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Ketamine has emerged as a transformative and mech­
anistically novel pharmacotherapy for depression. Its 
rapid onset of action, efficacy for treatment-resistant 
symptoms, and protection against relapse distinguish it 
from prior antidepressants. Its discovery emerged from a 
reconceptualization of the neurobiology of depression and, 
in turn, insights from the elaboration of its mechanisms of 
action inform studies of the pathophysiology of depression 
and related disorders. It has been 25 y since we first 
presented our ketamine findings in depression. Thus, it is 
timely for this review to consider what we have learned from 
studies of ketamine and to suggest future directions for the 
optimization of rapid-acting antidepressant treatment.
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The discovery of the rapid antidepressant effects of R,S-
ketamine (ketamine) was hailed simultaneously as the most 
improbable and transformative advance in depression phar-
macotherapy in many decades. In the 1990 s, ketamine was 
known as a dissociative anesthetic (1) with nociceptive efficacy 
(2, 3) and uses in veterinary medicine (4). Ketamine misuse was 
a public health concern (5–7). Nicknamed “Special K,” its pro-
found effects on consciousness were called the “K hole” (8). The 
initiation of schizophrenia-related studies with ketamine in 
humans in the 1990s (9–11) stimulated controversy because of 
its psychoactive effects (12). Keatmine targeted glutamate 
receptors and produced response within hours of administra-
tion of a single dose. From the start, there were concerns as to 
whether its risks outweighed its benefits (13). The risks associ-
ated with ketamine treatment are real, and they have informed 
optimal clinical practice. However, when used appropriately, 
the remarkable efficacy of intermittent subanesthetic ketamine 
or the more potent of its two isomers at N-methyl-D-aspartate 
glutamate receptors (NMDAR), S-ketamine (Esketamine) can 
have a transformative positive impact on the lives of people 
suffering from depression, and potentially, the public health 
burden associated with treatment-resistant symptoms of 
depression. This review begins by characterizing advances in 
the conceptual framework for the biology of depression that 
set the stage for the discovery of the antidepressant effects of 
ketamine. It then describes the therapeutic impact of ketamine 
and considers mechanisms underlying its efficacy. Lastly, it 
addresses progress made in enhancing ketamine efficacy and 
safety.

The Neurobiology of Depression: Beyond the 
Monoamine Hypothesis

Historically, psychiatric psychopharmacology progressed more 
rapidly than pathophysiology. By 1957, pioneers identified the 

principal medication classes used currently to treat depression, 
the monoamine oxidase inhibitors, monoamine transporter 
antagonists, lithium, and the antipsychotics (14–17). These 
medications provided clues to the biology of depression, lead-
ing to monoamine-centric hypotheses (18, 19). Monoamine 
depletion studies led by Charney and colleagues at Yale (20) 
clearly implicated ongoing monoamine availability in the sus-
tained efficacy of monoamine transporter antagonist antide-
pressants. However, the failure of monoamine depletion to 
produce depression in healthy individuals (21) challenged the 
notion that depression was simply a deficit in monoamine 
signaling.

At that point, Charney and Krystal broadened their focus 
to encompass the intrinsic signaling mechanisms of the cor-
tex and limbic system. We now know that depression is asso-
ciated with altered cortico-limbic structure (22), functional 
connectivity (23, 24), and functional regulation of circuits 
regulating mood (25, 26). These insights are driving circuit-
based interventions for depression (27, 28). The molecular 
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and cellular underpinnings of these alterations are emerging 
from postmortem studies characterizing the transcriptomic, 
epigenomic, and proteomic landscape of depression (29–33). 
A complete assessment of the biology of depression, how-
ever, is beyond the scope of this review. Here, we highlight 
three relevant recently characterized depression-related 
alterations in glutamate synaptic signaling [see for review: 
(34, 35)]:

The first characteristic is reduced glutamate synaptic effi-
cacy as reflected in reduced amplitude of sensory evoked 
potentials (36) and in reduced cortical functional connectivity 
(23). Also, a recent study in PTSD with or without comorbid 
major depression (37) reported reduced synaptic strength 
as reflected by reduced “energy per cycle,” i.e., decreased 
metabolic activity (tricarboxylic acid cycle activity) per each 
molecule of glutamate released by neurons.

