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Significance

Electrophysiological studies have 
shown that brain tracks different 
speech features. How these 
neural tracking measures are 
modulated by speech 
intelligibility, however, remained 
elusive. Using noise- vocoded 
speech and a priming paradigm, 
we disentangled the neural 
effects of intelligibility from the 
underlying acoustical confounds. 
Neural intelligibility effects are 
analyzed at both acoustic and 
linguistic level using multivariate 
temporal response functions. 
Here, we find evidence for an 
effect of intelligibility and 
engagement of top–down 
mechanisms, but only in 
responses to lexical structure of 
the stimuli, suggesting that 
lexical responses are strong 
candidates for objective 
measures of intelligibility. 
Auditory responses are not 
influenced by intelligibility but 
only by the underlying acoustic 
structure of the stimuli.
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Neural speech tracking has advanced our understanding of how our brains rapidly 
map an acoustic speech signal onto linguistic representations and ultimately meaning. 
It remains unclear, however, how speech intelligibility is related to the corresponding 
neural responses. Many studies addressing this question vary the level of intelligibility by 
manipulating the acoustic waveform, but this makes it difficult to cleanly disentangle the 
effects of intelligibility from underlying acoustical confounds. Here, using magnetoen-
cephalography recordings, we study neural measures of speech intelligibility by manipu-
lating intelligibility while keeping the acoustics strictly unchanged. Acoustically identical 
degraded speech stimuli (three- band noise- vocoded, ~20 s duration) are presented twice, 
but the second presentation is preceded by the original (nondegraded) version of the 
speech. This intermediate priming, which generates a “pop- out” percept, substantially 
improves the intelligibility of the second degraded speech passage. We investigate how 
intelligibility and acoustical structure affect acoustic and linguistic neural representa-
tions using multivariate temporal response functions (mTRFs). As expected, behavioral 
results confirm that perceived speech clarity is improved by priming. mTRFs analysis 
reveals that auditory (speech envelope and envelope onset) neural representations are 
not affected by priming but only by the acoustics of the stimuli (bottom–up driven). 
Critically, our findings suggest that segmentation of sounds into words emerges with 
better speech intelligibility, and most strongly at the later (~400 ms latency) word pro-
cessing stage, in prefrontal cortex, in line with engagement of top–down mechanisms 
associated with priming. Taken together, our results show that word representations 
may provide some objective measures of speech comprehension.

speech intelligibility | MEG | TRF | neural tracking | vocoded speech

When we listen to speech, our brains rapidly map the acoustic sounds into linguistic 
representations while recruiting complex cognitive processes to derive the intended mean-
ing (1, 2). A fundamental goal in auditory neurophysiology is to understand how the 
brain transforms the acoustic signal into meaningful content. Along this avenue, a large 
body of research has demonstrated that neural responses time lock to different features of 
the speech signal (“neural speech tracking”) (2, 3). These features have primarily included 
acoustic features like the speech envelope and envelope onset but more recently also include 
linguistic units such as word onsets, phoneme onsets and context- based measures along 
different levels of the linguistic hierarchy. However, it remains unclear how these neural 
tracking measures are affected by intelligibility.

Neural tracking measures of intelligibility have often been investigated using experi-
mental designs that manipulate intelligibility by altering the underlying acoustical struc-
ture, such as through time compression (4, 5), disruption of spectro- temporal details 
(6–8), and time reversal (4, 9). While these studies successfully demonstrate differences 
in cortical tracking responses, interpreting these findings is not straightforward, as the 
observed changes in the neural response may arise from the alterations in the acoustic 
waveform (bottom–up), rather than the intelligibility change itself (top–down). 
Intelligibility- related neuromarkers derived from neural responses play a crucial role in 
advancing our understanding of the neurophysiology of the speech understanding. They 
would contribute to the clinical evaluation of auditory function across diverse clinical 
populations and aid in the hearing device evaluation (10). In situations where obtaining 
verbal responses is challenging, such as with infants or individuals with cognitive disabil-
ities, as well as when subjective estimates are affected by individual differences, neuro-
markers of intelligibility would offer a noninvasive and objective means to investigate the 
underlying neural processes.

In this study, we disentangle intelligibility from any underlying acoustical confounds 
by using single instances of noise- vocoded speech combined with a priming paradigm. 
Noise- vocoded speech greatly reduces intelligibility by removing spectral details but still 
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preserving the slow temporal envelope and is often used as a 
surrogate for speech perception by cochlear implant patients (11). 
It is generated by processing the original speech signal through 
a multi- frequency- channel vocoder, where higher numbers of 
channels retain more intelligibility due to the retention of more 
spectral information. With a sufficiently low number of channels, 
most vocoded speech is largely unintelligible without practice. 
In the current study, we used three- band noise- vocoded speech. 
Magnetoencephalography (MEG) data were recorded from 
young adult participants (N = 25) as they listened to a passage 
of noise- vocoded speech, first before any priming (PRE), followed 
by listening to the original, nondegraded version of the same 
passage to invoke priming (CLEAN), and then finally listening 
to the same noise- vocoded speech passage as before (POST), 
repeated for 36 trials (Fig. 1A). At the end of each vocoded speech 

passage, participants were asked to rate the perceived speech clar-
ity on a scale from 0 to 5. Compared to previous studies (12–15) 
using a similar paradigm with shorter sentences (<5 s), the cur-
rent study uses much longer passages (~20 s), making it chal-
lenging to rely solely on short- term memory to understand POST 
 vocoded speech.

