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Abstract

Hallmark features of Alzheimer’s disease (AD) include elevated accumulation of aggregated 

Aβ40 and Aβ42 peptides, hyperphosphorylated Tau (p-Tau), and neuroinflammation. Emerging 

evidence indicated that interleukin-34 (IL-34) contributes to AD and inflammatory osteolysis 

via the colony-stimulating factor-1 receptor (CSF-1r). In addition, CSF-1r is also activated by 

macrophage colony-stimulating factor-1 (M-CSF). While the role of M-CSF in bone physiology 

and pathology is well addressed, it remains controversial whether IL-34-mediated signaling 

promotes osteolysis, neurodegeneration, and neuroinflammation in relation to AD. In this study, 

we injected 3x-Tg mice with mouse recombinant IL-34 protein over the calvaria bone every other 

day for 42 days. Then, behavioral changes, brain pathology, and calvaria osteolysis were evaluated 

using various behavioral maze and histological assays. We demonstrated that IL-34 administration 

dramatically elevated AD-like anxiety and memory loss, pathogenic amyloidogenesis, p-Tau, 

and RAGE expression in female 3x-Tg mice. Furthermore, IL-34 delivery promoted calvaria 

inflammatory osteolysis compared to the control group. In addition, we also compared the effects 

of IL-34 and M-CSF on macrophages, microglia, and RANKL-mediated osteoclastogenesis in 

relation to AD pathology in vitro. We observed that IL-34-exposed SIM-A9 microglia and 3x-Tg 

bone marrow-derived macrophages released significantly elevated amounts of pro-inflammatory 

cytokines, TNF-α, IL-1β, and IL-6, compared to M-CSF treatment in vitro. Furthermore, IL-34, 

but not M-CSF, elevated RANKL-primed osteoclastogenesis in the presence of Aβ40 and Aβ42 

peptides in bone marrow derived macrophages isolated from female 3x-Tg mice. Collectively, 

our data indicated that IL-34 elevates AD-like features, including behavioral changes and 

neuroinflammation, as well as osteoclastogenesis in female 3x-Tg mice.
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1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly 65 + 

years old, characterized by progressive neurodegeneration and a gradual decline in memory 

and cognitive functions with elevated prevalence in females [1,2]. The hallmark features 

of AD neurodegeneration include elevated accumulation of aggregated amyloid beta (Aβ) 

peptides and hyperphosphorylated Tau protein, leading to the deposition of extracellular 

amyloid plaques and intracellular neurofibrillary tangles, respectively, in the brain [3]. 

Furthermore, several studies increasingly recognized that neuroinflammation occurs earlier 

than neurodegeneration in patients with AD [4–6]. Neuroinflammation generally refers to 

elevated production of various pro-inflammatory cytokines, including tumor-necrosis factor 

α (TNF-α), Interleukin-1 beta (IL-1β), and Interleukin-6 (IL-6), within the central nervous 

system (CNS) [7]. In addition, compelling evidence suggests that the Receptor for Advanced 

Glycation End Products (RAGE) also serves as a cell surface receptor for Aβ promoting 
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microglia and macrophage dysfunction in various experimental models of AD [8,9]. It is 

essential to mention that multiple systemic pathological insults, including infection, trauma, 

ischemia, and toxins, exacerbate neuroinflammation [10,11].

Published studies demonstrated that pro-inflammatory activation of macrophages and 

microglia represent key elements in neuroinflammation and the trajectory of AD. Signaling 

through the colony-stimulating factor-1 receptor (CSF-1r) is critical for maintaining the 

physiological and pathological signaling of bone marrow-derived macrophages and CNS 

microglia. The CSF-1r receptor is activated by two distinct cytokine ligands, namely 

macrophage colony-stimulating factor-1 (M-CSF) and interleukin-34 (IL-34) [12–15] that 

are essential for macrophages and microglia viability, development, and proliferation 

[16,17]. Ma et al. verified that IL-34-treated microglia show diminished neuroprotective 

effect compared to M-CSF-treated microglia [18]. Furthermore, it was demonstrated that 

ligation of M-CSF with CSF-1r was significantly inhibited by IL-34 in macrophages and 

osteoclast precursors cells [15], indicating a potential critical role of IL-34 in proliferation 

of microglia and macrophages. By contrast, the critical role of IL-34 in elevated RANKL-

primed osteoclastogenesis was demonstrated [19]. Elevated bone loss in female patients 

with AD was also reported [20], indicating that our knowledge about the impact of IL-34 

on inflammation, which is mediated in part by macrophages and CNS microglia, and 

inflammatory osteolysis in the context of sex-associated AD, remains limited.