The second characteristic is reduced synaptic density. 
Preclinical studies described reductions in synaptic density 
and dendritic retraction in chronically stressed animals (38, 
39). Human postmortem findings also report reduced syn-
aptic density and reductions in genes coding for synaptic 
proteins (40, 41). Lower synaptic density in depression is also 
evident in vivo where it is associated with cortical circuit 
dysregulation (42).

A third characteristic is disrupted synaptic glutamate 
homeostasis. Preclinical research (43, 44) suggests that 
stress-related disruption of glial function, particularly gluta-
mate transport, elevates extracellular glutamate levels, 
overstimulates extrasynaptic N-methyl-D-aspartate (NMDA) 
receptors (NMDAR), downregulates glutamate synaptic 
function, contributes to synaptic pruning, and produces 
depression-like behavior in animals. Analyses of postmortem 
tissue from depressed patients also reveal reductions in glial 
integrity (45) and downregulation of membrane glutamate 
transporters (46).

Ketamine: Clinical Efficacy Tied to Restoration 
of Synaptic Efficacy and Synaptic Density

Clinical Efficacy. Ketamine and Esketamine efficacy contrasts 
with traditional antidepressant treatments. The first trial 
of subanesthetic ketamine (0.5 mg/kg, administered 
intravenously over 40 min) revealed antidepressant effects 
from a single dose that emerged over a few hours and 
became more pronounced over the following days (47). 
The first replication of this study mirrored these findings 
in patients with treatment-resistant depression symptoms 
(48). Subsequent clinical trials of ketamine and Esketamine 
replicated and extended these findings (49, 50). Ketamine 
and Esketamine produce response rates over 50% and 
remission rates between 30% and 50%, much higher than 
one would expect for a traditional antidepressant prescribed 
for treatment-resistant symptoms, i.e., response rates of 
<20% and remission rates of <15% (51) and comparable 
to electroconvulsive therapy (52). With ongoing treatment, 
the frequency of ketamine dosing can be reduced without 
loss of efficacy (53, 54). The durability of ketamine efficacy 
during long-term treatment is impressive. In a randomized 
Esketamine discontinuation study, only approximately 
25% of patients relapsed during Esketamine treatment in 
the year following responding to Esketamine plus a new 

antidepressant. Responders who stopped Esketamine 
but continued their antidepressant had a relapse rate of 
over 57% (55). In other words, Esketamine shows signs of 
superior protection against depression relapse in comparison 
to a newly initiated antidepressant (55) than traditional 
antidepressants in comparison to placebo (56). Overall, there 
is no clear evidence that tolerance develops to its therapeutic 
effects during long-term treatment (57).

Safety concerns limit Esketamine to clinic settings and 
efforts to develop strategies for in-home ketamine treatment 
have raised clinical concerns. The principal medical side 
effects of ketamine and Esketamine are elevated blood pres-
sure, nausea and vomiting, and dissociation (57). These effects 
are generally managed by pretreatment optimization of 
hypertension management and a serotonin-3 receptor antag-
onist for nausea. Preparing patients for the dissociative effects 
prior to treatment, supporting them during drug administra-
tion, and debriefing patients following treatment are usually 
sufficient to manage these symptoms. Rarely, patients benefit 
from additional supportive care or benzodiazepine adminis-
tration. When ketamine is administered outside of clinic set-
tings, there is an additional risk of misuse of the prescribed 
ketamine. This concern is amplified by evidence that rates of 
ketamine recreational use increased significantly in the United 
States since the Food and Drug Administration (FDA) approval 
of Esketamine (7).

