Skip to main content
. 2023 Dec 8;23:204. doi: 10.1186/s12880-023-01169-1

Table 3.

The performance of different models using T1 and SWI sequence in binary classification tasks (PD vs MSA)

Sequence Models Average
Sen Spec ACC AUC
SWI LR 0.750 0.811 0.785 0.864
SVM 0.714 0.797 0.769 0.837
LGBM 0.768 0.851 0.815 0.883
T1 LR 0.732 0.743 0.738 0.827
SVM 0.696 0.824 0.769 0.853
LGBM 0.714 0.811 0.769 0.844
SWI + T1 LR 0.821 0.757 0.785 0.848
SVM 0.768 0.824 0.800 0.876
LGBM 0.857 0.851 0.854 0.881

Sen sensitive, Spec specificity, ACC accuracy, AUC area under the curve, SWI susceptibility weighted imaging, T1 T1 weighted imaging, LR logistic regression, SVM support vector machine, LGBM light gradient boosting machine