Table 3.
Sequence | Models | Average | |||
---|---|---|---|---|---|
Sen | Spec | ACC | AUC | ||
SWI | LR | 0.750 | 0.811 | 0.785 | 0.864 |
SVM | 0.714 | 0.797 | 0.769 | 0.837 | |
LGBM | 0.768 | 0.851 | 0.815 | 0.883 | |
T1 | LR | 0.732 | 0.743 | 0.738 | 0.827 |
SVM | 0.696 | 0.824 | 0.769 | 0.853 | |
LGBM | 0.714 | 0.811 | 0.769 | 0.844 | |
SWI + T1 | LR | 0.821 | 0.757 | 0.785 | 0.848 |
SVM | 0.768 | 0.824 | 0.800 | 0.876 | |
LGBM | 0.857 | 0.851 | 0.854 | 0.881 |
Sen sensitive, Spec specificity, ACC accuracy, AUC area under the curve, SWI susceptibility weighted imaging, T1 T1 weighted imaging, LR logistic regression, SVM support vector machine, LGBM light gradient boosting machine