Reversing Stress and Depression Effects on Glutamate Synaptic 
Signaling through Restoration of Synaptic Efficacy and Synaptic 
Density. Preclinical studies provide foundational insights into 
mechanisms underlying the efficacy of ketamine in patients 
(Fig. 1). The antidepressant effects of ketamine share features 
with other forms of neuroplasticity whereby transient circuit 
activation produces long-lasting potentiation of synaptic 
signaling, sometimes referred to as Hebbian plasticity (58). The 
first step in the processes leading to antidepressant efficacy 
of ketamine is inhibition of interneuron activity (59), resulting 
in disinhibition of glutamate release. The importance of this 
step is supported by evidence that chemogenic inhibition of 
prefrontal cortex interneurons (60) or knockdown of GluN2B 
NMDAR subunits on somatostatin (SST) and parvalbumin (PV) 
interneurons but not glutamatergic neurons (61) prevents 
or occludes the antidepressant efficacy of ketamine. The 
importance of the resulting glutamate neuronal activation 
is supported by the convergent antidepressant effects 
of local infralimbic cortex ketamine administration and 
pharmacological (62) and optogenetic (63) activation of the 
same brain region. In stressed animals, activation of NMDAR 
(64) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPAR) (65) restore synaptic efficacy, elevate brain-
derived neurotrophic factor (BDNF) levels, trigger local release 
of BDNF, and activate signaling cascades downstream from 
the receptor for BDNF, tropomyosin receptor kinase B (Trk 
B) receptors, including the mammalian target for rapamycin 
(mTOR). mTOR activation, in turn, drives restoration of dendritic 
spines pruned by stress-related processes (65, 66). The onset 
of antidepressant behavioral effects produced by ketamine 
precedes the emergence of regrown spines (66), suggesting 
that restoration of synaptic efficacy and other processes initiate 
antidepressant effects. However, antidepressant behavioral 
effects persist with the same timescale as the newly regrown 
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spines (67) and interference with spine restoration shortens 
the duration of ketamine’s antidepressant effects (66). Thus, 
mTOR-dependent spine restoration appears to be related 
directly to the duration of ketamine efficacy.

Translational research studies now provide evidence in 
healthy humans and depressed patients that support aspects 
of the models for ketamine efficacy outlined in the prior two 
paragraphs:
Support for a link between ketamine-related glutamate release and 
antidepressant response. The ability of ketamine to stimulate 
human cortical glutamate release was demonstrated using a 
direct 13C-magnetic resonance spectroscopy (MRS) technique 
(68) and an indirect positron emission tomography (PET) 
method (69, 70). Using the latter approach, the magnitude of 
glutamate release correlated with the magnitude of depression 
improvement (71).
Support for an association between ketamine-related enhancement 
of synaptic efficacy and antidepressant response. Preliminary 
studies suggest that antidepressant response is associated 
with an increase in the amplitude of sensory evoked potentials 
and stimulus-induced high-frequency cortical activity, as 
changes were observed in ketamine responders but not in 
ketamine nonresponders or healthy individuals (72, 73). 
Effective ketamine treatment also may ameliorate deficits in 
resting cortical functional connectivity (74).
Support for a role for synaptic regrowth in ketamine-related 
antidepressant response. A pilot PET study of synaptic density 
provided evidence for the existence of at least two mechanisms 
contributing to ketamine efficacy (75). Ketamine did not affect 

synaptic density 24 h after a single dose in healthy individuals 
(n = 9) or depressed individuals without synaptic deficits (n = 
6). While the depressed individuals without synaptic deficits 
improved after ketamine, their improvement was unrelated to 
changes in synaptic density and not associated with the degree 
of dissociative symptoms, i.e., a behavioral marker of the degree 
of NMDAR target engagement. However, in patients with 
depression with synaptic deficits (n = 6), ketamine increased 
synaptic density in a manner that was correlated with both 
clinical improvement and degree of dissociative symptoms.

Ketamine and Restoration of Homeostatic 
Plasticity within the Microcircuit

Ketamine effects on stress-related homeostatic plasticity also 
may contribute to its antidepressant effects (58, 76). By home-
ostatic plasticity, we refer to synaptic neuroadaptations to 
changes in neural activity that restore the balance between 
excitation and inhibition within microcircuits (77) and that 
complement input-specific synaptic plasticity (78). Depression 
produces synaptic downscaling as a response to impaired 
glutamate homeostasis as a consequence of astroglial dys-
function (43, 79) or enhanced tonic glutamate release (58). In 
both cases, NMDAR blockade by ketamine alleviates a home-
ostatic “break” on synaptic efficacy and neurotrophic signal-
ing, in part, by reducing the phosphorylation of eukaryotic 
translation elongation factor-2 (eEF2) and activation of eEF2 
kinase. These effects complement the ability of ketamine-
induced glutamate release to drive restorative plasticity.

