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BACKGROUND: One branch of the RHD phylogenetic tree is represented by the weak D type 4 
cluster of alleles with F223V as the primordial amino acid substitution. F223V as well as a large 

number of further substitutions causing D variants are located at the extracellular RhD protein 

vestibule, which represents the entrance to the transmembraneous channel of the RhD protein.

STUDY DESIGN AND METHODS: RHD and RHCE nucleotide sequences were determined 

from genomic DNA and cDNA. D epitope patterns were established with commercial monoclonal 

anti-D panels.

RESULTS: The RHD alleles DOL-1 and DOL-2 had the two amino acid substitutions M170T 

(509T>C) and F223V (667T>G) in common. DOL-2 harbored the additional substitution L378V 

(1132C>G). Both alleles were observed in Africans and are probably evolutionary related. DMI 
carried M170I (510G>A), which differed from the DOL-typical substitution. DFW and DFL 

harbored the substitutions H166P (497A>C) and Y165C (494A>G). The antigen densities of 

DOL-1, DFL, and DFW were only moderately reduced.

CONCLUSION: DOL-1 and DOL-2 belong to the weak D type 4 cluster of RHD alleles. 

Together with DMI, DFL, and DFW they represent D variants with amino acid substitutions 

located at extracellular loops 3 or 4 lining the RhD protein vestibule. These substitutions were 

of minor influence on antigen density while adjacent substitutions in the transmembraneous 

section caused weak D antigen expression. All these D variants were partial D and alloanti-D 

immunizations have been observed in DOL-1, DMI, and DFL carriers. The substitution at position 

170 causes partial D although located deep in the vestibule.

A small fraction of D+ individuals have the potential to produce anti-D after exposure 

to D+ blood during transfusion or pregnancy. This apparent paradox was explained when 

the molecular bases underlying partial D were investigated.1 Findings at the genetic level 

confirmed the hypothesis of Tippett and coworkers2 that partial D phenotypes arise where 

part of the D antigen “mosaic” is lacking and that exposure to the complete D antigen 

could elicit an immune response to the missing parts of the mosaic. It was found that many 

partial D are variants of the prevalent RhD protein caused by single point mutations or by 

gene conversions between the RHCE and RHD genes. However, several partial D did not fit 

into this picture, because they harbor multiple point mutations that are dispersed throughout 

the RHD gene. The compilation of these alleles has been instrumental to construct an 

evolutionary tree of RHD alleles.3

The present phylogenetic model of RHD in humans discerns four allele clusters: the 

Eurasian D cluster with “normal” RHD as the primordial allele from which numerous alleles 

derive as well as three “African” groups of alleles designated DIVa, DAU, and weak D type 

4 clusters.4–6 Each of these African clusters is characterized by a distinct primordial amino 

acid substitution relative to the normal RHD allele: T379M in the DAU cluster, N152T 

in the DIVa cluster, and F223V in the weak D type 4 cluster. The existence of the allele 

DFV, corresponding to the single-substitution F223V, has been postulated4 long before it 

was actually found in individuals of different ethnic origin. It represents the primordial allele 

of the weak D type 4 cluster, which comprises many clinically relevant alleles like weak D 
type 4.0, 4.1, and 4.2 (DAR) and RHDΨ.
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We describe several partial D carrying amino acid substitutions at positions 170 and 

223, which are located at the extracellular RhD protein vestibule. The African partial D 

DOL-17–10 and DOL-2 harbor the F223V substitutions in a cDe haplotype, which qualifies 

them as members of the weak D type 4 cluster. Both DOL types also carry the amino acid 

substitution M170T. These substitutions are located at the RhD vestibule, which represents 

the extracellular entrance to the transmembraneous protein channel recognized by homology 

modeling.11 The presently described DMI (M170I) and the known DFV (F223V), DCS-1 

(F223V A226P), and DFR-1 (M169L, M170R, I172F) harbor substitutions at the amino acid 

positions 170 or 223. Furthermore, we describe the alleles DFL12,13 and DFW14 with single 

substitutions at positions 165 and 166, because of their proximity to position 170. We found 

that individuals carrying amino acid substitutions at the extracellular RhD protein vestibule 

were prone to making alloanti-D even if their substitution seemed to be located deep in the 

vestibule.

