep 
learning model development, including preprocessing, and potentially support clinical decision- 
making processes.   
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1. Introduction 

Cancer staging is vital for determining treatment strategies and prognostic outcomes. Typically, metastatic cases receive systemic 
treatment instead of surgery, resulting in less favorable prognoses compared with nonmetastatic cases. Common solid organ sites for 
metastases include the lungs, liver, and bone. Approximately 5 % of cancer patients present bone metastasis at the time of diagnosis 
[1–3], highlighting the importance of selecting the optimal imaging technique for detecting bone metastasis. 

Different imaging modalities are available for diagnosing bone metastases, including CT, MR, PET, and bone scans [4]. Among 
them, bone scans are the most commonly conducted imaging modality due to their high sensitivity and the convenience of scanning the 
entire skeletal system at once [5,6]. Nonetheless, the relatively low specificity of bone scans can lead to false-positive results, which 
may lead to inappropriate treatment and unnecessary adverse effects while necessitating additional CT and MR scans to rule out benign 
lesions [7]. 

In recent years, deep learning algorithms, such as convolutional neural networks (CNNs), have made significant advances in 
various image processing tasks, including classification, regression, and image generation, and they have shown great potential in 
nuclear medicine and molecular imaging fields [8–10]. As the most commonly performed planar imaging technique in nuclear 
medicine, bone scans are suitable for 2D-CNN modeling, requiring relatively fewer training parameters compared with labeled data 
[11,12]. Several recent studies have attempted to develop deep learning models for diagnosing bone metastasis in bone scans [13–19]. 
However, creating a deep learning model using medical data requires a combination of medical and programming expertise, which 
poses a challenge for researchers without a well-organized team. 

Recently, an open-source artificial intelligence (AI) chatbot known as ChatGPT has been made available, and it generates pro
gramming codes even for beginners [20]. As part of the generative pretrained transformer language model family, ChatGPT enables 
users to receive responses in the Python programming language by asking questions casually and conversationally. However, to our 
knowledge, no study has yet been published on developing a medical image data deep learning model using an open-source AI 
platform. In this study, we aimed to investigate the feasibility of developing a deep learning model for detecting bone metastasis in 
bone scans using a chatbot. 

2. Material and methods 

2.1. Subjects 

In this study, we included 4626 consecutive cancer patients who underwent bone scans for bone metastasis evaluation between 
July 2019 and June 2022 at our institution (Fig. 1). Patients who underwent bone scans for reasons other than the detection of bone 
metastases (e.g., trauma or infection) were excluded from the study. The Institutional Review Board of our institution approved this 
study (IRB no. 2023-02-008), and informed consent was waived due to its retrospective nature. 

2.2. Bone scan acquisition, preprocessing, and classification 

Whole-body bone scans were conducted 2–4 h after injecting a median dose of 740 MBq (20 mCi) 99mTc-hydroxymethylene 
diphosphonate intravenously. A dual-head gamma camera (NM830, GE Healthcare) with low-energy, high-resolution, and sensitivity 
parallel-hole collimators that scans at a speed of 22 cm/min was utilized. A blend ratio of 60 % was used with Clarity 2D processing. 

We converted the original DICOM files of whole-body bone scans (256 × 1024 pixels anterior and posterior images) to png files in 
the [0, 255] range. The intensity was standardized by setting the level as the total accumulated counts of the anterior and posterior 
images divided by 100,000, and the width as twice the level. Images were then concatenated into a single 512 × 1024 pixel-sized 
image. 

A nuclear medicine board-certified physician (S.H.L.) with 12 years of experience in bone scan interpretation produced clinical 
reports for all bone scans, grading them from 1 to 5 according to the level of certainty [21]. We classified grades 1 and 2 as “negative” 

Fig. 1. Flow diagram of patient enrollment.  
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and grades 4 and 5 as “positive,” and grade 3 images were re-evaluated and classified based on correlative imaging and follow-up. We 
excluded images that could not be accurately classified. Any healed bone metastases that were not visible on the bone scan image were 
considered negative. The bone scan images were allocated as follows: 80 % for training sets and 20 % for testing sets; five lots were 
configured to guarantee no overlap between the test sets (Fig. 2). All test sets were independent of the training sets. 

2.3. Deep learning model 

The deep learning model was developed by a nuclear medicine board-certified physician (S.H.L.) using ChatGPT 3.5 (OpenAI). He 
possessed rudimentary knowledge of Python and underwent a deep learning fundamentals lecture courses for approximately 10 days 
but did not have significant programming experience. An initial deep learning model without errors was obtained through multiple 
questions on ChatGPT (Supplementary Material 1). 