Fig. 1. Schematic of proposed mechanisms of ketamine’s 
antidepressant effect (A): (B) structural plasticity is induced 
leading to growth of dendritic spines in the prefrontal cor-
tex, (C) enhanced synaptic efficacy, (D) extrasynaptic NMDA 
receptors’ role in homeostatic plasticity.
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Homeostatic plasticity also may contribute to the ability 
to progressively reduce the frequency of ketamine dosing 
over time during long-term treatment. Treatments typically 
begin with twice-weekly ketamine infusions and then grad-
ually decrease this frequency over time. It is not yet clear 
why the duration of ketamine’s therapeutic effects increases 
over time. One wonders if the increased duration of efficacy 
is related to increasing persistence of dendritic spines. If so, 
then steps that protect these spines might extend the dura-
tion of ketamine efficacy. Ketamine’s enhancement of AMPAR 
activation and raising of BDNF levels produces phosphoryl-
ation of methyl CpG binding protein 2 (MeCP2) Ser421, a 
protein implicated in ketamine’s effects on homeostatic plas-
ticity (58) contributing to the prolongation but not the initia-
tion of its antidepressant effects (80, 81). MeCP2, in turn, 
regulates mTOR signaling (82, 83) and, downstream, dysbin-
din (84). Dysbindin, in turn, is implicated in homeostatic reg-
ulation of glutamate release (85) as well as the outgrowth, 
maturation, and maintenance of dendritic spines (86, 87). 
Thus, the extended duration of ketamine efficacy with 
repeated dosing may engage specific proteins that might be 
targeted by novel treatments to extend the duration of ket-
amine efficacy.

Glutamatergic alterations in major depression are paral-
leled by disturbances in gamma-aminobutyric acid (GABA) 
signaling, reflected in lower cortical GABA levels in vivo (88, 
89). These reductions are prominent in severely ill patients 
with psychosis or with prominent blunting of mood reactivity 
and vegetative signs of depression (90). Postmortem studies 
also describe compromised GABA neuronal integrity, par-
ticularly for SST GABA interneurons. In patients with 
treatment-resistant symptoms and GABA deficits, serotonin 
transporter antagonist (91), transcranial magnetic stimula-
tion (92), and electroconvulsive therapy (93) treatments 
restored cortical GABA levels. One pilot study reported 
ketamine-related restoration of cortical GABA levels (94), a 
finding that was not replicated (95).

In animal studies, ketamine corrects stress-related reduc-
tions in GABA neuronal markers and GABA physiologic sig-
nals (inhibitory postsynaptic potentials) within cortico-limbic 
microcircuits (96, 97). Its induction of Hebbian and home-
ostatic synaptic plasticity is likely to occur in synapses 
between glutamate and GABA neurons (35), as well as 
between glutamate neurons. In animals, stress produces 
significant changes in GABA neurons, particularly in SST 
interneurons (35, 98). SST neurons modulate cortical func-
tional connectivity by gating the efficacy of inputs to distal 
dendrites (99, 100). In stressed animals, SST neurons show 
reduced expression of molecular markers of functional 
integrity (101). GABA deficits in mice hemizygous for knock-
out of the γ2 subunit of the GABAA receptor exhibit home-
ostatic adaptations including downregulation of glutamate 
receptors and glutamate synapses (97). Thus, chronic GABA 
deficits associated with stress appear to produce allostatic 
adaptations that maladaptively restore excitation/inhibition 
balance but at a reduced setpoint for both GABA and glu-
tamate synaptic connectivity. Ketamine also reverses the 
stress-related changes in glutamate and GABA signaling, 
maintaining excitation/inhibition balance but at normal lev-
els (96, 97). α5-preferring GABAA receptor agonism may 
produce similar effects (102).

From Ketamine to Next-Generation Rapid-
Acting Antidepressant Treatment

In the space below, we identify key questions related to ket-
amine efficacy that point to strategies optimizing NMDAR 
antagonist antidepressant treatments.

Protect the Integrity of the Restored Synaptic Connectivity 
Produced by Ketamine. We (J.H.K., S.T.W., G.S., S.J., and 
A.P.K.) have treated patients who seem to have a complete 
therapeutic response to a single dose of ketamine only to see 
this improvement fade unless another dose of ketamine is 
administered. Clearly, restoration of an optimistic, positive 
psychological attitude in these cases is not sufficient on its 
own to prevent relapse. As the maintenance of ketamine’s 
antidepressant effects depends directly on restoration of lost 
spines (66), relapse may reflect the impermanence of regrown 
spines (67) or post-ketamine increases in spine elimination 
(Fig. 2). Thus, strategies that might prolong the persistence of 
the regrown spines might also extend ketamine efficacy. Two 
types of interventions are already shedding light on paths to 
extend ketamine efficacy: behavioral interventions and mTOR 
inhibition.