To characterize how different speech features are tracked in the 
cortical response, we utilized multivariate temporal response func-
tion (mTRF) analysis (16–18), as illustrated in Fig. 1B. Similar 
to conventional event- related potentials (ERPs), TRFs are used to 
assess how the brain reacts to different speech features over time. 
In contrast to ERPs, which rely on averaging numerous short 
responses to determine the brain’s reaction to given stimulus, TRFs 
enable the examination of brain’s responses to continuous speech, 
as well as simultaneous responses to multiple speech features (1). 
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Fig. 1. Experimental methodology, spectro- temporal characteristics of the speech stimuli, analysis framework, and behavioral results. (A, Top) Participants 
listened to 36 audiobook passages in vocoded and clear speech conditions. Each trial consisted of presentation of the same passage in vocoded format (PRE), 
clear format (CLEAN), and identical vocoded format (POST). At the end of each vocoded speech passage, participants rated the speech clarity on a scale from 
0 to 5. (Bottom) Spectrograms and temporal envelopes (overlaid in pink) of vocoded and clear speech. Most spectral and fine temporal details of the vocoded 
speech are lost (e.g., the pronounced vertical striping), but the broad temporal envelopes of the clear and vocoded speech are very similar. (B) Multivariate 
temporal response function (mTRF) analysis of MEG and predictor variables illustrated with sample of stimuli. Individual TRFs represent the brain’s responses 
to the corresponding speech representations at different time lags. (C) Linear mixed effects model (LMEM) predicted speech clarity ratings (0 to 5) for PRE and 
POST vocoded conditions. Perceived clarity of the vocoded speech is significantly improved after the clear speech priming. (D) LMEM model predicted speech 
clarity ratings for PRE1 and PRE2 vocoded conditions in the control study. In the control study, subjects listened to the vocoded speech passages without 
priming, where the two vocoded speech presentations are denoted by PRE1 and PRE2. Perceived clarity of the second presentation is enhanced compared to 
first presentation, but the improvement is smaller compared to that with priming. *P < 0.05, **P < 0.01, ***P < 0.001
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We included three classes of speech features for which to extract 
responses: acoustic, sublexical, and lexical. The specific features 
employed were speech envelope, envelope onset, phoneme onset, 
and word onset, to cover a range of neural responses from acoustic 
processing to lexical- level processing.

We first determined whether each of these features are repre-
sented in the cortical response by evaluating the explained response 
variability for each of the speech conditions (PRE, POST, and 
CLEAN). Then, we investigated how the cortical representations 
of the different speech features are modulated by intelligibility 
(PRE vs. POST) and by acoustics (vocoded PRE and POST vs. 
CLEAN) at different auditory processing stages, by comparing 
the TRF peak amplitudes and explained variability. To further test 
whether differences in PRE vs. POST may be attributable to intel-
ligibility, as opposed to mere passage repetition, a control study 
was conducted involving 12 subjects who listened to the same 
passages but in a different order without priming (i.e., PRE1, 
PRE2, and CLEAN). All analyses were performed on source-  
localized brain responses and were restricted to temporal, frontal, 
and parietal brain regions.

Results and Discussion

Behavioral Performance Increases with Speech Priming. We first 
determined the extent to which the speech priming (perceptual 
learning) affected the speech intelligibility between PRE and POST 
vocoded conditions using perceived speech clarity ratings. A linear 
mixed effect model (LMEM) was modeled with perceived clarity 
rating as the dependent variable, condition as a fixed effect, and 
random intercept and slopes for condition by subject as random 
effects [clarity rating ~ 1 + condition + (1 + condition|Subject)]. As 
illustrated in Fig. 1C, the fixed effects of condition revealed that 
rated speech clarity in the POST vocoded condition is improved 
compared to PRE (increase = 1.81, SE = 0.16, P < 0.001). In 
the control study (Fig. 1D) where the CLEAN speech was only 
presented after the second vocoded speech presentation, perceived 
clarity ratings did show significant improvement in clarity even 
without the clean speech priming (increase = 0.52, SE = 0.10, 
P < 0.001). However, the effect was substantially smaller than 
the priming effect (PRE2- PRE1 vs. POST- PRE = −1.28, Pperm < 
0.001), suggesting that priming has a substantially larger impact 
on speech clarity relative to acoustical learning without priming.

This result supports the idea that presentation of the clear 
speech, which provides information regarding both the linguistic 
content (i.e., words, content) and physical acoustical structure 
(i.e., rhythm, pace) of the degraded speech, facilitates (a top–down 
influence on the) understanding of POST vocoded speech. Thus, 
in agreement with previous studies, speech that is acoustically 
identical but initially unintelligible can be made intelligible 
through perceptual learning (12, 14, 15, 19–23).

Neural Responses to Acoustic Features Do Not Index Speech 
Intelligibility, only Acoustics. To test the extent to which each 
of the acoustic features is represented in the brain and for each 
condition, we first compared the predictive power, measured as the 
explained variability (R2) of the full model against a reduced model 
that excluded the predictor of interest (see Fig. 2 B and C, right 
column, brain plots). This prediction accuracy analysis revealed 
that both acoustic envelope and envelope onset significantly 
contribute to the model’s absolute predictive power for all 
three conditions, PRE (envelope: tmax = 6.5, P < 0.001, onset: 
tmax = 6.2, P < 0.001), POST (envelope: tmax = 7.3, P < 0.001, 
onset: tmax = 5.9, P < 0.001), and CLEAN (envelope: tmax = 6.3,  
P < 0.001, onset: tmax = 7.24, P < 0.001). These findings suggest 

that acoustic features are processed irrespective of the stimuli 
intelligibility. The anatomical distribution of significant acoustic 
feature processing for each condition was observed in locations 
spreading spatially from Heschl’s gyrus to superior temporal gyrus 
(STG) and much of temporal lobe. This distribution was bilateral, 
and also dominantly in the right hemisphere except for clean 
speech envelope and vocoded speech envelope onset processing 
[(left vs. right hemisphere) envelope: PRE_tmax = −5.35, P = 0.02, 
POST_tmax = −5.25, P = 0.004, CLEAN_tmax = −3.3, P = 0.41, 
envelope onset: PRE_tmax = −4.27, P = 0.02, POST_tmax = −3.46, 
P = 0.39, CLEAN_tmax = −4.68, P = 0.006]. This pattern of source 
localization, including right- hemisphere dominance, suggests that 
the processing of these speech features relies heavily on bottom–
up- driven mechanisms (24, 25).

In order to determine whether the processing of acoustic features 
differed based on speech intelligibility (PRE vs. POST) or acoustics 
of the stimuli (vocoded vs. clean speech), we compared the model 
improvements between speech conditions for each acoustic feature 
individually. Pairwise mass- univariate- related samples t test revealed 
that there is no significant difference between PRE vs. POST voc-
oded speech with respect to both envelope (tmax = −3.9, P = 0.57) 
and envelope onset (tmax = 4.39, P = 0.09). In contrast, the variance 
explained due to envelope processing was significantly stronger for 
vocoded speech compared to clean speech (tmax = 6.8, P < 0.001), 
and the opposite for envelope onset processing (tmax = −7.44,  
P < 0.001), suggesting that auditory responses are mainly driven 
by the manipulations in the stimuli.

