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Abstract 

Background  Sepsis is a highly heterogeneous syndrome, which has hindered the development of effective thera-
pies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically 
homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify 
subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new 
targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic 
shock subclasses based on whole blood RNA expression profiles.

Methods  The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective 
randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA 
sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated 
noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical 
clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, 
cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses.

Results  Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients 
with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Sub-
class 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity 
pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness sever-
ity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial 
injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells and less diverse T cell receptor 
repertoires.

Conclusions  Two subclasses of pediatric septic shock patients were discovered through genome-wide expression 
profiling based on whole blood RNA sequencing with major biological and clinical differences.

Trial Registration This is a secondary analysis of data generated as part of the observational CAF-PINT ancillary 
of the HALF-PINT study (NCT01565941). Registered March 29, 2012.
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Background
Septic shock, a severe form of sepsis, characterized by 
profound circulatory and metabolic abnormalities that 
require the need for a vasopressor to maintain mean arte-
rial pressures, is associated with mortality rates greater 
than 40% [1]. Despite efforts to develop therapies beyond 
current standard practices over the past thirty years, over 
60 large sepsis clinical trials have failed to identify signifi-
cant positive results [2]. Many experts now believe that 
the failure is largely due to the heterogeneity of sepsis 
patients [3]. This has prompted investigators to develop 
a precision medicine approach aimed at identifying bio-
logically homogenous subgroups of patients with septic 
shock and critical illnesses [4–6]. The hope is to develop 
targeted therapeutic interventions for sepsis patients 
based on pathophysiological processes and clinical phe-
notypes rather than a one-size-fits-all-approach. [7–11].

Wong et al., pioneers in the field, were the first to delin-
eate septic shock subgroups among pediatric patients, 
based on underlying biological perturbations and 
establish a potentially prognostic and predictive sepsis 
subclassification system. Their work was based on micro-
array-based gene expression data, discovering distinct 
subclasses characterized by differential gene expression 
related to adaptive immunity and glucocorticoid recep-
tor signaling. Remarkably, these subclasses, derived 
independently of clinical data, exhibited variations in 
mortality rates with a suggestion of differential steroid 
benefit between subclasses, highlighting their clinical 
significance. However, differences, if any, in circulating 
protein biomarkers and immune cell repertoires between 
these subclasses are not known [5].

Although microarray platforms have traditionally 
served as established and reliable tools for gene expres-
sion profiling, the emergence of RNA sequencing (RNA-
seq) introduces a potent technology capable of directly 
sequencing amplified cDNA to measure transcript abun-
dance. This relatively recent approach enables sensitive 
transcript detection and encompasses a broader quanti-
tative spectrum of expression level changes compared to 
microarrays. Consequently, it yields more accurate esti-
mations of absolute transcript levels, identifies a greater 
number of differentially expressed protein-coding genes, 
and exhibits enhanced concordance between RNA-Seq 
and protein expression measurements. Moreover, RNA-
Seq holds the potential for comprehensive biological 
exploration such as cell deconvolution and imputation 
of B and T Cell repertoires surpassing the capabilities of 
microarrays [12–14].

In this study, we leveraged available RNA-Seq data 
from a clinical trial of children with circulatory and/or 
respiratory failure and compared whole genome expres-
sion between cases with septic shock and mechanically 

ventilated controls. Next, we used an unsupervised 
discovery-based approach to identify two pediatric sep-
tic shock subclasses based on their transcriptomic sig-
natures and compared their clinical characteristics, 
ionotropic use, and circulating biomarkers. Finally, to 
further expand on the knowledge of biological differences 
between the subclasses, we imputed immune cell abun-
dance, and T and B cell repertoires from the sequencing 
data and compared these between the subclasses.

Methods
Aim
The first aim was to elucidate genetic and biological dif-
ferences in pediatric septic shock patients compared to 
critically ill controls. The second aim was to identify clin-
ically significant pediatric septic shock subclasses based 
on whole blood RNA expression profiles and compare 
clinical characteristics, circulating protein biomarkers, 
immune cells, and adaptive immune repertoires.

Design, setting, patient characteristics
This was a nested case–control study. Subjects included 
in this study were a subset of the patients from the 
coagulation and fibrinolysis in pediatric insulin titration 
trial (CAF-PINT) [11] an ancillary to the heart and lung 
failure-pediatric insulin titration trial (HALF-PINT) (ref 
23). All were mechanically ventilated, had blood glucose 
levels greater than 150 mg per deciliter and were treated 
with continuous insulin infusion randomized to one of 
two targeted glycemic control ranges. Blood samples 
were collected prior to initiation of the randomized inter-
vention. Septic shock cases were defined as patients who 
had a documented clinical diagnosis of sepsis and were 
started on inotropes within 72 h prior to blood sampling. 
Controls were defined as patients who had no documen-
tation of infection or sepsis, no positive cultures and did 
not require inotropic support prior to randomization 
(Fig. 1, Table 1) (Additional file 1, 2).