Psychotherapy may augment and prolong the antidepres-
sant efficacy of ketamine, as suggested by a pilot study of 
cognitive behavioral therapy delivered on the days following 
a ketamine infusion (103). Neural mechanisms underlying 
this effect are not well understood. Ketamine affects mem-
ory reconsolidation as well as the subsequent separation of 
memory engrams in the hippocampus. Experiences, such 
as fear extinction, can by themselves engender the kind of 
dendritic spine growth in the frontal cortex that is charac-
teristic of ketamine’s effects (104). Also, there may be 
nonspecific immunological and neurotrophic effects of psy-
chotherapy similar to another behavioral intervention, exer-
cise. Exercise has robust antidepressant effects in humans 
(105) and animals (106). In animals, exercise raises brain 
BDNF levels, activates mTOR, promotes neurogenesis, 
and increases spinogenesis. It also protects newly created 
spines by reducing microglial inflammatory functions and 

Fig. 2. Potential mechanism limiting ketamine's duration of action.
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promoting their neurotrophic functions (104, 107). Psycho­
therapy is a form of enrichment of the social environment. 
In animals, environmental enrichment raises BDNF levels, 
activates Akt/mTOR signaling, promotes synaptic growth,  
and protects dendritic integrity (108–113). Thus, it is possible 
that psychotherapies enhance and sustain ketamine  
efficacy through synergistic activity-dependent forms of 
neuroplasticity.

Another potential strategy for maintenance of ketamine-
induced synapses is engagement of perineuronal nets (PNNs), 
which stabilize synapses and regulate synaptic plasticity. This 
extracellular matrix compartment coats PV interneurons 
(114), a potential initial target for ketamine’s antidepressant 
effects. The integrity of PNNs in the ventral hippocampus may 
be required for sustained antidepressant effects of ketamine 
(115), while repeated ketamine doses cause degradation of 
PNNs elsewhere (116–118).

Low-dose mTOR inhibition may extend the duration of 
ketamine efficacy. In a within-subject study of 20 depressed 
patients, pretreatment with the mTOR inhibitor, rapamycin, 
increased ketamine response rates at 2 wk from 13 to 41% 
(119). This finding contrasted with the blockade of ketamine’s 
antidepressant effects by intracortical rapamycin, which pro-
duced much higher brain exposure to rapamycin (65). The 
extension of ketamine antidepressant effects by rapamycin 
might reflect the protection of regrown synapses from elim-
ination by microglia (Fig. 3). Rapamycin may accomplish this 
by inhibiting mTOR, enhancing autophagy, and promoting 
the repolarization of microglia, i.e., inhibiting the inflamma-
tory functions of microglia (120–122) and promoting their 
neurotrophic activity (123–126). Rapamycin also may para-
doxically enhance ketamine activation of mTOR through neg-
ative feedback loops induced by mTORC1 inhibition, such as 
phosphatidylinositol-3 kinase (PI3K), AKT serine-threonine 
protein kinase (AKT), and extracellular signal-regulated kinase 
(ERK) activation (127, 128).

Neuroinflammation appears to be an important contributor 
to treatment resistance of depression symptoms (129). The 
synergy of rapamycin, an immunosuppressant, and ketamine 
highlights the importance of antiinflammatory effects of 

ketamine to its clinical efficacy. The antiinflammatory effects 
of ketamine include reductions in proinflammatory cytokine 
release, inhibition of the proinflammatory kinase, glycogen 
synthase kinase 3β (GSK3β) (130), effects on the kynurenine 
pathway, interference with interferon signaling, reduction of 
microglial inflammatory polarization, and enhancement of 
microglial autophagic activity (129, 131–133).

Enhancing Ketamine Effects on Neuroplasticity via NMDAR 
Subtype Selectivity. In randomized trials, ketamine is effective 
in a narrow dose range centered on 0.5 mg/kg administered 
intravenously over 40 min (47), but not at 0.2 mg/kg (134–
136). At 1.0 mg/kg, ketamine has greater dissociative effects 
but not greater efficacy (135), while at anesthetic doses, 
ketamine is not antidepressant (137).