In this study, we aimed to test the effects of local calvaria injection with mouse recombinant 

IL-34 protein on cognition and neuropathology as well as osteolysis associated with AD 

using male and female triple transgenic (3x-Tg) mouse model that is commonly used 

to assess potential therapies for the treatment of AD [21–23]. These mice feature three 

human mutations, including the Swedish amyloid precursor protein (APP) (KM670/671NL), 

the presenilin 1 PSEN1 M146V, and the microtubule-associated protein tau MAPT 
P301L mutations [24], and demonstrate elevated RAGE-dependent neuroinflammation 

[25]. Using in vitro assays, we also compared the effects of IL-34 and M-CSF on 

pro-inflammatory (M1) and anti-inflammatory (M2)-proliferated microglia, bone marrow 

derived macrophages, and RANKL-primed osteoclastogenesis.

2. Material and methods

2.1. Animals

Female and male (two-month-old) 3x-Tg mice (B6;129-Psen1tm1Mpm 
Tg(APPSwe,tauP301L)1Lfa/Mmjax) were obtained from Mutant Mouse Resource and 

Research Centers supported by NIH. The animals were kept on a 12-hour light-dark cycle 

at a constant temperature, with free access to food and water. This study was conducted in 

strict accordance with the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. All experimental procedures were approved by the Institutional Animal 

Care and Use Committee at Nova Southeastern University and Indiana University School of 

Medicine.
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2.2. IL-34 treatment and behavioral assessment

To evaluate the effects of IL-34 on AD cognitive behavioral phenotype, 3x-Tg mice were 

randomly divided into two experimental groups (10 mice/sex/group). Starting at 3 months of 

age, group I was subcutaneously injected with 100 μl of mouse recombinant IL-34 protein 

(1 μg/ml) solution in PBS over the calvaria bone every other day for 42 days. Group II 

received PBS alone and served as control. Then, we conducted a battery of behavioral tests 

to evaluate the exploratory behavior, anxiety, and memory skills. Briefly, the Elevated Zero 

maze test was conducted first to assess the number of head dips on Day 43 as described 

[26,27]. The maze was constructed of black acrylic in a circular track 50 cm in diameter and 

elevated 50 cm from the floor (Stoelting). The maze was divided into four quadrants of equal 

length with two opposing open quadrants with 1 cm high clear acrylic curbs to prevent falls 

and two opposing closed quadrants with black acrylic walls. A 5 min trial under the same 

lighting conditions began with the animal placed in the center of a closed quadrant. Mouse 

behavior was recorded for 10 min, and the number of head dips was counted later.

At Day 44, we counted the number of fecal boli using the Open field maze [28,29]. The 

Open field test comprised a square arena (60 ×60 cm). Mice were placed at the center of 

the square arena consisting of a blue plastic board surrounded by blue plastic walls (40 cm 

in height). The test was initiated by placing a single mouse in the middle of the arena and 

letting it move freely for 5 min. Mouse behavior was video-recorded, and the number of 

fecal boli was later counted.

Finally, we evaluated working memory in 3x-Tg mice exposed to IL-34 and corresponding 

controls using spontaneous alternation behavior in a Y-maze on day 45. The test was 

performed in a symmetrical grey Plexiglas Y-Maze with three arms (20 cm long × 10 cm 

wide × 20 cm high) at 120° angles, designated A, B, and C. Mice were introduced to the 

center of the maze and then were allowed to explore the three arms for 6 min freely. The 

number of arm entries and the number of triads were recorded to calculate the percentage of 

alternation with the following formula:

Alternations
ArmEntry − 2 *100

An entry occurred when all four limbs were within the arm.

