Skip to main content
. 2023 Dec 8;23:282. doi: 10.1186/s12911-023-02380-4

Table 3.

Model Selection metrics for all participants. Resulting values of the model selection metrics of the models validated on the data of each of the participants

ID Classifier Meals Predictions FP FN TP PPV TPR F1-score F2-score
540 Decision Tree 23 9 4 18 5 0.56 0.22 0.31 0.25
544 Random Forest 31 43 15 3 28 0.65 0.90 0.76 0.84
552 MLP 3 14 13 2 1 0.07 0.33 0.12 0.19
559 Gaussian NB 25 32 18 11 14 0.44 0.56 0.49 0.53
563 Decision Tree 25 34 19 10 15 0.44 0.60 0.51 0.56
567 Gradient Boosting 1 6 5 0 1 0.17 1.00 0.29 0.50
570 Random Forest 29 40 19 8 21 0.52 0.72 0.61 0.67
575 MLP 46 53 17 10 36 0.68 0.78 0.73 0.76
584 Decision Tree 15 20 11 6 9 0.45 0.60 0.51 0.56
588 AdaBoost 43 49 17 11 32 0.65 0.74 0.70 0.72
591 AdaBoost 40 65 35 10 30 0.46 0.75 0.57 0.67
596 Gradient Boosting 44 54 25 15 29 0.54 0.66 0.59 0.63

FP false positives, FN false negatives, TP true positives, PPV (precision) positive predictive value, TPR (recall) true positive rate