We then investigated how the brain responds to acoustic speech 
representation at different cortical processing stages with an ampli-
tude analysis of the TRF waveforms. In analogy to the ERP P1- N1 
peaks at the corresponding latencies, the envelope TRF showed 
two main peaks (Fig. 2A), a positive polarity peak at ~50 ms latency 
followed by a negative polarity peak ~100 ms, known as the 
M50TRF and M100TRF, respectively (1, 17). Analogous to these 
envelope peaks, envelope onset responses also showed two main 
peaks at ~75 ms and ~130 ms, consistent with previous studies  
(1, 26). The M50TRF and M100TRF peaks can be ascribed to different 
auditory cortical processing stages with the corresponding latencies 
(27). It has been suggested that the early M50TRF peak dominantly 
reflects the neural encoding of low- level processing, e.g., physical 
acoustic of the stimuli (28, 29), whereas the M100TRF peak reflects 
additional higher- level processing, e.g., selective attention (17, 28, 
30). Using a paired samples t test, we investigated the extent to which 
these peak amplitudes are affected by the intelligibility and acoustic 
characteristics of the stimuli (Fig. 2 B and C). In line with the pre-
diction accuracy results above, we failed to find an effect of intelli-
gibility for the neural responses to acoustic features (both envelope 
and envelope onset) for both the M50TRF [envelope:  
P = 0.63, envelope onset: P = 0.80) and M100TRF peaks (envelope: 
P = 0.71, envelope onset: P = 0.29)], but TRF peak amplitudes 
were significantly affected by the differences in acoustics for both 
the M50TRF (PRE vs. CLEAN: envelope P < 0.001, envelope onset 
P < 0.001) and M100TRF peaks (PRE vs. CLEAN: envelope  
P = 0.03, envelope onset P = 0.003); effect sizes are reported in 
SI Appendix, Table S1. These results support the previous finding 
that such low- frequency auditory cortical responses are not neces-
sarily driven by the intelligibility or the linguistic content of the 
stimuli but rather reflect the sensitivity to differences in sensory input 
(12, 15, 20, 23). Some prior studies using similar experimental par-
adigms have instead reported stronger envelope tracking for trials 
associated with better speech intelligibility. These studies used dif-
ferent neural tracking indices, either more complex (23, 31),  
more robust against low neural SNR (speech envelope reconstruc-
tion rather than TRF analysis) at the expense of less temporal 
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resolution (13), ECoG- based high gamma responses (20) or did 
not yield a clear relationship (22). Differences from the current 
findings may be due to several factors, including differences in the 
neural measures employed or high gamma responses reflecting dif-
ferent neural sources compared to MEG or electroencephalography 
(EEG). A simpler explanation, however, may be to ascribe such 

differences to the employment here of higher- level linguistic feature 
encoding (e.g., lexical segmentation responses), which allow a finer-  
grained analysis of which aspects of the speech tracking responses 
are due to acoustic vs. higher- level features. As can be seen from 
the present results, envelope and envelope onset are very sensitive 
to changes in the sensory input, and any changes there associated 
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Fig. 2. Neural responses to envelope, envelope onset, and phoneme onset. (A) TRFs from a representative subject in source space, visualized as a single 
time series using principal component analysis (PCA). The TRFs exhibit an early peak (positive polarity peak marked by ∘) and late peak (negative polarity peak 
marked by ×). (B–D, Left) Bar plots (mean ± standard error (SE)) compare the measured peak amplitudes in the denoted time window (for left (LH) and right (RH) 
hemispheres separately) for envelope, envelope onset, and phoneme onset, respectively. Individual subject data points are shown for both vocoded conditions 
with each subject’s data points connected by lines (see SI Appendix, Fig. S1A for CLEAN speech individual data points). Peak amplitudes were extracted as the 
maximum peak of the sum of absolute current dipole strengths across sources with a specific polarity, where the polarity was determined from the current 
directions from the original source TRFs. (Right) Brain plots show cortical regions where the given speech feature significantly improves the model fit over and 
beyond other speech features in the model. Vertical significance brackets indicate significant differences between conditions, and horizontal significance brackets 
below brain plots indicate lateralization differences. The dashed lines within the bars represent the noise floor, where peaks for a noise model were extracted 
using the same steps as above. Significant differences were found between vocoded vs. clean passages, but no differences were observed between PRE vs. POST.
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with speech intelligibility may be very subtle. Indeed, improved 
data processing techniques and further refinements in acoustic 
neural indices might well alter uncover changes with the intelligi-
bility for the lower- level acoustic responses. Additionally, several 
studies reporting increased intelligibility associated with increased 
cortical speech tracking relied on changing the corresponding 
underlying acoustics, creating a confound (6, 13).

The M50TRF peak of the envelope response was significantly 
stronger for vocoded speech compared to clean speech, whereas 
this effect was reversed for the envelope onset response (SI Appendix, 
Table S1), suggesting that distinct mechanisms are involved in 
envelope and envelope onset processing. Analysis of the ratio of 
M50TRF between envelope and envelope onset comparison across 
conditions provided additional support for the reliability of this 
reversing effect (PRE vs. POST: t24 = 0.53, P = 0.56, PRE vs. 
CLEAN: t24 = −6.25, P < 0.001). This finding for the early enve-
lope TRF peak is consistent with previous studies (8, 22, 32, 33), 
where it was proposed that this effect is modulated by task demand 
(22) or sensory gain of acoustic properties (8); this early peak is 
too early to be modulated by attention (17). Instead, we propose 
that the higher envelope TRF amplitudes observed for vocoded 
speech are a result of its low spectral variability, which leads to 
higher levels of synchronization along the tonotopic axes, resulting 
in stronger MEG responses. In contrast, reduced vocoded speech 
envelope onset tracking can be attributed to the loss of salient 
acoustic onsets in vocoded speech, a result of the loss of spectro-
temporal details intrinsic to the process of vocoding (Materials 
and Methods, Predictor Variables).