RNA isolation, sequencing, and expression quantification
Total RNA was extracted from whole blood using the 
PAXgene Blood RNA kit modified for pediatric use. Next, 
sequencing libraries were prepared using the Nugen uni-
versal plus kit with polyA capture and sequenced with the 
NovaSeq S4 system (Illumina) to generate 2 × 150 base 
paired-end reads to a target depth of  50 million read-
pairs per sample. After quality control, 20,010 protein-
coding genes were left for analysis. Additional details on 
these methods are found in the Additional file 1: Online 
Data Supplement.
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Differential gene expression analysis
For Aim 1, we compared baseline gene expression 
between cases and controls using negative binomial gen-
eralized linear models (EdgeR). Differentially expressed 
genes (DEGs) were defined as genes with an absolute 
log2-fold change of greater than 0.5 and a false discov-
ery rate (FDR) of less than 0.05. Then, we used Enri-
chR, a pathway enrichment tool, to identify significant 
GO terms and KEGG pathways in our list of DEGs [15]. 
Terms and pathways with adjusted p values less than 0.05 
were retained. For Aim 2, patient values for these statis-
tically significant DEGs underwent variance-stabilizing 
transformation using the DESeq 2 package and were 
plotted in a heatmap with unsupervised hierarchical 
clustering. The DESeq2 package implements variance-
stabilizing transformation which is a logarithmic trans-
formation that aims to stabilize the variance across the 
range of expression levels. Spearman correlation was 
used for both genes and samples, and complete linkage 
method was used. Unsupervised hierarchical clustering 
is a technique to group individuals into clusters based on 
similarities, with the distance or difference between indi-
viduals represented by a dendrogram. As was previously 
done by Wong et  al. [16], two septic shock subclasses 
were ultimately chosen based on first-order dendrogram 
branching (Fig.  3A), as Subclass 2 patients appeared 

visually more similar to controls, and Subclass 1 was clus-
tered separately in a different clade. A K means cluster-
ing analysis was also performed, and using the silhouette 
method, we determined two clusters was most optimal 
which confirmed two septic shock subgroups as most 
optimal. Overall the K means cluster analysis supported 
the original analysis with a notable  78% agreement in 
subclass assignment providing substantial robustness 
with our original clusters. Clinical features, circulating 
biomarkers, immune cells and adaptive immune rep-
ertoires were then contrasted using subclass member-
ship. We also compared gene expression and performed 
pathway enrichment to analyze the biological differences 
between these two subclasses.

Comparing clinical characteristics
We compared the clinical outcomes between cases and 
controls and then between the two subclasses using non-
parametric linear regression analysis with bootstrapping, 
adjusting for baseline differences between treatment 
groups including PRISM score and steroid use.

Biomarker quantification
Plasma levels of twelve biomarkers of inflammation and 
endothelial injury were assayed using the Human Mag-
netic Luminex Screening Assay with the Luminex 200 

303 patients enrolled in CAFPINT clinical trial

Septic Shock Patients (n= 59)

No Shock (n= 165)

Septic Shock Cases Analyzed (n= 46)Controls Analyzed (n= 52)

Shock (n= 138)

No Shock, No Infection (n= 75)

Is the patient on inotropic support?

NO YES

Excluded (n= 79)- Shock not related to sepsis
¨ Pump Failure/ Depressed Heart Function (n= 52)
¨ Severe Hemorrhage (n= 8)
¨ SIRS (n= 11)
¨ Gastrointestinal Loss (n= 3)
¨ Extensive Trauma (n= 2)
¨ Outflow Obstruction (n= 1)
¨ Unknown Cause for shock (n= 2)

2 removed for not being mechanically ventilated

2 removed for >72 hours from inotrope to sample
collection

2 removed for inadequate sample quality during
RNA-sequencing

48 removed for clinical suspicion of pneumonia
or sepsis

34 removed for cultures with positive growth

8 removed for inotrope use prior to blood
sampling

14 removed for start of mechanical ventilation
> 72 hours from blood sampling

9 removed for inadequate sample quality during
RNA-sequencing

Fig. 1  Flowchart of patients in this study after applying exclusion and inclusion criteria. All septic shock cases were diagnosed with sepsis 
and were started on inotropes < 72 h from blood sampling. All controls had no documented diagnosis of sepsis or pneumonia, no positive cultures, 
and no inotrope use, and were started on mechanical ventilation < 72 h from blood sampling
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(R&D Systems) according to the manufacturer’s instruc-
tions at the UCLA Immune Assessment Core facility. 
Values were compared across septic shock subclasses 
using the Wilcoxon rank-sum test and the false discovery 
rate criterion to adjust for multiple testing.