We used an NVIDIA GeForce RTX 3070 Ti laptop GPU (VRAM: 8 GB) for the execution, with Python as the programming language 
and Pytorch for model programming. The initial deep learning model employed ResNet50, a type of deep learning neural network 
model that exhibits powerful performance with relatively fewer parameters than previous models (e.g., AlexNet and VGG) in medical 
image analysis [22], as a backbone network, utilizing batch sizes of 32, 16, and 8, 200 epochs, an Adam optimizer, and a learning rate 
of 0.001. 

To improve diagnostic performance, we asked further questions and adopted some of the answers to identify optimal strategies 
(Supplementary material 2). We compared the results from four strategies to address the class imbalance of our data (positive = 8.6 %, 
negative = 91.4 %): 1) Strategy 1: original training set, 2) Strategy 2: original training set with 1:10 class weight, 3) Strategy 3: 10-fold 
data augmentation for positive images only, and 4) Strategy 4: 10-fold data augmentation for all images. Data augmentation involved 
random shifting (up and down within 5 pixels, left and right within 2 pixels), flipping, and rotation (within 2◦). We did not augment the 
test sets. These strategies used ResNet50 as a backbone network, a batch size of 16, 200 epochs, an Adam optimizer, and a learning rate 
of 0.001. Fig. 3 presents a summary of the deep learning model setup process. 

2.4. Visualization 

We utilized a class activation map algorithm to generate visual representations of the specific regions of interest that the deep 
learning model prioritized when evaluating bone scan images for the presence or absence of bone metastasis. The heatmap visuali
zation code was created by a nuclear medicine physician (S.H.L.) with the assistance of ChatGPT 3.5 and ChatGPT 4.0 (OpenAI, 
Supplementary Material 3). The resulting heatmaps were evaluated by two nuclear medicine physicians (H.J.S. and S.H.L.) to ascertain 
the distinguishing features used by the trained model to classify the bone scan images as positive or negative. 

2.5. Statistical analysis 

We used the scikit-learn library to compare the diagnostic performances of deep learning models by calculating the area under the 
curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and crossentropy loss 
of test sets. Parameters for test datasets were calculated every 50 epochs. S.H.L. generated the code for calculations with guidance from 
ChatGPT 3.5 (Supplementary Material 4). 

3. Results 

3.1. Clinical characteristics of the patients 

A total of 4626 patients with various malignancies were included in this study (Fig. 1). The most common underlying malignancy 
was breast cancer (38.3 %), followed by prostate cancer (27.2 %) and lung cancer (11.3 %), all of which are representative tumors that 
can lead to osteoblastic bone metastasis (76.8 %). Bone metastasis was present in 400 patients (8.6 %). The clinical characteristics of 

Fig. 2. Dataset composition. Five different 8:2 training sets and test sets were constructed not to overlap the test sets.  

H.J. Son et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e22409

4

the patients are summarized in Table 1. 

3.2. Deep learning models 

We first explored the optimal batch size and epoch size for training the models based on the mean test crossentropy loss and AUC of 
the 5-fold datasets (Table 2). In batch sizes of 32 and 16, test loss increased at the epoch size of 200 compared with the epoch sizes of 
50, 100, and 150, and test loss increased at batch size 8 at epoch sizes of 100, 150, and 200 compared with an epoch size of 50. For 

Fig. 3. Overview of the deep learning model to classify bone metastasis positive and negative of bone scans. After unifying the intensities of 
the bone scan images in the preprocessing stage, the diagnostic performance in the test set is compared after training with four different strategies. 

Table 1 
Patients’ characteristics.  

Characteristics n = 4626 

Age, year, mean ± SD 65.1 ± 11.3 
Sex 

Female, n (%) 2334 (50.5 %) 
Male, n (%) 2292 (49.5 %) 