Compared to vocoded speech, both envelope and envelope 
onset in clean speech exhibited stronger M100TRF peak ampli-
tudes. This suggests that the observed differences in vocoded vs. 
clean speech for the M50TRF and M100TRF are due to different 
underlying brain processes, where the M50TRF depends more 
strongly on the physical acoustics while M100TRF also reflects 
higher- level processing (17, 28, 30). However, to the extent 
M100TRF peak is indicative of higher- level processing, it is a strik-
ing finding that it is not influenced by intelligibility.

Responses to Phoneme Onsets. Although phoneme onsets 
(Fig. 2D) significantly contributed to the model’s predictive power 
in each speech condition (PRE: tmax = 4.9, P < 0.001, POST: tmax =  
5.4, P < 0.001, CLEAN: tmax = 6.8, P < 0.001), no significant 
differences were detected between the conditions. Consistent 
with previous studies (1), the phoneme onset TRF showed two 
main peaks, an early positive polarity peak ~ 80 ms and a late 
negative polarity peak ~150 ms, which were comparable to the 
envelope onset peaks. The amplitude of the early peak showed 
no difference between PRE vs. POST (P = 0.68) nor vocoded vs. 
clean speech (P = 0.28), indicating that these early responses are 
not modulated by either acoustics or intelligibility. However, the 
late negative polarity peak was stronger in clean speech compared 
to vocoded speech (CLEAN vs. PRE: P = 0.003, CLEAN vs. 
POST: P < 0.001, PRE vs. POST: P = 0.31), indicating that this 
late processing stage is affected by the physical acoustics. Phoneme 
onset processing originated bilaterally from areas including primary 
auditory cortex and was right lateralized for clean speech (tmax = 
−4.39, P < 0.02), supporting previous results that phoneme onset 
processing occurs early in the auditory processing hierarchy and 
may reflect more acoustic processing than linguistic. These results 
are aligned with a previous EEG study (23) that investigated the 
impact of perceived intelligibility on phoneme- level processing 
(a more complex measure does show effects of priming in the 
delta band). Thus, despite the sublexical or linguistic nature of 
the phoneme onset feature, the neural responses suggest that, as a 

neural measure, it functions more like an auditory (or intermediate 
auditory- linguistic) measure.

Neural Responses to Lexical Segmentation Indexes Speech 
Intelligibility. In the current study, we incorporated a lexical feature 
to extend the investigation of the effects of intelligibility with 
respect to neural speech representation: the word onset response. 
Prediction accuracy analysis revealed that the word onset responses 
significantly explain additional variability in the measured neural 
response over and beyond acoustic and phoneme onset features, 
across all three speech conditions (PRE: tmax = 4.6, P < 0.001, 
POST: tmax = 4.6, P < 0.001, clean: tmax = 5.1, P < 0.001). The word 
onset TRFs (Fig. 3A) showed two main peaks, an early positive 
polarity peak (~100 ms) and a substantially later negative polarity 
peak (~400 ms). The late peak is comparable to the latency and 
polarity of classical N400 responses (9, 34, 35), a potential marker 
of complex language processing, and so will be referred to here 
as the N400TRF. Interestingly, the peak amplitude comparison 
(Fig. 3B) revealed that the intelligibility of the speech modulates 
both early (P = 0.02; Cohen’s d = 0.39) and late peak amplitudes  
(P < 0.001; d = 0.82), with a substantially greater effect size observed 
for the late peak. Comparing clean vs. vocoded speech, we found 
that the clean speech TRF amplitudes are stronger compared to 
vocoded speech for both early (P < 0.001) and late peak responses 
(PRE vs. CLEAN: P < 0.001; d = 1.20, POST vs. CLEAN:  
P = 0.04; d = 0.40). Additionally, the late peak amplitude of POST 
is significantly closer to that of CLEAN than the corresponding 
amplitude of PRE is to CLEAN, suggesting that the late word onset 
responses of POST are more similar to CLEAN than those of PRE.

Because prediction accuracy, as implemented above, integrates 
over a longer time window (–200 to 800 ms), it is not able to 
disentangle specific contributions to the prediction accuracy and 
source localizations of each processing stage. To address this, we 
conducted a separate analysis on the explained variability, focusing 
on early (50 to 300 ms) and late (330 to 650 ms) processing stages 
separately (Fig. 3 B and D). As can be seen from Fig. 3D, predic-
tion accuracy comparisons between PRE vs. POST revealed that, 
during the early processing stage, neural processing is significantly 
stronger in POST compared to PRE in the STG (P = 0.01). 
Notably, at the late processing stage, this effect was extended to 
the left prefrontal cortex (PFC) (P < 0.001). Additionally, the 
comparison between vocoded and clean speech revealed that, at 
the early processing stage, clean speech elicited stronger neural 
responses across much of the temporal lobe (P < 0.001) and 
toward the late stage, significant differences were confined primar-
ily to both left STG and PFC (P < 0.001).

This key finding suggests that responses to word onset can serve 
as an index of speech intelligibility independent of the acoustics. 
Neural tracking of word onsets represent both bottom–up and top–
down processes (18, 36, 37). The early word onset peak may dom-
inantly reflect bottom–up driven mechanisms such as acoustics at 
word boundaries and automatic word segmentation, but neverthe-
less does show significant changes after priming. The ~400 ms 
latency peak, however, is too late to be solely modulated by acoustics 
and could incorporate higher- order word segmentation, semantic 
integration and other top–down processes (5, 37). When the voc-
oded speech is unintelligible, neither the words nor word boundaries 
are clear, resulting in weaker synchronized neural responses at the 
word onsets. As a result of priming, however, the brain has been 
provided with additional information (perhaps in the form of new 
priors) regarding the cues for words, enabling higher intelligibility 
and the concomitant word boundaries, enabling the emergence of 
word onset responses. These responses are smaller compared to those 
of clean speech, as might be expected due to less precise time- locking 

http://www.pnas.org/lookup/doi/10.1073/pnas.2309166120#supplementary-materials
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6 of 10   https://doi.org/10.1073/pnas.2309166120 pnas.org

associated with still- present word boundary uncertainty. The ana-
tomical distribution of the early processing stage, bilateral STG, 
may reflect a mix of both unaccounted- for auditory responses and 
also the expected higher- level lexical processing, while the late pro-
cessing stage's activation of left lateralized PFC may link to the 
engagement of top–down mechanisms. Such prefrontal activation 
is consistent with functional MRI studies using a similar paradigm 
that found more activation in prefrontal and cingulate cortices with 
increased speech intelligibility (21). The current study expands on 
this result by leveraging MEG’s superior temporal resolution to 
show that these processes specifically occur in a time- locked manner: 
corresponding to the N400TRF peak, with a ~400 ms post- word- onset 
latency, and the same polarity as the N400.