MATERIALS AND METHODS

Immunohematology

Serologic testing for agglutination was done by tube test with low-ionic-strength saline 

(LISS) and indirect antiglobulin test or in a gel matrix test (LISS-Coombs 37°C, DiaMed-ID 

Micro Typing System, DiaMed, Cressier sur Morat, Switzerland).15 Polyclonal antisera 

against RH10, RH20, RH23, and RH32 were from the International Blood Group Reference 

Laboratory (IBGRL, Bristol, UK) and the Australian Red Cross Blood Service (ARCBS, 

Sydney, Australia) collections. For phenotyping the C antigen, monoclonal anti-C clones 

MS24 (Ortho, Neckargmünd, Germany) and MS273 (Immucor, Rödermark, Germany) were 

used. Anti-LWa was obtained through the SCARF exchange program.

The mean D antigen density was determined by flow cytometry according to the protocol 

described previously16 with monoclonal immunoglobulin G (IgG) anti-D BS221, BS227, 

BS228, BS229, BS231, and H4111B7 (Biotest, Dreieich, Germany). The secondary 

antibody was goat anti-human IgG, Fab-fragment, fluorescein isothiocyanate conjugated 

(Jackson ImmunoResearch Laboratories, West Grove, PA).

Molecular analysis of genomic DNA

RHD nucleotide sequencing from genomic DNA for the RHD exons 1 through 10 including 

adjacent flanking intron regions was performed as described previously.5,12,15,17–19 The 

presence of the VS typical nucleotide substitution 733C>G was assessed by sequencing of 

RHCE exon 5; RHCE exon 1 was sequenced to investigate the concomitant presence of 

the nucleotide substitution 48G>C.20 The LWa molecular polymorphism was determined by 

sequencing of ICAM4 exon 1.21

Molecular analysis of cDNA

The nucleotide sequence of DOL-1, as part of the compound heterozygous DOL-1/(C)cdes 

and DOL-1/RHDΨ genotypes, was also determined from cDNA. Total RNA was isolated in 

one method from whole blood (RiboPure blood kit, Ambion, Austin, TX). RNA was reverse 

transcribed and cDNA was amplified in one-step reverse transcription buffer (SuperScript, 
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Invitrogen, Carlsbad, CA), 2.5 mmol per L MgSO4, 500 nmol per L of each of the 

primers rh522 and rr3,22 and 1 μL of reverse transcriptase/polymerase (SuperScript II 

reverse transcriptase, platinum Taq DNA polymerase, Invitrogen) in a total volume of 50 

μL. Incubation was carried out for 30 minutes at 55°C followed by 2 minutes at 94°C; 

thereafter 60 cycles were performed with 30 seconds at 92°C, 30 seconds at 62°C, and 3 

minutes at 68°C followed by a final incubation for 10 minutes at 72°C. The mixture was 

then kept at 10°C. Amplified cDNA products were treated with exonuclease and alkaline 

phosphatase (ExoSAP, USB, Cleveland, OH). Nucleotide sequencing was performed with a 

cycle sequencing kit and a DNA sequencer (ABI 310, Applied Biosystems, Foster City, CA). 

Twenty-five cycles were performed, each cycle for 15 seconds at 94°C, 15 seconds at 58°C, 

and 4 minutes at 60°C; the mixture was finally kept at 10°C.

Primers used

RHD cDNA nucleotide sequencing primers were D150r, 5′-
AACTTGATAGGATGCCACGAGCCC-3′ (antisense, cDNA nucleotide position 

150-127); DCE91f, 5′-TTTACCCACTATGACGCTTC-3′ (sense, 91-110); D4s, 

5′-ACATGATGCACATCTACGTGTTCGC-3′ (sense, 503-527); and D1036f, 

5′TTGCTGGTGCTTGATACC-3′ (sense, 1036-1053).

Nomenclature

The designation DOL was derived from the D antigen and the first two letters of the last 

name of the patient with DOL-1/RHDΨ.7 DOL-2 is molecularly similar to DOL-1. The 

designations DFW and DFL (RIR-16)23 were derived from DFR-like and Württemberg 

or Linköping, respectively, where the original observations were made. DMI represents 

RHD(M170I) and was named after its amino acid substitution M>I.

RESULTS

RHD alleles

In 1994 a D+ young male patient was recognized because he had developed an alloanti-D. 

His partial D did not fit into the classification of D categories. The underlying allele was 

DOL-1 (Table 1),13 which the patient carried in combination with (C)cdes. Since then, 

DOL-1 was discovered in two young female patients. One was hemizygous DOL-1, and 

the other was heterozygous DOL-1/RHDΨ. The name DOL was derived from the initials 

of the DOL-1/RHDΨ patient.7 DOL-2 was detected in a child due to weak D antigen 

expression. Her allele harbored an additional amino acid substitution compared to DOL-1. 