Measuring whole blood cell type composition
We applied the gene expression deconvolution inter-
active tool (GEDIT), a deconvolution tool that utilizes 
bulk gene expression data to model the most likely com-
bination of cells that would produce the presented bulk 

Table 1  Baseline Characteristics of Septic Shock Cases and Controls

* Significant p values with FDR < 10% are noted with an asterisk
† P value was computed using chi-square test for categorical variables, and the Wilcoxon rank-sum test for continuous variables
‡  Data presented as mean ± standard deviation
§  Data presented as n (percentage)

Measures Controls
n (%)

Septic Shock Cases n (%) p Value†

N = 52 N = 46

Demographics

Age- years ‡ 5.5 ± 4.9 9.0 ± 5.6 0.001*

Male § 31 (59.6%) 22 (47.8%) 0.31

Race § 34 (65.4%) 30 (65.2%) 0.18

White 34 (65.4%) 30 (65.2%) 0.18

 Black 15 (28.8%) 9 (19.6%)

 Asian 0 (0.0%) 4 (8.7%)

 American Indian 0 (0.0%) 1 (2.2%)

 Mixed 1 (1.9%) 1 (2.2%)

 Declined or Unknown 2 (3.8%) 1 (2.2%)

Clinical characteristics

 PRISM Score ‡ 9.1 ± 7.8 13.6 ± 8.5 0.005*

 Average Blood Glucose ‡ 122.9 ± 30.7 132.0 ± 34.8 0.13

 Steroid Use § 36 (69.2%) 37 (80.4%) 0.20

Primary reason for admission to intensive care unit §  < 0.001*

 Cardiovascular (including shock) 1 ( 1.9%) 11 (23.9%)

 Respiratory 26 (50.0%) 27 (58.7%)

 Following elective procedure 7 (13.5%) 2 ( 4.3%)

 Following Emergent Procedure 1 ( 1.9%) 2 ( 4.3%)

 Gastrointestinal or Liver 0 ( 0.0%) 3 ( 6.5%)

 Metabolic 1 ( 1.9%) 0 ( 0.0%)

 Neurologic 8 (15.4%) 1 ( 2.2%)

 Oncologic 1 ( 1.9%) 0 ( 0.0%)

 Trauma 7 (13.5%) 0 ( 0.0%)

Reason for initiating mechanical ventilation §  < 0.001*

 Acute respiratory failure related to sepsis 0 ( 0.0%) 23 (50.0%)

 Aspiration pneumonia 1 ( 1.9%) 1 ( 2.2%)

 Asthma or reactive airway disease 8 (15.4%) 3 ( 6.5%)

 Bronchiolitis 8 (15.4%) 2 ( 4.3%)

 Laryngotracheobronchitis 2 ( 3.8%) 0 ( 0.0%)

 Neurologic 11 (21.2%) 2 ( 4.3%)

 Pneumonia/hypoxia 0 ( 0.0%) 11 (23.9%)

 Procedural 17 (32.7%) 4 ( 8.7%)

 Pulmonary Edema 2 ( 3.8%) 0 ( 0.0%)

 Thoracic Trauma 3 ( 5.8%) 0 ( 0.0%)

Clinical trial allocation (two groups) § 

  Group 1 (lower target blood glucose 80–110 mg/dL) 23 (44.2%) 18 (39.1%) 0.61

  Group 2 (higher target blood glucose 150–180 mg/dL) 29 (55.8%) 28 (69.1%) 0.61
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transcriptome to estimate cell type fractional compo-
sition within whole blood [17, 18]. The abundance of 
each cell type in each subclass was then compared using 
a Wilcoxon rank-sum test, followed by a Bonferroni 
correction.

Profiling of adaptive immune repertoires
We then sought to quantify adaptive immune responses 
based on the recombination landscape of genes encod-
ing B and T cell receptors (BCR and TCR). We utilized 
ImReP, a computational method for profiling the adap-
tive immune repertoire from RNA-Seq data [19]. Subse-
quently, a comparison between the two subgroups was 
performed using a Wilcoxon rank-sum test on the num-
ber of reads associated with each receptor type.