Neural Responses to Contextual Word Surprisal. One additional 
analysis was conducted, leveraging context- based speech 
representations (including those from large language models) 
that have recently gained popularity in the field of neural speech 
and language processing and may represent aspects of semantic 
integration and speech comprehension (2, 37–41). Contextual 
word surprisal was additionally included as a separate predictor, 
estimated using a generative pretrained large language model 
(GPT- 2) (42), which quantifies how surprising a word is given the 
previous context. Analysis revealed that contextual word surprisal 
responses show similar effects of intelligibility to those observed 
in word onset responses for the late processing stage (SI Appendix, 
Fig. S1B) (P = 0.03). The early processing stage, however, was 
not significantly stronger in POST compared to PRE (P = 0.93). 
The significant response to a context- based speech representation 

is evidence for comprehension- linked processing, in addition to 
and beyond mere lexical segmentation, especially at the late stage.

Neural Responses to Passage Repetition. Finally, to strengthen 
the support for the idea that the observed differences in PRE vs. 
POST word onset responses are indeed linked to intelligibility 
itself and are not just a side effect of passage repetition increasing 
familiarity, we repeated the same analysis but for the control study 
(Fig. 3C). Critically, there was no word onset response change 
from PRE1 to PRE2 for either the early (P = 0.34) or late peaks 
(P = 0.74). Word onset TRF peak amplitudes were significantly 
larger for CLEAN speech compared to PRE1 or PRE2 (early:  
P < 0.001, late: P < 0.001). Furthermore, the increase in word 
onset TRF peak amplitudes from PRE to POST in the main study 
were significantly larger than changes from PRE1 to PRE2 in the 
control study (PRE2- PRE1 vs. POST- PRE: early = −0.25, Pperm = 
0.02, late = −0.25, Pperm = 0.006). These results add further support 
to the idea that, improvements in intelligibility also generate 
increased neural responses to lexical segmentation feature over 
and beyond any acoustical learning.

The null results observed in the comparison between PRE and 
POST for auditory and phoneme responses might potentially arise 
from a cancellation of enhancement and suppression effects linked 
with priming, prediction, and repetition (14). The control study, 
aimed at assessing effects of repetition without involving priming, 
however, did not reveal significant differences between PRE1 and 
PRE2 responses for both early (envelope: P = 0.001, onset: P = 0.59, 
phoneme onset: P = 0.11) and late components ( envelope: P = 0.94, 
onset: P = 0.10, phoneme onset: P = 0.52), except for the early 
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Fig. 3. Neural responses to word onset. (A) The word onset TRFs for a representative subject shows two main peaks: an early positive peak (50 to 300 ms) 
and a late negative peak (330 to 650 ms). (B) Peak amplitude comparison by speech condition for early and late peaks and by hemisphere. (C) Peak amplitude 
comparison by speech condition for early and late peaks in the control study. (D) Word onset contributions to the prediction accuracy, but separated for the 
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word onset responses are modulated by intelligibility. At the early processing stage neural responses in POST compared to PRE are stronger in STG and towards 
late processing stage this effect was extended to left PFC. Peak amplitude enhancement is not observed for mere passage repetition (in the control study) in 
either early or late responses.
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envelope response (Fig. 4 A–C). Early envelope responses were 
significantly enhanced for PRE2 compared to PRE1 (P = 0.001). 
The observed differences between envelope and envelope onset 
responses suggest that distinct neural mechanisms underlie these 
responses. Thus, while neural responses often exhibit suppression 
with repetition (43), this was not seen in our control study (repe-
tition effects are typically investigated using shorter and more 
predictable stimuli (44), which contrast with the unintelligible and 
longer (~20 s) passages used in the current study). Therefore, dif-
ferences in envelope responses between PRE1 and PRE2 are not 
primarily driven by suppressive repetition effects but perhaps due 
to a consequence of change in task or cognitive processing 
demands. These distinctions together suggest that the effects of 
repetitions may be minimal in the current findings.

Additional Analysis. Previous studies have indicated different roles 
for delta and theta band responses with respect to intelligibility 
and perceived clarity, with theta band responses showing links 
to clarity, and delta band responses to comprehension (6, 45). 
Therefore, we investigated whether the observed lexical- level 
changes with intelligibility in the low- frequency neural response  
(1 to 10 Hz) are specific to a neural frequency band. For this 
post hoc analysis, word onset predicted neural response spectral 
power in each band was compared between speech conditions. Our 
results showed that both delta and theta band predicted response 
power increases from PRE to POST, with similar effect sizes (delta: 
t24 = 2.50, P = 0.02, d = 0.51, theta: t24 = 2.40, P = 0.02, d = 0.49). 
Thus, neither single interpretation of increased clarity vs. increased 
intelligibility can be given more prominence than the other.

In the present work, speech intelligibility is manipulated using 
a priming paradigm, where a perceptual pop- out effect modifies 
the perceived clarity of speech in addition to its intelligibility. It 
should be acknowledged that this approach is still subject to con-
founding factors, specifically those associated with predictive pro-
cessing mechanisms and acoustical learning. Consistent with 
predictive coding theories, previous studies have seen that neural 
responses to degraded speech tend to be suppressed with better 
speech clarity (14, 23, 46). Conversely, it has also been proposed 
that activation of higher- order brain areas, which may exhibit less 
neural activity when speech clarity is compromised, can lead to a 
generally enhanced neural activation for intelligible speech (13, 
23). Similarly, predictability in speech may amplify the synchro-
nization of neural responses with speech, resulting in larger 

entrainment responses (6). Our findings align more closely with 
the latter perspective. Additionally, exposure to clear speech may 
induce changes in bottom–up processes that would facilitate the 
comprehension of degraded speech (13), perhaps including mod-
ifications to centrally maintained auditory filters at the subcortical 
and cortical level. Consequently, it is challenging to disentangle 
the precise neural mechanisms underpinning speech intelligibility 
from those intertwined with predictive processes.