Underlying malignancy 
Breast cancer, n (%) 1774 (38.3 %) 
Prostate cancer, n (%) 1260 (27.2 %) 
Lung cancer, n (%) 522 (11.3 %) 
Renal cell carcinoma, n (%) 413 (8.9 %) 
Bladder tumor, n (%) 336 (7.3 %) 
Urothelial cancer, n (%) 78 (1.7 %) 
Colorectal cancer, n (%) 36 (0.8 %) 
Esophageal cancer, n (%) 34 (0.7 %) 
Head and neck cancer, n (%) 30 (0.6 %) 
Hepatocellular carcinoma, n (%) 20 (0.4 %) 
Soft tissue tumor, n (%) 16 (0.3 %) 
Neuroendocrine tumor, n (%) 13 (0.2 %) 
Malignancy of unknown origin, n (%) 11 (0.2 %) 
Stomach cancer, n (%) 11 (0.2 %) 
Thymus tumor, n (%) 11 (0.2 %) 
Cervical cancer, n (%) 8 (0.2 %) 
Testis tumor, n (%) 8 (0.2 %) 
Pancreas cancer, n (%) 7 (0.2 %) 
Primary bone tumor, n (%) 7 (0.2 %) 
Cholangiocarcinoma, n (%) 6 (0.1 %) 
Ovarian cancer, n (%) 6 (0.1 %) 
Thyroid cancer, n (%) 4 (0.1 %) 
Lymphoma, n (%) 3 (0.1 %) 
Multiple myeloma, n (%) 3 (0.1 %) 
Uterine cancer, n (%) 2 (0.0 %) 
Gallbladder cancer, n (%) 2 (0.0 %) 
Brain tumor, n (%) 1 (0.0 %) 
Penile cancer, n (%) 1 (0.0 %) 
Skin cancer, n (%) 1 (0.0 %) 
Vaginal cancer, n (%) 1 (0.0 %) 
Wilm’s tumor, n (%) 1 (0.0 %) 

Presence of bone metastasis 
Negative, n (%) 4226 (91.4 %) 
Positive, n (%) 400 (8.6 %) 

SD, standard deviation. 

H.J. Son et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e22409

5

batch sizes 32 and 16, the AUC was also lower at an epoch size of 200 compared with epoch sizes of 50, 100, and 150. Based on the 
results of the initial deep learning model, we chose a batch size of 16 and an epoch size of 150 as optimal due to the relatively low test 
loss (0.2894) and high AUC (0.7952) compared with other combinations. A batch size of 16 was chosen because it provided a balance 
between computational efficiency and model performance, while an epoch size of 150 allowed for sufficient model training without 
overfitting or underfitting. 

To overcome the relatively low sensitivity of the initial deep learning model (overall sensitivity: 31 %), we compared the diagnostic 
performances of four different model training strategies using the selected batch size of 16 (Table 3). In Strategies 1, 2, and 4, the loss of 
test datasets increased with an epoch size of 200 compared with an epoch size of 150. The AUC of the test datasets decreased with an 
epoch size of 200 compared with an epoch size of 150 in all strategies. We determined that an epoch size of 150 was optimal for four 
different strategies when changing the batch size. 

We then assessed the diagnostic performances of the models trained with 80 % of the total dataset using the chosen batch size of 16 
and epoch size of 150 (Table 4). The overall AUC values for Strategies 1, 2, 3, and 4 were 0.7952, 0.7945, 0.8156, and 0.8053, 
respectively, confirming that Strategy 3 had the highest AUC, followed by Strategy 4. The sensitivity of Strategy 3 (0.5600) was the 
highest, although the specificity of Strategy 3 (0.8873) was lower than those of Strategies 1 and 4. Based on our investigation, a deep 
learning model with 10-fold data augmentation for positive cases only (Strategy 3) with a batch size of 16 and an epoch size of 150 can 

Table 2 
Mean test loss and area under the curve of 5-fold datasets according to the batch size and epoch size.   

Epoch size Batch size = 32 Batch size = 16 Batch size = 8 Overall  

50 0.2649 0.2858 0.2741 0.2749  
100 0.2692 0.2875 0.3120 0.2896 

Loss 150 0.2835 0.2894 0.3116 0.2948  
200 0.3235 0.3249 0.3162 0.3216  
Overall 0.2853 0.2969 0.3035 0.2952  
50 0.3300 0.3400 0.2850 0.3183  
100 0.2900 0.2775 0.3450 0.3042 

Sensitivity 150 0.3325 0.2875 0.2925 0.3042  
200 0.2600 0.2825 0.3975 0.3133  
Overall 0.3031 0.2969 0.3300 0.3100  
50 0.9647 0.9546 0.9768 0.9654  
100 0.9780 0.9737 0.9584 0.9700 

Specificity 150 0.9624 0.9785 0.9768 0.9726  
200 0.9735 0.9678 0.9501 0.9638  
Overall 0.9697 0.9686 0.9655 0.9679  
50 0.7963 0.7941 0.7965 0.7956  
100 0.7927 0.7951 0.7932 0.7937 

AUC 150 0.7923 0.7952 0.7952 0.7942  
200 0.7878 0.7889 0.7987 0.7918  
Overall 0.7923 0.7933 0.7959 0.7938 

AUC, area under the curve. 