Results
Patients
Of 303 CAF-PINT patients, we identified n = 46 with 
septic shock and n = 52 controls without sepsis or shock 
(Fig.  1). Septic shock patients were older, whereas con-
trols were younger and more likely to be admitted for 
asthma, bronchiolitis, postoperative care, or trauma 
(Table 1).

Identification of septic shock subclasses
We first identified genes that were differentially expressed 
between septic shock cases and controls. A total of 840 
DEGs were identified: 530 were upregulated (Additional 
File 2) and 310 were downregulated  (Additional File 

3) in patients with septic shock compared to controls 
(FDR < 0.1). Pathway enrichment analysis using EnrichR 
showed that septic shock patients had increased expres-
sion of pathways related to neutrophil degranulation 
and glutathione metabolism and decreased expression 
of pathways related to antigen processing and presenta-
tion and T cell activity (Fig. 2, Additional file 4: Table E1). 
The 840 genes were subjected to unsupervised hierarchi-
cal clustering based on a correlation distance matrix as 
shown in the heatmap in Fig.  3A. Overall, septic shock 
cases appear clustered to the right, and critically ill con-
trols are clustered to the left. Interestingly, there was 
heterogeneity among the septic shock cases. The tran-
scriptomic signature of cases on the right appears sig-
nificantly different from the septic shock cases on the 
left, which are more similar to controls. Based on first-
order branching of the dendrogram of the columns, two 
major septic shock subclasses were identified. We desig-
nated these subclasses arbitrarily as Subclasses 1 and 2 
(Fig. 3B).

Differing clinical characteristics between the septic shock 
subclasses
Given the biological differences between the two sub-
classes, we investigated differences in clinical outcomes. 
We first compared baseline characteristics between the 
two groups, and the demographic and clinical data are 
shown in Table 1. We found that Subclass 1 patients were 
on average significantly older and had higher average 
blood glucose levels at baseline. There was no difference 
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Fig. 2  Gene network displaying functional enriched terms with associated DEGs between septic shock cases and controls (A). Upregulated 
pathways in septic shock cases compared to controls (B). Downregulated pathways in septic shock cases compared to controls
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between subgroups in ICU admission illness severity, 
as calculated by the pediatric risk of mortality (PRISM) 
score. Despite the absence of a difference in mortal-
ity risk, these two subgroups had significantly different 
clinical outcomes (Table  2, Additional file  4: Table  E9). 
Over the course of the study, Subclass 1 patients had 
statistically higher maximum pediatric logistic organ 
dysfunction (PELOD) scores indicating more severe mul-
tiple organ dysfunction. Subclass 1 also had higher maxi-
mum Vasoactive-Inotropes Scores, indicating that they 
required more cardiovascular support. Subclass 1 also 
had fewer hospital-free days and longer ICU stays than 
Subclass 2. There were no statistically significant differ-
ences in ventilator-free days. No differences in mortality 
were seen, as only three patients total died after 90 days 
of follow-up.

Biomarker analysis
Given the finding of greater innate and myeloid-derived 
inflammation as well greater circulating endothelial cells 
among patients in Subclass 1, we next tested whether 
gene expression findings could be recapitulated using 
plasma protein markers. We examined a panel of twelve 
candidate inflammatory biomarkers of sepsis to identify 

differences between the two subclasses. These markers 
were initially chosen to provide insights into derange-
ments of inflammation and thrombosis pathways based 
on their association with hyperglycemia and pediatric 
critical illness [20–22]. Subclass 1 had significantly higher 
levels of PAI1, IL6, IL8, IL10, ANG2, TREM1, and TNFR 
than Subclass 2 (Table 3). There were no significant dif-
ferences between subclasses of IL4, thrombomodulin, 
TFPI, P-selectin, and ICAM1. In comparing each sub-
class individually to controls, Subclass 1 had significantly 
higher levels of PAI1, IL6, IL8, IL10, ANG2, TREM1, 
and TNFR-1, while Subclass 2 and controls did not have 
many significant differences relative to non-septic criti-
cally ill controls (Additional file 4: Table E6).