Even though our analysis revealed effects of intelligibility on 
the word onset responses, no significant trend was observed 
between those neural measures and behaviorally measured per-
ceived speech clarity ratings within subjects. This might have been 
expected since the neural measures must be calculated across mul-
tiple trials, and minimizing the effects of individual trials because 
of the need to employ cross- validation, whereas the speech clarity 
did vary substantially from trial to trial (SI Appendix, Fig. S3). It 
is unfortunate that estimating reliable TRFs from a single trial (in 
particular, estimating peaks with reliable amplitude and latency) 
is not feasible for only 20 s of data, either for acoustic or linguistic 
stimulus features. Similarly, the same limitation affects any analysis 
of the relationship between learning over trials and the word onset 
processing (i.e., early trails vs. late trials).

In conclusion, we investigated the extent to which neural meas-
ures of lexical processing correspond to speech intelligibility while 
keeping the acoustical structure fixed. The neural measures associated 
with word onset processing, especially those time- locked at N400TRF 
latencies (with N400 polarity), increased substantially between first 
exposure and after intelligibility- increasing priming. In contrast, 
auditory and phoneme onset responses are influenced only by the 
acoustics of the sensory input, not by intelligibility- boosting prim-
ing. It is crucial to exercise caution when interpreting auditory neural 
responses in contexts where the acoustics of the sensory input differ. 
Our key finding suggests that lexical segmentation responses increase 
in the same context as speech intelligibility and show engagement 
of top–down mechanisms. Together, these suggest that time- locked 
neural responses associated with lexical segmentation may serve as 
an objective measure of speech intelligibility.

Materials and Methods

Participants. A total of 25 native English speakers (age range 18 to 32 y,  
15 males, 5 left- handed) participated in the main study. Data from two partici-
pants were excluded from the analysis due to excessive artifacts in the neural data. 
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Twelve native English speakers (age range 19 to 27 y, 5 males, 2 left- handed) 
participated in the control study. All participants reported normal hearing and no 
history of neurological impairments. The experimental procedures were approved 
by the University of Maryland institutional review board and all participants pro-
vided written informed consent before the experiment and were compensated 
for their time.

Stimuli and Procedure. The stimuli were ~20 s long excerpts (18 s to 26 s), sam-
pled at 44.1 kHz, from the audiobook “The Botany of Desire” by Michael Pollan, 
narrated by a male speaker. Talker pauses greater than 400 ms were shortened 
to 400 ms and the excerpts were then low- pass filtered below 4 kHz using a 
third- order elliptic filter.

Noise- vocoded speech segments for each excerpt were generated using a 
custom python script. First, the frequency range 70 to 4,000 Hz was divided 
into logarithmically spaced three bands (70 Hz to 432 Hz, 432 Hz to 1,402 Hz, 
and 1,402 Hz to 4,000 Hz). For each band, an envelope- modulated noise band 
was generated from band- limited white noise modulated by the envelope of 
the band passed speech signal. The envelope of the band- passed speech signal 
was extracted using the half- wave rectification of the band passed signal fol-
lowed by low pass filtering with a cutoff of 30 Hz. Finally, the modulated noise 
bands were summed, and the normalized volume was adjusted to match that of 
the original speech stimulus. Fig. 1A shows example spectrogram plots for the 
original speech stimulus and vocoded speech stimulus, with the corresponding 
envelope amplitudes overlaid.

Subjects listened to a total of 36 trials that preserved the storyline. A trial 
consisted of noise- vocoded speech (PRE), followed by the same speech but in the 
original clear form (CLEAN) and then the second presentation of noise- vocoded 
speech (POST). All stimuli were presented diotically. At the end of each noise- 
vocoded passage, participants were asked to rate the perceived speech clarity 
(“How much could you follow the passage on a scale of 0 to 5?”; 0—no words, 1—a 
few words, 2—definitely some words, 3—lots of words but not most, 4—more than 
half of all words, and 5—almost all words). The subjects were specifically instructed 
not to consider the CLEAN speech passage while making their decisions. This rating 
was used as a subjective measure of speech clarity. Intermittently, they were also 
asked to repeat back some of the words they could follow from the vocoded speech 
passage to ensure that the words they understood were actually from the passage. 
As a means of motivating the subjects to engage in the task, a comprehension- 
based question was asked at the end of the POST vocoded speech passage.

In the control study, stimuli, procedures and analyses were identical to those 
used in the main study, with the exception that the order of each CLEAN and POST 
vocoded speech was swapped. This resulted in a presentation order of PRE, POST, 
and CLEAN for the control study, which are henceforth described as PRE1, PRE2, 
and CLEAN, respectively, to emphasize that the clean speech was not presented 
until after the second presentation of the vocoded speech.

MEG Data Acquisition and Preprocessing. Noninvasive neuromagnetic 
responses were recorded using a 160- channel whole head MEG system (KIT, 
Kanazawa, Japan), of which 157 channels are axial gradiometers and 3 mag-
netometers are employed as environment reference channels, inside a dimly lit, 
magnetically shielded room (Vacuumschmelze GmbH & Co. KG, Hanau, Germany) 
at the Maryland Neuroimaging Center. The data were sampled at 1 kHz along with 
an online low- pass filter with cut off frequency at 200 Hz and a 60- Hz notch filter.

During the task, subjects lay in the supine position and were asked to minimize 
body movements as they listened and to keep their eyes open and fixate on a 
cross at the center of screen. Sound level was calibrated to ~70 dB sound pressure 
level using 500 Hz tones and equalized to be approximately flat from 40  Hz 
to 4 kHz. The stimuli were delivered using Presentation software (http://www.
neurobs.com), E- A- RTONE 3 A tubes (impedance 50 Ω) which strongly attenuate 
frequencies above 4 kHz and E- A- RLINK (Etymotic Research, Elk Grove Village, 
United States) disposable earbuds inserted into the ear canals.

