Skip to main content
. 2023 Dec 8;23:204. doi: 10.1186/s12880-023-01169-1

Table 2.

The performance of different models using T1 and SWI sequence in three-classification tasks (PD vs MSA vs HC)

Sequence Models Average
Sen Spec ACC AUC
SWI LR 0.762 0.882 0.764 0.869
SVM 0.787 0.896 0.789 0.914
LGBM 0.792 0.897 0.794 0.917
T1 LR 0.736 0.872 0.744 0.839
SVM 0.712 0.861 0.724 0.882
LGBM 0.723 0.864 0.729 0.887
SWI + T1 LR 0.745 0.875 0.749 0.885
SVM 0.798 0.903 0.804 0.914
LGBM 0.812 0.907 0.814 0.905

Sen sensitive, Spec specificity, ACC accuracy, AUC area under the curve, SWI susceptibility weighted imaging, T1 T1 weighted imaging, LR logistic regression, SVM support vector machine, LGBM light gradient boosting machine