Differential gene expression across septic shock subclasses
Using these two septic shock subclasses, Subclass 1 
(n = 21) and Subclass 2 (n = 25), as comparison groups, 
we performed differential gene expression analysis and 
found a total of 2486 DEGs. A total of 1275 of these 
genes were upregulated (Additional File 5)  and 1211 
were downregulated (Additional File 6)  in Subclass 1 
compared to Subclass 2 (FDR < 0.05). Pathway enrich-
ment analysis of the 2486 genes revealed upregulation in 

Patients

Controls
Septic Shock

Cases

−4

−2

0

2

4

Shock Controls
Septic Shock
Subclass 2

Septic Shock
Subclass 1

A B

Fig. 3  Heatmaps A Heatmap depicting the expression of all 840 differentially expressed genes (DEGs) between septic shock cases and controls. 
Each row represents a DEG; blue indicates that a gene is downregulated, while red indicates that a gene is upregulated. Each column is a patient, 
so each column depicts the transcriptomic signature of each patient. The dendrogram at the top shows unsupervised hierarchical clustering 
of the patients such that the patients with similar transcriptomic signatures are clustered together. B This heatmap depicts the same patients 
and genes as in Fig. 2A, but now the controls are sorted on the left, and the cases sorted on the right. Clustering based on each patient’s 
transcriptomic signature was performed within each group
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neutrophil-mediated immunity and downregulation in 
adaptive immunity pathways including B and T cell activ-
ity, in Subclass 1 compared to Subclass 2 (Fig.  4, Addi-
tional file 4: Table E2).

Cell deconvolution analyses and profiling of adaptive 
immune repertoires
To quantify cell type populations in our samples, we 
performed expression-based cell deconvolution analysis 

Table 2  Clinical characteristics and outcomes of Subclass 1 and Subclass 2

*Significant p values with FDR < 10% are noted with an asterisk
† Adjusted p value was computed using bootstrap linear regression model to evaluate mean differences between subgroups adjusting for treatment group, PRISM 
score and baseline use of steroids
‡  Data presented as mean ± SEM by bootstrapping
§  Adjusted p value was computed using the Fisher’s exact test

llData presented as median (interquartile range)

**Data presented as n (percentage)

Measures Subclass 1 Subclass 2 p Value
N = 21 N = 25

Demographics

Age-years ‡ 11.4 ± 5.3 7.0 ± 5.1 0.004*

Male** 9 (42.9%) 13 (52.0%) 0.54

Race** 0.23

    White 15 (71.4%) 15 (60%)

    Black 2 (9.5%) 7 (28%)

    Asian 3 (14.3%) 1 (4%)

    American Indian 1 (4.8%) 0 (0%)

    Mixed 0 (0%) 1 (4%)

    Declined or Unknown 0 (0%) 1 (4%)

Baseline clinical characteristics

    PRISM Score ‡ 15.1 ± 7.5 12.4 ± 9.3 0.25

    Average blood glucose (mg/dl) ll 134 (123–170) 116 (105–125) 0.021*

    Clinical Trial Allocation (two groups total, n assigned to group 
2)**

15 (71.4%) 13 (52.0%) 0.17

Baseline primary reasons for admission** 0.12

    Cardiovascular (including shock) 5 (23.8%) 6 (24.0%)

    Following elective procedure 0 (0%) 2 (8.0%)

    Following emergent procedure 2 (9.5%) 0 (0%)

    Gastrointestinal or Liver 3 (14.3%) 0 (0%)

    Neurologic 0 (0%) 1 (4.0%)

    Respiratory (including infections) 11 (52.4%) 16 (64.0%)

Baseline primary reasons for mechanical ventilation** 0.78

    Acute respiratory failure related to sepsis 13 (61.9%) 10 (40.0%)

    Aspiration pneumonia 0 (0%) 1 (4.0%)

    Asthma or reactive airway disease 1 (4.8%) 2 (8.0%)

    Bronchiolitis 1 (4.8%) 1 (8.0%)

    Neurologic 1 (4.8%) 1 (4.0%)

    Pneumonia/hypoxia 4 (19.0%) 7 (28.0%)

    Procedural 1 (4.8%) 3 (12.0%)

Clinical outcomes Adjusted p value†

Maximum PELOD score‡ 18.8 ± 2.2 13.0 ± 1.4 0.026 *

Maximum vasoactive-inotrope score‡ 21.5 ± 5.0 9.8 ± 2.7 0.045*

ICU length of stay from randomization to discharge (days) ‡ 24.0 ± 5.0 10.4 ± 2.2 0.021*

Hospital-free days through day 28 (days) ‡ 5.7 ± 1.5 11.1 ± 1.4 0.011*

Mortality (death at 90 days) § 1 (4.8%) 2 (8.0%) 0.999
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[17]. In concordance with our pathway analysis, we found 
that compared to Subclass 2, Subclass 1 had significantly 
lower percentages of CD4 + T cells (0.9 ± 1.5 vs. 5.2 ± 4.3; 
p < 0.001), B cells (2.7 ± 2.0 vs. 4.6 ± 3.3; p = 0.024), and 
dendritic cells (3.0 ± 0.9 vs. 3.8 ± 1.0, p = 0.007), and 
a higher percentage of endothelial cells (4.8 ± 0.7 vs 
4.2 ± 0.6, p = 0.004) and adipocyte cells (2.6 ± 0.5 vs. 
2.4 ± 0.5; p = 0.005) (Fig. 5A, Additional file 4: Table E3). 