All data analyses were performed in mne- python 0.23.0 (47, 48) and Eelbrain 
0.36 (49). Flat channels were excluded and the data were denoised using tem-
poral signal space separation (50). Then, the MEG data were filtered between 
1 and 60 Hz using a zero- phase FIR filter (mne- python 0.23.0 default settings). 
Independent component analysis (51) was then applied to manually remove arti-
facts such as eye movements, heartbeats, muscle artifacts, and singular artifacts. 
The cleaned data were low- pass filtered between 1 and 10 Hz and downsampled 
to 100 Hz for further analysis.

Neural Source Localization. The head shape of each participant was digitized 
using Polhemus 3SPACE FASTRAK three- dimensional digitizer. The position of 
the participant’s head relative to the sensors was determined before and after 
the experiment using five head- position indicator coils attached to the scalp 
surface and the two measurements were averaged. The digitized head shape 
and the marker coils locations were used to coregister the template FreeSurfer 
“fsaverage” (52) brain to each participant’s head shape using rotation, translation, 
and uniform scaling.

A source space was formed by four- fold icosahedral subdivision of the white 
matter surface of the fsaverage brain, with all source dipoles oriented perpen-
dicularly to the cortical surface. The source space data and the noise covariance 
estimated from empty room data were used to compute the inverse operator 
using minimum norm current estimation (53, 54). The analysis was restricted 
to frontal, temporal, and parietal brain regions based on the “aparc” FreeSurfer 
parcellation (55). Excluded brain regions are shaded in dark gray in the brain 
plots (Figs. 2 and 3).

Predictor Variables. The speech signal was transformed into unique feature 
spaces to represent different levels of the language hierarchy. These feature- based 
model predictors can be categorized into three main groups: 1. acoustic (acoustic 
envelope and acoustic onsets), 2. sublexical (phoneme onset), 3. lexical (word 
onset, contextual word surprisal). All predictor variables were downsampled to 
100 Hz.
Acoustic properties. The acoustic envelope predictor reflects instantaneous 
acoustic power, and the acoustic onset reflects the salient transients, of the speech 
signal. Both of these continuous representations were computed via a simple 
model of the human auditory system using gammatone filters with Gammatone 
Filterbank Toolkit 1.0 (56). A filterbank- based broad- band envelope extraction 
method was used (instead of the conventional broad- band envelope extraction 
method: absolute value of the Hilbert- transformed signal), as it has been shown 
that the filterbank- based broad- band envelope increases the neural tracking of 
the speech envelope (57). First, the gammatone spectrogram was generated with 
cut- off frequencies from 20 to 5,000 Hz, 256 filter channels and 0.01 s window 
length. Each frequency band was then resampled to 1,000 Hz and transformed 
to log scale. Then, the envelope spectrogram was averaged across 256 channels, 
resulting in a broad- band temporal acoustic envelope predictor.

The acoustic onset representations were computed on the gammatone acous-
tic envelope spectrogram, by applying an auditory edge detection algorithm (58). 
Similar to the acoustic envelope, the onset spectrogram was also averaged across 
frequency bands.

In order to estimate differences in the acoustic feature predictors between clean 
and vocoded speech, we used the linear- correlation coefficient r. We observed a 
strong positive correlation between vocoded and clean passages for the envelope 
(r = 0.92, P < 0.001), as expected from the method used to construct the vocoded 
speech. However, this correlation was smaller for the envelope onset (r = 0.46,  
P < 0.001), since acoustic onsets are less well preserved than the explicitly copied 
envelope temporal modulations in the noise- vocoded speech (59).
Sublexical properties. The Montreal Forced Aligner (60) was used to align the 
speech acoustics with the words and phonological forms from a pronunciation 
dictionary. The CMU Pronouncing Dictionary (http://www.speech.cs.cmu.edu/cgi- 
bin/cmudict), excluding the stress information, was used as the pronunciation 
lexicon. The pronunciation lexicon, transcriptions and audio file were aligned 
using the “English” pretrained acoustic model. The annotations for phoneme and 
word onsets were visualized in PRAAT (61) and manually adjusted appropriately. 
The phoneme onsets predictor was represented as the impulses at the onset of 
each phoneme.
Lexical properties. The word onsets were represented as unit impulses at the 
onset of each word.

Contextual word surprisal was estimated using an open source transformer- 
based (62) large language model (GPT- 2) (42). We used gpt2- large pretrained 
models implemented in the Hugging Face environment (63). The transcripts for 
each passage were preprocessed by removing punctuation and capitalization 
(places and names were retained). The model first tokenizes the words, where the 
tokens could represent either words or subwords and then fed into the model. 
The model outputs activation at each of the 36 layers in the network and we 
used the final layer for the word surprisal calculation. The final layer includes 
prediction scores given the previous context for each word in the passage over 
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the vocabulary token. Here, the “context” refers to all the preceding tokens or 
sequence of tokens at least 1,024 tokens long. The prediction scores were SoftMax 
transformed to compute the probability. The current word probability was com-
puted by the probability of the corresponding token and for the words spanning 
over multiple tokens, the word probability was computed by the joint probability 
of the tokens. Contextual word surprisal was computed as the −log2(Pword|context) 
and represented as an impulse at each word onset scaled by the corresponding 
model surprisal of that word.

Despite the differences in acoustical features between the vocoded and clean 
speech passages, sublexical and lexical feature time series were kept unchanged.

Computational Model. A linear forward modeling approach using Temporal 
response functions (TRFs) was used to analyze the phase- locked neural responses 
to various speech features simultaneously (17, 64). Analogous to the conventional 
ERP, TRFs estimate how the brain responds to speech features over time, or from 
the signal processing viewpoint, the brain’s impulse response to any given speech 
feature. In contrast to ERPs, that rely on averaging (perhaps) hundreds of short 
responses to estimate the brain responses to a given stimulus, TRF analysis allows 
to determine the brain responses to long- duration continuous speech. Critically, 
TRFs can also model simultaneous responses to multiple speech features (1), 
mTRF.