Table 3 
Mean test loss and area under the curve of 5-fold datasets according to the training set modification and epoch size (batch size = 16).   

Epoch size Strategy 1 
Original 

Strategy 2 
Class weight (1:0) 

Strategy 3  
× 10 data (positive only) 

Strategy 4  
× 10 data (all) 

Overall  

50 0.2858 0.4646 0.3427 0.2978 0.3477  
100 0.2875 0.3940 0.3536 0.3485 0.3459 

Loss 150 0.2894 0.3542 0.3646 0.3471 0.3388  
200 0.3249 0.4323 0.3113 0.3540 0.3556  
Overall 0.2969 0.4113 0.3431 0.3369 0.3470  
50 0.3400 0.4400 0.5200 0.3050 0.4013  
100 0.2775 0.4975 0.4825 0.2925 0.3875 

Sensitivity 150 0.2875 0.3900 0.5600 0.2400 0.3694  
200 0.2825 0.5425 0.4425 0.3300 0.3994  
Overall 0.2969 0.4675 0.5013 0.2919 0.3894  
50 0.9546 0.8537 0.8933 0.9669 0.9171  
100 0.9737 0.8765 0.8926 0.9796 0.9306 

Specificity 150 0.9785 0.9257 0.8873 0.9860 0.9444  
200 0.9678 0.8540 0.9344 0.9619 0.9295  
Overall 0.9686 0.8775 0.9019 0.9736 0.9304  
50 0.7941 0.7877 0.8129 0.8209 0.8039  
100 0.7951 0.7959 0.8162 0.8064 0.8034 

AUC 150 0.7952 0.7945 0.8156 0.8053 0.8027  
200 0.7889 0.7927 0.8114 0.7998 0.7982  
Overall 0.7933 0.7927 0.8140 0.8081 0.8020 

AUC, area under the curve. 
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effectively detect bone metastasis on bone scan images in patients with various malignancies. 

3.3. Visualization 

To generate visual representations of the specific regions of interest that the deep learning model prioritized when evaluating bone 
scan images for the presence or absence of bone metastasis, employing a class activation map algorithm indicated that the deep 
learning model focused on identifying disseminated bone metastases within the spine. 

We trained all 4626 datasets with 10-fold data augmentation for positive cases only (Strategy 3) with a batch size of 16 and an 
epoch size of 150. Our final model classified 368 out of 400 positive cases as true positives (sensitivity: 0.9200) and 3671 out of 4226 
negative cases as true negatives (specificity: 0.8687). Representative cases of our model are shown in Fig. 4. In true-positive cases, the 
model seemed to be weighted on disseminated bone metastases located in the spine, especially the T-spine (Fig. 4a and b). However, in 
the case of a single lesion (Fig. 4c) or bone metastases located outside the spine (Fig. 4d), there were cases classified as false negatives. 
In true-negative cases, no significant lesions were seen in the entire skeleton (Fig. 4e and f). However, benign spine lesions (such as 
traumatic compression fracture, Fig. 4g) or large intense bladder activity (Fig. 4h) could be classified as false positives. Additionally, 
there were instances where the trained model prioritized the region outside the body as the area of interest. (Fig. 4d, f, g, and h). 

4. Discussion 

This study demonstrates the feasibility of developing a deep learning model to diagnose bone metastasis in bone scans with the aid 
of the open-source AI chatbot ChatGPT. The primary challenge in developing deep learning models for medical imaging is the need for 
proficiency and expertise in both medical knowledge and programming. However, in this study, a nuclear medicine specialist with 
basic knowledge of Python and deep learning concepts developed a deep learning model using ChatGPT, proving the feasibility of 
utilizing AI chatbots such as ChatGPT for medical image deep learning model development. Our model achieved promising perfor
mance in detecting bone metastases in bone scans of patients with various malignancies, with an AUC of 0.8156 for Strategy 3, which 
utilized data augmentation exclusively for positive cases. 

Several deep learning models have been investigated for detecting bone metastases in bone scans. Our ChatGPT assisted model 
exhibited a diagnostic performance of 56.0 % sensitivity and 88.7 % specificity, which are slightly lower than the values reported in 
prior studies (sensitivity range: 59.9%–94.0 %, specificity range: 85.5%–99.3 %, Table 5) [13–19]. These discrepancies could be 
attributed to differences in preprocessing, bone metastasis prevalence, underlying malignancies, sample size, and deep learning 

Table 4 
Diagnostic performances of strategies trained with 80 % of the total dataset (epoch size = 150).   