There were no significant fractional differences in 
other cell types, including CD8 + T cells or neutrophils, 
between the two subclasses (Additional file 4: Table E3). 
We considered that in addition to a decrease in T cell 
populations, there may also be differences in the T cell 
repertoire between the subclasses, which can be a sur-
rogate for monitoring the effectiveness of the adaptive 
immune system. Using ImReP, we found that compared 

Table 3  Differences in Inflammatory Biomarker Levels between Subclasses 1 and 2

Data presented as median (IQR)

*Significant FDR values are noted with an asterisk
† P values computed by Wilcoxon rank-sum test and adjusted by FDR criterion

Biomarkers (pg/mL) Subclass 1 Subclass 2 False discovery rate 
(FDR) adjusted p 
value†

PAI1 500 (224–887) 200 (94–308) 0.013*

IL4 7919 (3270–11897) 4510 (1770–10910) 0.32

IL6 148 (49–699) 15 (9–52)  < 0.001*

IL8 34 (24–217) 14 (13–20)  < 0.001*

IL10 13 (10–72) 10 (7–18) 0.027*

ANG2 6936 (3255–8587) 3414 (1901–6216) 0.035*

Thrombomodulin 4891 (4234–6531) 4144 (3389–5651) 0.15

TFPI 12,027 (7262–18,706) 13,440 (7036–17308) 0.72

TREM1 489 (330–578) 325 (258–427) 0.044*

P-selectin 6414 (4880–8740) 6878 (4623–8885) 0.93

ICAM1 130,000 (97,558- 193,000) 113,000 (80,346- 164,000) 0.36

TNFR-1 1833 (1466–2284) 1106 (932–1296)  < 0.001*
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Fig. 4  Gene network displaying functionally enriched terms with associated DEGs between Subclass 1 and Subclass 2. A Upregulated Pathways 
in Subclass 1 compared to Subclass 2 B Downregulated Pathways in Subclass 1 compared to Subclass 2
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to Subclass 2, Subclass 1 had significantly fewer T cell 
clonotypes (Fig. 5B, Additional file 4: Table E4) and lower 
activities and diversity of TCRA, TCRB, and TCRD. 
(Fig. 5C, D, Additional file 4: Table E5).

Discussion
We provide important insights into the pathophysiol-
ogy of septic shock and the heterogeneity of biologi-
cal perturbations within patients with septic shock. We 
compared the expression profiles of children with sep-
tic shock to mechanically ventilated controls and found 
upregulated expression of innate immune and neutrophil 
pathways and downregulation of adaptive immune path-
ways in children with septic shock. On further analysis, 
the expression profiles of patients with septic shock clus-
tered around two subclasses with differential upregula-
tion of innate immunity and downregulation of adaptive 
immunity. While both subclasses were clinically iden-
tified as “septic shock,” Subclass 1 was characterized by 
upregulation of innate immunity and biomarker profiles 
consistent with a hyperimmune response along with con-
comitant downregulation of both B and T cells and lesser 
T cell receptor diversity. This same subclass was associ-
ated with worse clinical outcomes, underscoring the 
importance of addressing sepsis heterogeneity. Subclass 
2, while having the same clinical diagnosis, appeared bio-
logically much more similar to our critically ill controls.

Our study suggests that patients with severe initial per-
turbations of the innate and adaptive immune systems, 
such as those in Subclass 1, are likely to have worse out-
comes including higher PELOD scores, higher maximum 
inotrope usage, and longer intensive care unit and hospi-
tal stays, despite the lack of significant differences in ill-
ness severity or the pediatric risk of mortality (PRISM) 

score on initial presentation, indicating that conventional 
clinical scores alone are often are not sufficient to capture 
the pathophysiological complexity or outcomes of septic 
shock. An interesting clinical difference in our cohort is 
that Subclass 1 patients tended to be older and had mod-
estly higher average blood glucose levels at baseline. [23]. 
IL-6 is known to contribute to hyperglycemia through 
insulin resistance, and multiple retrospective analy-
ses have reported that hyperglycemia is associated with 
adverse outcomes [24].

