Table 6.
Classification performance on DPI benchmark with ratio 1:10. Reported are the mean (std) over the 5 best models scored on the test folds. Values in bold indicate the highest metric for each feature type
DPI-FDA | ||||
---|---|---|---|---|
Feature | Classifier | AUPRC | AUROC | F1 |
Random | LR | 0.129 ± 0.003 | 0.597 ± 0.001 | 0.602 ± 0.010 |
MLP | 0.139 ± 0.006 | 0.635 ± 0.014 | 0.594 ± 0.004 | |
RF | 0.192 ± 0.004 | 0.720 ± 0.005 | 0.889 ± 0.001 | |
Structural | LR | 0.153 ± 0.003 | 0.690 ± 0.010 | 0.617 ± 0.010 |
MLP | 0.244 ± 0.006 | 0.771 ± 0.003 | 0.665 ± 0.010 | |
RF | 0.398 ± 0.021 | 0.871 ± 0.008 | 0.885 ± 0.016 | |
ComplEx | LR | 0.170 ± 0.002 | 0.706 ± 0.004 | 0.639 ± 0.004 |
MLP | 0.339 ± 0.006 | 0.838 ± 0.004 | 0.755 ± 0.003 | |
RF | 0.352 ± 0.014 | 0.849 ± 0.003 | 0.892 ± 0.008 | |
RotatE | LR | 0.180 ± 0.002 | 0.722 ± 0.005 | 0.643 ± 0.003 |
MLP | 0.453 ± 0.008 | 0.886 ± 0.002 | 0.794 ± 0.006 | |
RF | 0.404 ± 0.005 | 0.885 ± 0.006 | 0.905 ± 0.006 | |
TransE | LR | 0.170 ± 0.003 | 0.691 ± 0.021 | 0.650 ± 0.017 |
MLP | 0.350 ± 0.009 | 0.846 ± 0.005 | 0.750 ± 0.003 | |
RF | 0.380 ± 0.012 | 0.868 ± 0.010 | 0.894 ± 0.015 | |
BioBLP-D | LR | 0.177 ± 0.003 | 0.723 ± 0.003 | 0.641 ± 0.002 |
MLP | 0.447 ± 0.008 | 0.885 ± 0.003 | 0.792 ± 0.002 | |
RF | 0.397 ± 0.003 | 0.883 ± 0.004 | 0.907 ± 0.004 | |
BioBLP-M | LR | 0.166 ± 0.002 | 0.713 ± 0.002 | 0.634 ± 0.003 |
MLP | 0.401 ± 0.007 | 0.865 ± 0.002 | 0.764 ± 0.002 | |
RF | 0.415 ± 0.003 | 0.881 ± 0.004 | 0.895 ± 0.006 | |
BioBLP-P | LR | 0.170 ± 0.006 | 0.683 ± 0.005 | 0.636 ± 0.005 |
MLP | 0.343 ± 0.008 | 0.820 ± 0.005 | 0.744 ± 0.015 | |
RF | 0.317 ± 0.006 | 0.832 ± 0.004 | 0.899 ± 0.002 |