Strategy Fold 1 (n =
925) 

Fold 2 (n =
925) 

Fold 3 (n =
925) 

Fold 4 (n =
925) 

Fold 5 (n =
926) 

Overall (n =
4626) 

AUC 1. Original 0.7248 0.8123 0.7982 0.8595 0.7814 0.7952  
2. Class weight (1:0) 0.7236 0.8071 0.8045 0.8478 0.7897 0.7945  
3. × 10 data (positive 
only) 

0.7687 0.8228 0.8458 0.8568 0.7838 0.8156  

4. × 10 data (all) 0.7479 0.8135 0.8446 0.8677 0.7528 0.8053 
Sensitivity 1. Original 0.1750 0.4000 0.2500 0.3250 0.2875 0.2875  

2. Class weight (1:0) 0.4250 0.3750 0.6000 0.3125 0.2375 0.3900  
3. × 10 data (positive 
only) 

0.5125 0.6000 0.6750 0.6500 0.3625 0.5600  

4. × 10 data (all) 0.1625 0.3125 0.2625 0.2500 0.2125 0.2400 
Specificity 1. Original 0.9882 0.9751 0.9645 0.9870 0.9775 0.9785  

2. Class weight (1:0) 0.8533 0.9503 0.8568 0.9834 0.9846 0.9257  
3. × 10 data (positive 
only) 

0.8686 0.8911 0.8249 0.8911 0.9610 0.8873  

4. × 10 data (all) 0.9834 0.9846 0.9751 0.9976 0.9894 0.9860 
PPV 1. Original 0.5833 0.6038 0.4000 0.7027 0.5476 0.5675  

2. Class weight (1:0) 0.2152 0.4167 0.2840 0.6410 0.5938 0.4301  
3. × 10 data (positive 
only) 

0.2697 0.3429 0.2673 0.3611 0.4677 0.3418  

4. × 10 data (all) 0.4815 0.6579 0.5000 0.9091 0.6538 0.6405 
NPV 1. Original 0.9267 0.9450 0.9314 0.9392 0.9355 0.9356  

2. Class weight (1:0) 0.9400 0.9414 0.9577 0.9379 0.9318 0.9418  
3. × 10 data (positive 
only) 

0.9495 0.9592 0.9640 0.9641 0.9410 0.9556  

4. × 10 data (all) 0.9254 0.9380 0.9332 0.9336 0.9300 0.9320 
Accuracy 1. Original 0.9178 0.9254 0.9027 0.9297 0.9179 0.9187  

2. Class weight (1:0) 0.8162 0.9005 0.8346 0.9254 0.9201 0.8794  
3. × 10 data (positive 
only) 

0.8378 0.8659 0.8119 0.8703 0.9093 0.8590  

4. × 10 data (all) 0.9124 0.9265 0.9135 0.9330 0.9222 0.9215 

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value. 
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models between our study and earlier investigations. Most previous studies utilized distinct preprocessing techniques, such as 
extracting only valid body regions from bone scan images [15,17,18], eliminating artifacts such as urine contamination or injection 
sites [13,14], the segmentation of urinary bladders [19], or the left-to-right flipping of posterior images and their subsequent merging 
with anterior images [17]. However, we did not perform such preprocessing in our study, except for the uniform setting of the in
tensity, which may have impeded effective learning due to artifacts or areas outside the body. Upon examining the heatmaps in our 
study, we observed that areas outside the body, urine contamination, and the urinary bladder might have confounded the model’s 
training. We anticipate that implementing appropriate preprocessing will improve diagnostic performance. 