Not only did Subclass 1 have upregulated genes related 
to neutrophil immunity compared to Subclass 2, but 
these patients also had significantly higher levels of pro-
inflammatory cytokines (PAI1, IL6, IL8, ANG2, TREM1, 
and TNFR1), and a greater degree of organ dysfunction. 
Early unchecked innate immune-driven inflammation 
has been associated with a more profound degree of 
organ injury. Concomitantly, sepsis has also been shown 
to cause adaptive immunosuppression with a marked 
loss of T and B cells [25]. Subclass 1 had significant 
downregulation of genes related to T and B cell activity, 
and a lower percentage of CD4 T cells and B cells com-
pared to Subclass 2. Severe T cell dysfunction, leading 
to decreased T cell cytotoxicity and T cell apoptosis in 
the setting of a high antigen load and elevated cytokines, 
is known to occur in septic shock [25].It is a source of 
debate whether it is the innate immune-driven hyperin-
flammation, adaptive immunosuppression, or a contri-
bution of both is the driver of morbidity and mortality 
in sepsis. A recent study supported the latter, as they 
demonstrated that during sepsis, the proliferation of a 
large population of immature neutrophils inhibited the 
proliferation and activation of CD4 + T cells, and a sub-
set of patients with higher frequencies of the immature 

TRA TRB TRD TRG
TCR chain

0

100

200

300

400

In
ve

rs
e
si
m
ps

on
in
de

x

Subclass
Subclass1
Subclass2

TRA TRB TRD TRG
TCR chain

0

100

200

300

400

500

N
um

be
ro

fc
lo
no

ty
pe

s

Subclass
Subclass1
Subclass2

TRA TRB TRD TRG
TCR chain

0

5

10

15

20

25

30

N
um

be
ro

fT
C
R

re
ad

s
pe

r1
m
illi
on

R
N
A-

Se
q
re
ad

s

C
el
lT

yp
e
Ab

un
da

nc
e

Subclass
Subclass1
Subclass2

15%

10%

5%

0%

CD4+
T-cells

CD8+
T-cells

B-cells Endothelial
Cels

Subclass
Subclass1
Subclass2

*** **
*** *** ** ** ***** * * * *

*

A B C D

Fig. 5  A Box plot depicting differences in whole blood cell type abundances between Subclass 1 and 2. Subclass 1 has significantly lower 
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neutrophils had poorer outcomes [26]. A potential con-
sideration here is that the different sepsis subclasses 
could represent different chronological stages of the 
same underlying pathobiology. We attempted to mitigate 
this confounder by excluding patients who initiated vaso-
active support > 72 h prior to enrollment.

Comparison to sepsis subclasses in the literature
In the adult population, at least five independent research 
groups have identified sepsis subgroups describing an 
adaptive immunity suppression phenotype with corre-
sponding higher mortality such as Scicluna et al.’s MARS1 
endotype [27], Davenport et al.’s SRS1 subgroup [28], and 
Sweeney et al.’s Inflammopathic subtype [29–31].

In the pediatric population, Hector Wong et. al. were 
the first to identify two pediatric sepsis endotypes, A 
and B. Endotype A was characterized by upregulation of 
innate immunity pathways and repression of pathways 
related to the adaptive immune system and glucocorti-
coid receptor signaling. However, the gene expression 
pattern that differentiates adult SRS groups was not 
enriched in the pediatric endotypes [32, 33]. This sug-
gests that there may be differences between adults and 
children, highlighting the importance of studying sepsis 
specifically in the pediatric population.

Our findings and subclassification are consistent with 
previously published subclasses in the pediatric sepsis 
population. Our Subclass 1 was analogous to the Wong 
et  al. pediatric Endotype A, which was identified in a 
separate pediatric cohort. Similar to Endotype A in Dr 
Wong’s cohort, Subclass 1 was also characterized by 
repression of the adaptive immune system related to 
T cell activation and had worse clinical outcomes than 
Subclass 2. We compared our gene list with the previ-
ously validated 100 gene signature that differentiated 
Endotype A and B, and found 12 of the 100 genes pre-
sent in our list (GNAI3, PLCG1, CD3E, CD247, NCR3, 
ARPC5, ZAP70, FYN, SEMA6B, TLR8, CAMK2D, 
TLR8) [34]. In 2021, Muszynski et  al. also identified a 
subclass of septic shock children with immunoparaly-
sis with worse clinical outcomes [35]. They found that 
this subclass’s transcriptomic profiles demonstrated 
upregulated pathways in leukocyte extravasation, and 
downregulation in adaptive immunity pathways [35]. 
When comparing our Subclass 1 DEGs to Musznski’s 
immunoparalysis subclass, shared upregulated DEGs 
included COL17A1, LAMA2, FFAR3, RAP1GAP, 
XCR1, MMP27, and MMP8, and shared downregulated 
DEGs included KLRC1 and IL2RB. Thus, while Wong’s 
Endotype A, Muszynski’s immunoparalysis subclass, 
and our Subclass 1 are similar, challenges remain in 
identifying an appropriate panel of candidate genes out 

of the often large lists of DEGs that can be generalized 
across the pediatric population. More research in dif-
ferent pediatric cohorts is needed to develop a consen-
sus subclassification system.