The narrow therapeutic dose range for ketamine limits its 
candidate primary brain targets to just a few including NMDARs 
and perhaps hyperpolarization-activated cyclic nucleotide-
gated potassium channel 1 (HCN1) and TrkB receptors (138). 
The optimal ketamine dose for raising extracellular glutamate 
levels coincides with the typical antidepressant dose (139). 
Ketamine loses efficacy at anesthetic doses where it sup-
presses glutamate release (140). At these doses, ketamine 
blocks presynaptic NMDARs and HCN1 channels that promote 
glutamate release (141). Knockout of HCN1 channels prevents 
the emergence of ketamine’s antidepressant and neuroplastic 
effects (141). Thus, blockade of presynaptic NMDARs and HCN1 
channels may limit ketamine efficacy.

Optimizing subunit selectivity might improve NMDAR 
antagonist tolerability or efficacy, although the path for-
ward is not clear. Ketamine produces a higher affinity 
use-dependent blockade of the NMDAR cation channel 
and a lower affinity allosteric inhibition of channel open-
ing, associated with anesthetic doses (142). Ketamine 
competes with magnesium for binding to the cation chan-
nel. This competition conveys greater ketamine potency 
at NMDARs with lower magnesium affinity, receptors bear-
ing GluN2C and GluN2D subunits, relative to receptors 
bearing GluN2A or GluN2B subunits (143–145), although 
some studies challenge this view (146). Subunit selectivity 
may create a path to focus NMDAR antagonism on targets 
that promote efficacy and avoid those that may impede 
its effectiveness. Psychedelics, for example, enhance glu-
tamate release and activate mTOR without blocking syn-
aptic NMDARs or HCN1 channels (147–149) and single 
doses of psychedelic drugs appear to produce longer-
duration antidepressant effects (150–152) than single 
doses of ketamine.

GluN2B-selective NMDAR antagonists appear to produce 
antidepressant effects in patients at doses that also evoke 
dissociative symptoms (153). In animals, GluN2B subunit-
selective antagonists produce antidepressant effects via 
Hebbian plasticity (65, 154) and normalization of homeostatic 
adaptations (155–157). Knockdown of GluN2B subunits pre-
vents or occludes the expression of ketamine’s antidepres-
sant effects (80, 158). There may be drawbacks of blocking 
GluN2B-containing receptors. GluN2Bs figure prominently 
among postsynaptic NMDARs and blockade may reduce 
Hebbian plasticity (64). Also, GluN2B receptors contribute to 
presynaptic glutamate release (159) and blockade of these 
receptors reduces glutamate release that might underlie Fig. 3. Potential avenue of extension of ketamine effect by mTOR inhibition.
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therapeutic neuroplasticity. One might infer that low doses 
of GluN2B-preferring NMDAR antagonists would produce 
restorative neuroplasticity without interfering with efficacy. 
However, low doses of the GluN2B-preferring NMDAR antag-
onist, memantine, were ineffective (160).

Selective blockers of the highest affinity targets for keta-
mine, GluN2C- and GluN2D-containing NMDARs, also might 
be considered. These NMDAR subtypes are well-represented 
in interneuron populations (161–165), although they are pres-
ent in fewer excitatory synapses than GluN2B or GluN2A. 
GluN2D knockout mice do not exhibit glutamatergic neuronal 
activation in response to ketamine (166). The GluN2D-prefering 
NMDAR antagonist, S-methadone (146), showed efficacy in a 
preclinical study (167), where it activated mTOR and induced 
synaptic regrowth. Despite an encouraging preliminary report 
(168), press releases suggest that S-methadone failed in Phase 
III clinical trials. Questions related to the optimal dosing of 
GluN2D-selective antagonists remain. Selective antagonism of 
GluN2D-containing NMDARs has yet to be tested. Although 
GluN2C-containing NMDARs are the highest affinity target for 
ketamine (169), they appear to contribute to dissociative but 
not antidepressant effects. GluN2C knockout animals show 
attenuated behavioral abnormalities but not reduced antide-
pressant efficacy (170).