Behavioral data obtained from the Elevated Zero maze were analyzed by blinded 

investigators. The Open field and Y maze spontaneous alterations data were evaluated using 

ANY-maze Video Tracking System v7.07 (Stoelting).

2.3. Brain collection and histopathology

After behavioral tests, brain samples were collected from Groups I and II as described 

[30]. Briefly, mice were anesthetized by intraperitoneal injection of a cocktail of 50 mg/kg 

ketamine and 10 mg/kg xylazine and exsanguinated. Then, brains were collected and fixed 

with 4% paraformaldehyde (PFA) in PBS overnight. Finally, samples were transferred to 

30% sucrose solution in PBS, embedded in O.C.T (Thermo Fisher Scientific) and sectioned 

at 6 μm coronal thickness.
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2.4. Immunofluorescence staining

Published clinical cohort studies were used to select AD markers for pre-clinical 

immunofluorescence staining of brain sections [31,32]. Briefly, brain sections were stained 

with the following diluted primary rabbit polyclonal antibodies against beta-amyloid 

precursor protein (CT695), phospho-Tau/Thr231 (PA5– 117230), and RAGE (PA5–78736) 

(dilution at 1:200, ThermoFisher). Then secondary antibody Goat anti-Rabbit IgG H&L 

(Alexa Fluo ® 594) (Abcam, UK, ab150080) was used. To label nuclei, the slices were 

incubated with Hoechst 33342 (1:2000, ImmunoChemistry Technologies) and then mounted 

in Aqua Poly/Mount (Polysciences, Inc.). Images were acquired using EVOS Cell Imaging 

Systems microscope (Thermo Fisher Scientific) and evaluated by Image J.

2.5. Histological analysis of calvaria

Calvariae were dissected and fixed in 4% formaldehyde overnight and then decalcified in 

10% EDTA (Thermo Fisher Scientific). The decalcified samples were dehydrated in graded 

alcohols and embedded in paraffin. Frontal calvarial Section 6 μm in thickness centered on 

the sagittal suture were obtained for histological analysis. Then, samples were stained for 

TRAP positive (TRAP+) osteoclasts and counted manually as described [33]. In addition, 

some sections were subjected to hematoxylin and eosin (H&E) staining.

2.6. Culture and treatment of microglia and bone marrow derived macrophages in vitro

Spontaneously Immortalized Microglia-A9 (SIM-A9) (ATCC® CRL-3265TM) cell line was 

obtained from American Type Culture Collection (ATCC). SIM-A9 cells were maintained 

using a complete medium growth consisting of Dulbecco’s Modified Eagle Medium: F12 

(DMEM: F-12 Medium) (ATCC® 30–2006TM) supplemented with 10% FBS (Atlanta 

Biologicals), 5% heat- inactivated horse serum (Gibco), and treated with 20 ng/ml 

recombinant mouse M-CSF or IL-34 proteins (BioLegend) for 5 days.

Bone marrow cells were isolated from the femur and tibia of female and male 3x-Tg mice 

using density gradient centrifugation in Histopaque 1083 (Sigma-Aldrich) as described 

elsewhere [33,34]. Then, cells were seeded at a density of 5 × 105 cells per well in 

alpha-MEM (Life Sciences) supplemented with 10% fetal bovine serum (FBS) (Atlanta 

Biologicals), 1% antibiotic and antimycotic solution, 1% L-glutamine, 1% MEM-NEAA 

(Life Sciences), and treated with 20 ng/ml recombinant mouse M-CSF or IL-34 proteins 

(BioLegend) for 5 days.