Another female patient carried the D variant DMI with a single substitution at amino acid 

position 170 (Table 1). DFW and DFL were two more variants with adjacent amino acid 

substitutions. DOL-2 was inherited from the father who carried DOL-2 in combination with 

a normal RHD (Fig. 1).

Anti-D immunization

A woman with DFL was reported to the Rhesus Immunization Registry (RIR-16),23 because 

of an anti-D acquired by transfusion or pregnancy despite a D+ phenotype (Table 2). The 

patient with DOL-1/(C)cdes was double heterozygous for sickle trait (hemoglobin S) and 
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β-thalassemia. Treatment of sickle thalassemia with two red blood cell (RBC) transfusions 

was the probable cause of anti-D immunization (RIR-27). An anti-D was found in a woman 

with DMI 5 months after D+ RBC transfusion (RIR-110). No anti-D was detected in the 

other 21 DFL and 3 DOL carriers.

Immunohematology

The D epitope (epD) patterns of D variants were determined using panels of monoclonal 

anti-D (Table 3).24 Results are shown for the hemizygous DOL-1 sample, for DOL-2, DMI, 

DFW, and DFL in comparison to the known patterns of DCS-1, DFR-1, and DFV.21 Weak 

D type 4.0 was used as a weak D control with cDe haplotype. A D+ phenotype was usually 

assigned to DOL-1, DMI, DFW, and DFL using the routine monoclonal anti-D (Table 

3). The antigen densities determined for DOL-1, DFW, and DFL were typical for a D+ 

phenotype (Table 4).25 Based on its antigen density, DFR can be typed D+, but routine 

monoclonal anti-D often miss DFR-1 because it lacks several epitopes, especially parts of 

epD 6.

All DOL alleles observed in this study were associated with the cDe haplotype. The samples 

with hemizygous DOL-1, with DOL-1/RHDΨ and with DOL-2 had a ccDee phenotype. The 

weakened expression of the C antigen in the sample of the patient with DOL-1/(C)cdes was 

explained by the presence of the (C)cdes allele in trans: agglutination titers were similar for 

this sample and controls of known (C)cdes using 11 monoclonal anti-C (Table 5).26

The DOL-1/RHDΨ sample was antigen G positive (RH12) and negative for the antigens 

V (RH10), VS (RH20), Dw (RH23), RH32 and FPTT (RH50); the DOL-1/(C)cdes sample 

was VS positive. According to molecular analysis the hemizygous DOL-1 carrier was VS 
negative while the two DOL-2 carriers were VS positive. However, DOL-2 was inherited 

independent of VS (Fig. 1). We concluded that the DOL-1 and DOL-2 alleles were not 

associated with VS.

Ethnic origin

The DOL-1/(C)cdes patient (Table 2) lived in Germany but was born in Togo27 and his 

family belonged to the Ewe for at least three generations. The Ewe people are with 22 

percent the largest ethnic group of Togo and live in southeast Ghana, southern Togo, 

and southern Benin. The individual with DOL-1/RHDΨ lived in Australia but came from 

Botswana. The individual with hemizygous DOL-1 was Czech, but her father originated 

from Lebanon. The parents of the DOL-2 baby lived in Austria but were natives of Ghana. 

The ethnic origin was German for the DMI carrier and German and Sri Lankan for the DFW 
carriers. The original DFL carrier was Swedish; 1 German and 20 Austrian carriers have 

been observed since.

DFL population survey

DFL carriers were identified among blood donors of Upper Austria12 on the basis of 

weak reactions with monoclonal anti-D HM10. Between August 15, 2005, and July 31, 

2008, we found 11 DFL carriers among 103,251 donors (frequency estimate 1 in 9386; 

95% confidence interval, 1 in 5420 to 1 in 19,397, Poisson distribution). Considering this 
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frequency in donors, at least 71 to 253 carriers of the DFL phenotype would be predicted 

to occur in the population of 1,370,000 inhabitants of Upper Austria. Twenty DFL carriers 

have already been identified at the Linz blood center among donor and patient reference 

blood samples, including one individual with the compound heterozygous alleles DFL/weak 
D type 3.

DISCUSSION

DOL-1 and DOL-2 are African alleles. The probands originated from Western and Southern 

Africa (three cases) or the Middle East (one case), although they were recognized in 

Germany, Australia, the Czech Republic, and Austria because of their variant D antigens. 