Optimize Ketamine Effects on Synaptic and Downstream Signaling. 
Proteins in the signaling cascades activated by ketamine might 
be targeted as 1) alternative monotherapies for depression, 2) 
as adjunctive strategies to augment ketamine efficacy, or 3) as 
a strategy for creating a “nondissociative” ketamine via synergy, 
i.e., combination of a subdissociative dose of ketamine with 
an agent that conveys full efficacy. Drugs targeting proteins 
in ketamine-activated signaling cascades have shown promise 
in preclinical antidepressant studies (76). Because ketamine 
inhibits GABA neuronal activation and increases glutamate 
release, drugs that inhibit GABAA receptor signaling (171, 172) 
or block glutamate release-inhibiting metabotropic glutamate 
receptor-2 (173, 174) would be expected to reproduce or 
augment ketamine’s antidepressant effects. As activation of 
NMDA and AMPA glutamate receptors mediates a component 
of ketamine efficacy, drugs that facilitate activation of NMDARs 
(62, 175–177) or AMPARs (AMPAkines) (178–181) might also 
augment ketamine efficacy. In addition, drugs that raise BDNF 
levels, enhance TrkB receptor activation, or directly augment 
the activation of key steps in Akt/GSK-3/mTOR signaling (182–
184) might similarly enhance ketamine’s efficacy. As has been 
suggested for GSK-3 inhibition, this strategy for combination 
treatment may enable a subdissociative dose of ketamine to 
achieve full efficacy (184).

Improve Ketamine Safety by Reducing the Dissociative Effects 
and Abuse Liability. The primary strategy employed to date to 
develop a nondissociative NMDAR antagonist antidepressant 
has been to simply test subdissociative doses. To date, 
this strategy has not yielded a treatment with superior 
efficacy to ketamine. One might argue that the combination 
of buproprion and dextromethorphan is an effective 
antidepressant (185), but this medication has yet to show a 
ketamine-like clinical profile of rapid benefits and efficacy for 
treatment-resistant symptoms.

To date, tests of pharmacologic combination strategies to 
attenuate ketamine-induced dissociation have not yet yielded 
viable treatment approaches. Lamotrigine (186), lorazepam 
(187), and nimodipine (188) attenuate ketamine-induced dis-
sociative symptoms in humans. Pretreatment with an mGluR2 
agonist (189) also attenuated ketamine-related working mem-
ory impairment in healthy subjects. However, lamotrigine, 
lorazepam, and mGluR2 agonism reduce ketamine increases 
in cortical excitability (190–193) and thereby may interfere 
with ketamine efficacy. While nimodipine also reduces cortical 
excitability (194) and protects against NMDAR antagonist tox-
icity (195), it has yet to be tested in combination with ketamine 
during depression treatment. Clozapine (196), but not halo-
peridol (197, 198), attenuates ketamine-induced psychosis in 
people with schizophrenia or healthy subjects. Glycine trans-
porter-1 (GlyT1) antagonists also reduced ketamine-induced 
psychosis in one study (199), but this finding was not repli-
cated with another GlyT1 inhibitor (200).

Ketamine misuse may be the greatest risk associated with 
ketamine treatment. This risk is well-managed when ketamine 
or Esketamine are administered solely within clinics and 
patients do not have ketamine access at home. However, 
growing anecdotal reports of misuse of ketamine prescribed 
for home use are a concern (201, 202). We (J.H.K. and G.S.) 
have seen cases of individuals prescribed “take home” keta-
mine who subsequently developed compulsive ketamine use. 
Many NMDAR antagonists have abuse liability including keta-
mine (203), nitrous oxide (204, 205), dextromethorphan (206), 
phencyclidine (207), and ethanol (208). R-ketamine, the keta-
mine enantiomer of ketamine with reduced potency at NMDA 
and opioid receptors, also appears to have reduced abuse 
liability than S-ketamine in animals (209). Pharmacologic strat-
egies for reducing the abuse liability of ketamine while pre-
serving efficacy have yet to bear fruit. The euphoric effects of 
ketamine are not attenuated by pretreatment with the dopa-
mine D2 receptor antagonist, haloperidol (198), or the opioid 
receptor antagonist, naltrexone (210). While we could not 
replicate the blockade of antidepressant effects of ketamine 
by naltrexone (211, 212), ketamine’s indirect facilitation of 
endogenous opioid signaling may contribute to its antidepres-
sant effects (213). In contrast, in recovering ethanol-dependent 
patients, nimodipine reduced ketamine-induced euphoria 
(188). Thus, combining ketamine with a blockade of voltage-
dependent calcium channels may reduce both dissociation 
risks and abuse liability.