Here, TRFs were estimated using the boosting algorithm, which minimizes the 
l1 error between the measured and predicted source current time course, over the 
time lags −200 ms to 800 ms (using a basis of 50 ms width Hamming windows). 
Fourfold cross- validation (two training sets, one testing set and one validation 
set) was used to prevent overfitting and improve the generalized performance. 
Prediction accuracy was estimated as the explained variance of the TRF model. 
The subsequent statistical analysis was performed using each subject’s average 
TRFs and prediction accuracies across all cross- validation folds. In sum, optimal 
TRFs were estimated for each subject, speech condition, and each source current 
dipole including multiple speech features simultaneously.

Prior estimating TRFs, predictors (speech features), and neural responses were 
z- score normalized, so that they can be compared between subjects and condi-
tions. To visualize the TRFs over each Region of Interest (ROI) (temporal, frontal 
and parietal) as a single time series with the current direction, TRFs over ROIs were 
simplified using principal component analysis. Examples of the first principal 
component are shown in Figs. 2A and 3A.

TRF Peak Amplitude Extraction. The TRFs showed prominent peaks at differ-
ent latencies. Based on the TRFs across subjects, we identified time windows of 
interest and polarity for each peak; envelope TRF: P1 (30 to 140 ms) and N1 (90 to 
200 ms), envelope onset TRF: P1 (30 to 140 ms) and N1 (90 to 200 ms), phoneme 
onset TRF: P1 (30 to 140 ms) and N1 (90 to 240 ms), word onset and contextual 
word surprisal TRFs: P1 (50 to 300 ms) and N1 (330 to 650 ms), where P1 and N1 
represent the polarity of the current estimate, positive and negative respectively, 
in the time windows specified above. The average TRF response for each subject 
and condition were obtained as the sum of absolute current dipoles across the 
ROI. TRF peaks for each subject and condition were picked by searching for the 
maximum peak in the average TRF, that aligned with the current direction from 
the original source TRFs. The polarity of the source TRFs were determined by the 
current direction relative to the cortical surface at the transverse temporal region. 
If none of the peaks satisfied the polarity constraint, the minimum of the average 
TRFs in the given time window was used as the peak amplitude.

To aid the TRF peak evaluations, TRF peak amplitude noise floor was measured 
on noise model TRFs. The noise model TRFs were generated by mismatching the 
predictors and neural data and estimating the TRFs with the same parameters 
used in the TRF estimation. These noise model TRFs were then subjected to the 
same peak- picking algorithm as described above to measure the noise model 
TRF peak amplitudes for each subject. The TRF peak amplitude noise floor for each 
peak and condition is calculated as the mean noisy peak amplitude across subjects 
and represented by dashed lines in the bar plots (Figs. 2 and 3). This noise floor 
serves as a reference for evaluating the significance of the observed TRF peaks.

Quantification and Statistical Analysis. Statistical analysis was performed 
in R version 4.0 (65) and Eelbrain. The significance level was set at α = 0.05.

LMEM analysis was performed to evaluate the trends in behavioral meas-
ures. For the LMEM analysis, the lme4 (version 1.1- 30) (66), lmerTest (version 
3.1- 30) (67), and buildmer (version 2.4) (68) packages in R were used. The 

best- fit model from the full models were determined using the buildmer 
function. The assumptions of mixed effect modelling, linearity, homogeneity 
of variance, and normality of residuals, were checked per each best fit model 
based on the residual plots. Reported effect sizes represent the changes in the 
dependent measure when comparing one level of an independent variable to 
its reference level. P- values were calculated using Satterthwaite approximation 
for degrees of freedom (69, 70).

To compare the predictive power of two models, such as the full model vs. 
reduced or PRE vs. POST, the difference in explained variability at each source 
dipole was calculated. Significant differences between the two models were tested 
while controlling for multiple comparisons, using one- tailed paired- sample t test 
with threshold- free cluster enhancement (TFCE) (71) and with a null distribution 
based on 10,000 random permutations of the condition labels. The largest t- value 
and the corresponding P value are reported in results. To visualize the model fits 
in meaningful units, they were scaled by the largest explanatory power of the full 
model across subjects, allowing expression as a % of the full model. The model 
comparison plots (predictive power of each feature) reported in Figs. 2 and 3 are 
masked by significance to emphasize how each feature contributes to the model.

Lateralization tests were performed to estimate any hemispheric asymmetry 
in speech feature processing. To accomplish this, the predictive power was first 
transferred to a common space by morphing the source data to the symmetric 
“fsaverage_sym” brain, followed by morphing the right hemisphere to the left 
hemisphere. Once the data were put in the common space, a two- tailed paired 
sample t test with TFCE was used to test for significant differences between the 
left and right hemispheres.

TRF peak amplitudes between conditions were compared using paired- sample 
t test. TRF peak amplitude comparisons between main study and control study 
were performed using two- sample randomization (permutation) test using 
EnvStats (Version 2.7) (72) R package. The effect sizes for paired or independent 
sample t tests were calculated using Cohen’s d (73) (d), where d = 0.2 indicates 
a small effect, d = 0.5 indicates a moderate effect, and d = 0.8 indicates a large 
effect.

To test the changes in spectral power in delta and theta bands, the predicted 
responses were subjected to power spectral analysis. Spectral power estimates 
were averaged across trials, frequency (delta: 1 to 4 Hz and theta: 4 to 8 Hz), and 
source data. Spectral power estimates were compared across conditions using a 
paired- sample t test.

The number of subjects for the control study was determined using a power 
analysis (power.t.test function in R). This analysis was focused on the word onset 
late responses to detect an effect of priming. Analysis indicated that a sample 
size of nine subjects is sufficient to detect the desired effect with a power of 0.8. 
We instead included twelve subjects in the control experiment, exceeding the 
minimum necessary sample size determined by the power analysis.

Handedness. In our study, data from all participants were analyzed, regardless of 
their handedness, as we did not have any specific hypothesis related to handed-
ness. Nevertheless, to examine any potential influence, we compared the results 
before and after excluding the data from the five left- handed participants. This 
comparison revealed that exclusion of left- handed participants did not affect any 
of the findings of significance for PRE vs. POST or PRE vs. CLEAN comparisons. For 
the POST vs. CLEAN comparison, no findings of significance were affected except 
for the late word onset responses, where significance was lost when left- handed 
subjects were excluded.

Data, Materials, and Software Availability. The raw MEG data, behavioral 
responses, stimulus materials, and analysis codes are available at DOI: 10.5061/
dryad.sbcc2frd6 (74).
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