The three probands from Africa with DOL carried further RHD or RHCE alleles typical of 

African populations, such as (C)cdes,28 RHDΨ,18 and VS.28,29 People of African ancestry 

are frequently heterozygous for two different variants of RHD alleles. The exact molecular 

basis of such compound heterozygous RHD alleles is difficult to define without transcript 

analysis.

Phylogenetically DOL alleles belong to the weak D type 4 cluster, because they share 

the templated F223V substitution and occur in a cDe haplotype (Fig. 2).4 In a templated 

mutation, an isolated RHD-specific nucleotide is replaced by its RHCE-specific counterpart, 

the mechanism of which may be a short gene conversion or a single point mutation. 

Characteristic of DOL-1 is the additional M170T substitution and of DOL-2 the additional 

M170T and L378V substitutions, both of which are nontemplated. Hence, DOL-2 probably 

evolved from DOL-1. Compatible with this assumption were the origins of one DOL-1 

carrier and the DOL-2 family, who came from the neighboring West African states of Togo 

and Ghana.

The templated 667T>G substitution causing F223V represents the primordial event in 

the evolution of the African weak D type 4 cluster (Fig. 2). As postulated when the 

phylogenetic tree was initially established,4 a DFV allele was found carrying F223V in 

isolated form and occurring in a cDe haplotype.25 Recently, two additional DFV alleles were 

observed associated with the haplotypes CDe6 and cDE.21 Based on the differing haplotype 

associations, these two DFV alleles may be grouped to the Eurasian D cluster; they probably 

evolved independently of the primordial allele of the weak D type 4 cluster (Fig. 2).21 

Hence, a specific RHD allele may belong to more than one cluster. F223V is also found 

in the group of DV alleles, which are probably caused by RHD-CE-D gene conversions 

involving DNA stretches of the RHCE gene of different lengths. Likewise, the partial D 

DCS-1 carrying F223V and A226P may have arisen from a gene conversion.

Crossing over events may have caused the DAU-5 allele (recombination of DV type 1 with 

DAU-0)5 as well as the RHD-negative alleles of different haplotypes (Fig. 2). There are 

examples of RHD alleles, for which different evolutionary routes are probable. For instance, 

DFR-1 is often associated with Ce, rarely with cE. Hence, DFR-1 associated with cE may 

have derived from a chromosomal crossing over. Alternatively, DFR-1 associated with cE 
may have arisen from a gene conversion, where a stretch of amino acids including the three 

DFR-typical positions was transposed from the RHcE gene to the RHD gene. For some 
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alleles relevant data are still missing and their definite position in the phylogeny is pending. 

RHCE associations may need reevaluation once more data will have accumulated, especially 

since there seems to be a relevant frequency of recombination events; for example, ceAR 
and ceEK may also be associated with RHD deletions.

The phylogenetic derivation of alleles may provide insight in older nucleotide substitutions 

that define whole groups of alleles, like D clusters, and are instrumental for devising 

efficient genotyping strategies. As exemplified by DFV, alleles can be predicted to occur 

before their actual observation. Systematic characterization will allow simplifying a hitherto 

confusing assortment of seemingly unrelated alleles.

The partial D DFL, DFW, and DMI with single amino acid substitutions at positions 165, 

167, and 170, respectively, were allocated to the Eurasian D cluster, because the underlying 

nucleotide substitution occurred in the Eurasian RHD allele. In addition, their haplotype 

association was CDe and all probands encountered were from Europe or Asia.

As evident from three-dimensional homology modeling, the DOL typical amino acid 

substitutions F223V and M170T lie at the entrance to the transmembrane channel of the 

RhD protein, which is known as the extracellular RhD protein vestibule (Fig. 3).11 Amino 

acid residue 170, which seems to be located deep in the vestibule,11 is particularly variable 

with M170T in DOL-1 and DOL-2, M170I in DMI, and M170R in DFR. All of these alleles 

are partial D and several anti-D immunizations have been observed (Table 2).30 Moreover, 

the RHce(R170S) allele was described31 expressing the D antigen without D-specific amino 

acids.20,32 Hence, antigenic defects (Table 2)30 and neoantigens31 have been found in this 

region of the Rh protein. According to the Rh “antigenic vestibule” concept presented 

by Avent and colleagues,11,33 most RhC→RhD amino acid substitutions critical for Rh 

antigenicity lie in exofacial positions (i.e., localized at loops 3, 4, and 6) and line the 

boundary of the antigenic vestibule.33 Furthermore, several D variants harbor amino acid 

substitutions at these loops. So far, 18 D variants have been identified at loops 3 and 4 

and the adjoining helices 6 and 7 (Table 4). D variants with substitutions in extracellular 

parts were partial D with normal or moderately depressed D antigen density. D variants with 

substitutions in transmembraneous sections were weak D with low D antigen expression. 

