Table 3.
Model Selection metrics for all participants. Resulting values of the model selection metrics of the models validated on the data of each of the participants
| ID | Classifier | Meals | Predictions | FP | FN | TP | PPV | TPR | F-score | F-score |
|---|---|---|---|---|---|---|---|---|---|---|
| 540 | Decision Tree | 23 | 9 | 4 | 18 | 5 | 0.56 | 0.22 | 0.31 | 0.25 |
| 544 | Random Forest | 31 | 43 | 15 | 3 | 28 | 0.65 | 0.90 | 0.76 | 0.84 |
| 552 | MLP | 3 | 14 | 13 | 2 | 1 | 0.07 | 0.33 | 0.12 | 0.19 |
| 559 | Gaussian NB | 25 | 32 | 18 | 11 | 14 | 0.44 | 0.56 | 0.49 | 0.53 |
| 563 | Decision Tree | 25 | 34 | 19 | 10 | 15 | 0.44 | 0.60 | 0.51 | 0.56 |
| 567 | Gradient Boosting | 1 | 6 | 5 | 0 | 1 | 0.17 | 1.00 | 0.29 | 0.50 |
| 570 | Random Forest | 29 | 40 | 19 | 8 | 21 | 0.52 | 0.72 | 0.61 | 0.67 |
| 575 | MLP | 46 | 53 | 17 | 10 | 36 | 0.68 | 0.78 | 0.73 | 0.76 |
| 584 | Decision Tree | 15 | 20 | 11 | 6 | 9 | 0.45 | 0.60 | 0.51 | 0.56 |
| 588 | AdaBoost | 43 | 49 | 17 | 11 | 32 | 0.65 | 0.74 | 0.70 | 0.72 |
| 591 | AdaBoost | 40 | 65 | 35 | 10 | 30 | 0.46 | 0.75 | 0.57 | 0.67 |
| 596 | Gradient Boosting | 44 | 54 | 25 | 15 | 29 | 0.54 | 0.66 | 0.59 | 0.63 |
FP false positives, FN false negatives, TP true positives, PPV (precision) positive predictive value, TPR (recall) true positive rate