At the molecular level, T cell diversity plays a key role 
in the ability of the adaptive immune system to effectively 
mount a response to invading pathogens. Each TCR is 
made up of alpha (TCRA) and beta chains (TCRB) or 
delta (TCRD) and gamma (TCRG) chains. TCR diversity 
is generated through V(D)J recombination in the early 
stages of T cell maturation in the thymus and is critical 
to effectively recognizing antigen peptides. In the adult 
sepsis population, studies have shown that septic patients 
present with a marked decrease in TCR diversity after the 
onset of shock, which is associated with mortality and 
the development of nosocomial infections [36, 37]. How-
ever, there is a paucity of literature looking at TCR diver-
sity in pediatric sepsis, and one study demonstrated that 
the TCR repertoires in adults and children are discrep-
ant and thus difficult to directly compare [38]. Our study 
demonstrated that Subclass 1 patients demonstrated 
reduced TCR diversity and clonality, including decreased 
diversity of TCRA, TCRB, and TCRD, with associated 
worse clinical outcomes at the onset of septic shock.

In the adult population, there is evidence that in sep-
sis, a decrease in circulating B cells is associated with a 
poor prognosis [39]. Additionally, adult studies suggest 
that the B cell depletion is selective, and IL-10-producing 
B cells may actually increase and exacerbate immuno-
suppression [39]. In this pediatric study, Subclass 1 had 
decreased levels of B cells, but significantly higher levels 
of IL-10 with worse outcomes, similar to adult findings. 
The mechanism behind the depletion of B cells in sepsis 
is not well understood. One theory is that profound sepsis 
can impair bone marrow production leading to decreases 
in B cell numbers. Alternatively, some studies suggest sep-
sis signals can possibly trigger B cell apoptosis [39]. More 
studies are needed to investigate this phenomenon.

Our study is novel, as for the first time it not only 
provides a comprehensive evaluation of dysregulated 
pathways based on genome-wide differential gene 
expression but also enhances it with cell deconvolu-
tion and T and B cell receptor diversity estimations in 
the context of plasma biomarkers and clinical charac-
teristics in septic shock to better characterize and sub-
phenotype the biological perturbations in septic shock 
that are biologically plausible and clinically relevant 
in the pediatric population. A potential future direc-
tion of this subclassification study would be to create 
a classifier model that could eventually become useful 
in the clinical setting to classify pediatric septic shock 
patients and inform clinical decisions.
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Limitations of the study
First, given that this was a retrospective analysis of a 
prospective pediatric clinical trial, a limitation was that 
a suitable case and control population were identified 
post-retrospectively. We assumed accurate and timely 
documentation of sepsis and initiation of inotropes 
for cases, and clinician-documented reasons for PICU 
admission and initiation of mechanical ventilation and 
negative blood cultures to create a control group. How-
ever even in the unlikely scenario that an underlying 
infection was missed in our controls, our cases required 
inotropes, indicating that on the clinical spectrum, sep-
sis in our cases was certainly much more severe. The 
use of mechanically ventilated controls ensured that our 
results were specific to septic shock and not just a result 
of generalized critical illness. Another limitation was that 
we could not differentiate between the different sources 
of sepsis each patient may have had. Finally, our sample 
sizes were relatively small. A larger sample size would 
have increased statistical power to detect clinically mean-
ingful differences within each subclass; therefore, mortal-
ity was not a reported outcome in this study given that 
only three of the patients died within our cohort. There-
fore, while Subclass 1 had worse outcomes, we cannot 
state that they had higher mortality.

Conclusions
We identified two subclasses of children with septic 
shock based on differential gene expression using RNA-
Seq. These two subclasses have differential regulation of 
genes related to the immune system that is relevant to 
the pathophysiology of sepsis and septic shock. One sub-
class is characterized by upregulation of innate immunity 
pathways and repression of adaptive immunity pathways, 
with lower levels of T cells and B cells. This subclass is 
associated with clinically worse outcomes. Thus, subclas-
sifying patients with septic shock based on genome-wide 
expression data can aid in identifying both new targets 
for therapies and which patients would likely benefit 
from them.
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