The unexpectedly low D antigen density of the partial D DCS-1 and DCS-2 was previously 

explained by the presence of proline at position 226.21

The antigenic relationship of DOL-1 and DOL-2 with DFV DCS-1, DMI, and DFR was 

investigated, because these D variants share amino acid substitutions either at positions 

223 or 170. F223V seems to have little influence on the protein structure, because DFV 

was almost undistinguishable from normal D (Table 3).21 In contrast, DOL and DCS-1 

phenotypes showed distinct serologic profiles (Table 3). Therefore, the additional M170T 

and A226P substitutions, respectively, seem to induce structural changes reflected in 

serologically recognizable differences in antigenicity. The serologic profile of DOL-1 was 

similar to that of DOL-2 and DCS-1. Compared to DOL-1, DOL-2 carried an additional 

conservative substitution located in the transmembraneous helix 12; this substitution was 

of minor influence on antigenicity. The serologic profiles of DOL, DMI, DFW, and DFL 

were compatible with partial D. Despite some similarity between these D variants and DFR, 
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the overall epD pattern showed considerable differences (Table 3). DFR expresses the low 

prevalence antigen FPTT (RH50),30 which was absent in DOL-1.

DOL, DFL, and DMI qualified as partial D also by the presence of alloanti-D after 

D+ transfusion (Table 2). DFL carriers are quite frequent in Upper Austria with 

20 cases detected so far. Nevertheless, only one anti-D immunization in a Swedish 

individual (RIR-16) was reported to the Rhesus Immunization Registry.23 Therefore, anti-

D immunizations in DFL carriers are probably infrequent. DOL carriers are typed D+ 

by standard monoclonal anti-D reagents (e.g., BS226 and RUM-1, Table 3) and will be 

transfused with D+ RBC units and not receive prophylactic anti-D in pregnancy. It will be 

important to determine the frequency of the DOL allele in the African population to assess 

the risk for anti-D formation after transfusion or pregnancy. With DOL-1 and DOL-2, DFL, 
DFW, and DMI, further alleles are added to the growing list of RH variants that are difficult 

to discern by current serologic methods, but are clearly amenable to specific detection by 

blood group genotyping.
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Fig. 1. 
Inheritance of the DOL-2 allele. The Rhesus phenotype of the child with DOL-2 and her 

parents are shown along with their RHD and RHCE haplotypes. The normal RHce allele 

represents GenBank Accession Number DQ322275.
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Fig. 2. 
Phylogeny of Rhesus haplotypes. The phylogenetic tree is based on a previous tree for 

RHD20 taking into account the available data on Rhesus haplotypes. Four main clusters 

of RHD alleles have been described. The RHD alleles of the DIVa cluster share the three 

characteristic ancestral amino acids 62F, 137V, and 152T; those of the weak D type 4 cluster 

the F223V substitution; and those of the DAU cluster the T379M substitution. These three 

“African” clusters are segregated from the Eurasian D cluster with “normal” RHD as the 

primordial allele. The RHD alleles of the three African clusters generally occur in a cDe 
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haplotype, which indicates that the cE and Ce alleles of RHCE evolved in the Eurasian 

branch after its divergence from the other branches. For each RHD allele, the accompanying 

RHCE allele is indicated. ce* is a general indicator of a ce-like allele which frequently may 

be a variant; if known, the typically associated RHCE alleles are given.
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Fig. 3. 
Partial D with amino acid substitutions at the extracellular RhD protein vestibule. The 

two-dimensional model of the RhD protein (bottom) with 417 amino acids (small circles) 

depicts amino acids that differ in RhCE (blue) with the four C-typical substitutions (light 

blue) and the one E-typical substitution A226P (dark blue). The vestibule is lined in part 

by amino acids of loops 3 and 4 (large circle). This region is shown in more detail (top). 

The amino acid substitutions characteristic of eight partial D are indicated (colored circles 

and arrows). Four partial D harbor RhCE-like substitutions (blue circles). The nine exon 

boundaries in the RHD cDNA, as reflected in the amino acid sequence, are indicated (gray 

bars).
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