In our investigation, the bone metastasis positivity rate was low at 8.6 %, in contrast to the prevalence of 32.7%–64.8 % reported in 
earlier studies [13–15,17–19]. Only Hsieh et al.’s study reported a similar positivity rate of 8.1 % out of 37,427 images [16]. Our 
outcomes are more representative of the actual prevalence, considering the general 5 % incidence of bone metastasis in cancer patients 
[1–3]. While some research has focused on a single tumor type [13,14,17,18], both the study by Hsieh et al. and our study involved 
patients with various cancer types, making our results more generalizable. Both investigations used ResNet50 as the backbone 
network, with Hsieh’s model demonstrating 59.9 % sensitivity and 99.3 % specificity, indicating low sensitivity and high specificity, 
similar to our model. In the case of class imbalance, low-frequency data do not learn features as effectively as high-frequency data, 
potentially leading to reduced sensitivity with fewer positive cases [23]. To address the low prevalence, our Strategy 3 implemented 
10-fold data augmentation for positive cases exclusively in the training set, increasing sensitivity from 28.8 % to 56.0 % compared with 

Fig. 4. Representative cases of the final model. True-positive cases show disseminated bone metastases weighted in the spine, especially the T- 
spine (a, b). However, patients with a single lesion in the T-spine (c, white arrowhead) and bone metastases outside the spine (d, white arrowhead) 
are classified as false negatives. There is no significant region of interest in the trained model in the entire skeleton in true-negative cases (e, f). 
However, a traumatic compression fracture (g, white arrowhead) and large intense urinary bladder activity (h, white arrowhead) can be classified as 
false positives. The region outside the body can be the area of interest for the trained model (d, f, g, h). 
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the strategy with the original data (Strategy 1). 
Constructing deep learning models utilizing ChatGPT presented some obstacles. ChatGPT does not always offer the optimal answer 

to simple and straightforward questions [24]. When inquired about creating a deep learning model, only a basic model with several 
convolutional layers is provided. More comprehensive responses are provided when queries are more specific, such as backbone 
networks (Supplementary material 1). Moreover, ChatGPT does not ensure error-free code. In our case, it took approximately five 
questions for ChatGPT 3.5 to generate an initial error-free deep learning model using ResNet50. However, creating heatmap code 
proved more challenging even with dozens of inquiries, and we ultimately completed it with the aid of ChatGPT 4.0. As ChatGPT 4.0 
can identify images as well as text [25], open-source AI is expected to be increasingly beneficial in developing appropriate models in 
the future. 

Our study had a few limitations. First, the dataset used in our investigation was obtained from a single institution with relatively 
small sample size, potentially limiting the generalizability of the findings. Unfortunately, due to the difficulty in obtaining publicly 
available bone scan images, cross-validation using either publicly available bone scans or images from other institutions will be 
required in the future. Second, our deep learning model was constructed by a physician with basic knowledge of Python and deep 
learning concepts, which might limit the model’s performance compared with models developed by experts in both medicine and 
programming. Nevertheless, our findings demonstrate the feasibility of employing ChatGPT for developing deep learning models in 
medical imaging. 

5. Conclusions 

Our study illustrates that even an individual with rudimentary programming skills can develop a deep learning model for diag
nosing bone metastasis in bone scans using ChatGPT, an open-source AI chatbot. Data augmentation of low-prevalence classes can be a 
promising solution to address the class imbalance problem, as opposed to class weighting or data augmentation of the entire dataset. 
Examining the model’s heatmaps might direct future model development to improve diagnostic performance. 
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Additional information 

The underlying code for this study is included in the supplementary materials. 
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Table 5 
Diagnostic performance of detecting bone metastases in bone scans of previous studies.  

Authors Type of CNN Primary tumors n Prv (%) Acc (%) Sen (%) Spe (%) Prc (%) Rec (%) 

Papandrianos et al. [13] 4-layer CNN Prostate 778 41.9 91.6 92.7 96.0   
Papandrianos et al. [14] 3-layer CNN Breast 408 54.1 92.5 94.0 92.0 93.4 93.8 
Pi et al. [15] Inception-V3 Lung (31 %) 

Breast (24 %) 
Prostate (10 %) 
Other (12 %) 
Benign (22 %) 

15,474 37.5 95.0 93.2 96.1   

Hsieh et al. [16] ResNet50V2 Breast (59 %) 
H&N (12 %) 
Prostate (7 %) 
Lung (5 %) 
Liver (3 %) 
Other (14 %) 

37,427 8.1 96.1 59.9 99.3 87.8  

Guo et al. [17] 26-layer CNN Lung 945 64.8 83.1   87.0 87.0 
Han et al. [18] GLUE 2D-CNN Prostate 9133 32.7 90.0 82.8 93.5   
Liu et al. [19] ResNet 34 Prostate 

Lung 
Breast 
Gastrointestinal 

621 43.9 88.6 92.6 85.5   

Acc, accuracy; CNN, convolutional neural network; GLUE, global–local unified emphasis; H&N, head and neck; Prc, precision, Prv, prevalence; Rec, 
recall; Sen, sensitivity; Spe, specificity. 
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