Conclusions

Ketamine and Esketamine, with brexanolone, MDMA, and the 
psychedelics, have ushered in a first generation of rapid-acting 
antidepressants. Ketamine targets aspects of the neurobiology 
of depression that had not been linked so directly to prior treat-
ments and it has led to the characterization of novel forms of 
antidepressant-related neuroplasticity. Twenty-five years have 
passed since we (J.H.K.) first presented the ketamine findings 
in depression. Thus, it is timely to work toward a next era of 
rapidly acting antidepressants that complement or even super-
sede ketamine and Esketamine in safety and efficacy. This 
review highlighted both general and specific strategies that 
might be pursued:
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• �Protecting the integrity of regrown synapses through exer-
cise, psychotherapy, and medications, like mTORC1 inhibi-
tors, that promote repolarization of microglia, shifting them 
from proinflammatory to neurotrophic functional states.

• �Enhancing ketamine’s ability to engage synaptic plasticity 
through avoiding HCN1 antagonism and optimizing NMDAR 
subtype selectivity.

• �Targeting the downstream signaling mechanisms induced 
by ketamine as alternative monotherapies, combination 
treatments that augment ketamine efficacy, or that yield 
a nondissociative rapid-acting antidepressant, i.e., combi-
nation of a subdissociative dose of ketamine with another 
agent that augments its efficacy.

• �Development of combination treatments or new chemical 
entities that preserve efficacy but reduce the dissociative 
symptoms and abuse liability of ketamine.

These strategies also have implications for the optimiza-
tion of psychedelic treatments for depression. Psychedelics 
increase glutamate release and activate mTOR (214), but 
they do not block NMDARs. It is not clear whether this dif-
ference contributes to the long-lasting antidepressant 
effects of psychedelics (151). However, psychedelics may 
not block maladaptive homeostatic plasticity as they do not 
block NMDARs, raising the possibility that ketamine and 
psychedelics have differing profiles of clinical efficacy. 
Nevertheless, the convergent effects of ketamine and psych-
edelics upon many downstream signaling mechanisms (147, 
149, 215) may suggest that strategies outlined above for 
augmenting ketamine efficacy and safety might apply to 
psychedelics. In turn, efforts to create “nonhallucinogenic” 
psychedelics via biased 5-HT2A receptor agonism, partial 
5-HT2A receptor agonism, combinations of 5-HT2A receptor 
agonists and antagonists, and other strategies (216–222) 
may suggest strategies for improving upon ketamine.

This is an opportune moment to press forward toward 
safer and more effective treatments for depression. Prior to 
the approval of Esketamine, psychiatry seemed to be backing 
away from its most effective treatments, perhaps as an 
expression of therapeutic nihilism. For example, the number 

of sites delivering electroconvulsive therapy has declined 
(223). Yet, the need is high. Depression is a leading contribu-
tor to the global burden of disease (224), in part due to inef-
fectively treated depression. The STAR*D study suggested 
that approximately one-third of patients do not achieve 
remission over 1 y despite multiple treatment attempts (225). 
An earlier study suggested that if patients do not attain clin-
ical response over 1 y, only 20% of these patients will respond 
over the subsequent 4 y (226).

Psychiatry is increasingly interventional in addressing the 
treatment-resistant symptoms of depression, highlighted by 
the recent revisiting of deep brain stimulation as a depression 
treatment (28). As psychotherapists, psychiatrists engage in 
one of the most intense, invasive, and prolonged interventions 
in all of medicine. Ketamine, Esketamine, brexanolone, psych-
edelics, and MDMA are all intensive psychopharmacologic 
interventions that powerfully modulate consciousness, carry 
medical risks, but also offer paths to address the nihilism aris-
ing from the limited efficacy of standard treatment options. 
This is a very hopeful moment for psychiatric psychopharma-
cology and one that may profoundly impact the global burden 
of depression.

Data, Materials, and Software Availability. There are no data underlying 
this work.
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