Using M-CSF, our group and others reported that naïve (M0) macrophages and microglia 

could be polarized into two different phenotypes, e.g. proinflammatory (M1) or anti-

inflammatory (M2) in response to a mixture of bacterial liposaccharides (LPS) and 

mouse recombinant IFN-γ protein or mouse recombinant IL-4 protein, respectively [34–

37]. Therefore, to generate pro-inflammatory M1 and anti-inflammatory M2 populations, 

either M-CSF or IL-34 pretreated SIM-A9 microglia or bone marrow-derived macrophages 

(BMDM) were stimulated with mouse recombinant IFN-γ (BioLegend) (10 ng/ml) in the 

presence of lipopolysaccharide (LPS) (Sigma-Aldrich) (10 ng/ml LPS from Escherichia 
coli O26:B6) for M1 or with IL-4 alone (BioLegend) (20 ng/ml) for M2 for 24 h. As a 

control, non-polarized (M0) BMDM or SIM-9 were continuously stimulated with M-CSF 
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or IL-34 alone. After 24 h, conditioned media was harvested from M0, M1, and M2 cells. 

Finally, concentrations of TNF-α, IL-1β, and IL-6 proteins were measured in the collected 

supernatant using commercial sandwich enzyme-linked immunosorbent assay (ELISA) kits 

(R&D) according to the manufacturer’s instructions.

2.7. RANKL-mediated osteoclastogenesis in vitro

To generate osteoclasts, IL-34 or M-CSF proliferated BMDM isolated from 3x-Tg female 

mice were exposed to mouse recombinant RANKL protein (10 ng/ml) in the presence or 

absence of AD-associated Aβ40 and Aβ42 peptides (1 ng/ml or 10 ng/ml; Biolegend). 

Six days later, cells were stained for tartrate-resistant acid phosphatase (TRAP) using a 

leukocyte acid phosphatase kit (Sigma). TRAP-positive (TRAP+) cells with more than three 

nuclei were considered as mature osteoclasts. TRAP+ multinuclear cells were counted, and 

the results were expressed as numbers per well.

2.8. Real-Time PCR assay

Total RNA was isolated from IL-34- and M-CSF-treated M0, M1, and M2 macrophages 

and SIM-A9 cells using the PureLinkTM RNA Mini Kit (Ambion, Life Technologies), and 

reverse transcription of 1 mg of total RNA was performed using the Verso cDNA Synthesis 

Kit (Thermo Scientific) following the manufacturer’s recommendations. Using TaqManTM 

Universal PCR Master Mix (Applied Biosystems, Life Technologies) assay, we measured 

expression patterns of IL-1β (Mm00434228_m1), IL-6 (Mm00446190_m1), and TNF-α 
(Mm00443258_m1).

Data were analyzed using the 2−ΔΔCt method normalized to glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) (Mm 99999915_g1). In addition, we measured relative expression 

of osteoclastogenic Acp5/Trap mRNA using Sybr™ Green Master Mix (Applied Biosystems 

Diagnostics) and results were normalized to glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH). The following primer sequences were used: Acp5/Trap (XM_006509945.3) (F: 

5’CCAGCGACAAGAGGTTCC-3’, R: 5’-AGAGACGTTGCCAAGGTGAT-3’). GAPDH 

(F: 5’- AACTTTGGCATTGTGGAAGG-3’, R: 5’-ATGCAGGGATGATGTTCTGG-3).

2.9. Statistical analysis

Data analyses were conducted using R (version 4.0.2, R Foundation for Statistical 

Computing, Vienna, Austria) and GraphPad Prism for MacOS Version 9.5.1 software 

(GraphPad; La Jolla, CA, USA). Mann-Whitney and parametric t-test with Welch’s 

correction were used appropriately to compare treated groups, controls, and sex. The one-

way ANOVA with post-hock Turkey’s test was used to compare more than two experimental 

groups. Data are displayed as mean ± Standard Deviation (SD). Treatment differences with 

p-values < 0.05 were considered statistically significant.
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3. Results and discussion

3.1. Local calvaria injection with IL-34 recombinant protein promotes anxiety and 
pathological memory changes in 3x-Tg female mice

A number of studies have established that anxiety and behavioral alterations positively 

correlate with AD neuroinflammation [38,39]. In order to develop possible effects of IL-34 

on AD pathology, we thought to evaluate whether local calvarial injection of recombinant 

IL-34 protein affects AD-like behavioral alterations and cognitive impairment in 3x-Tg mice 

[39]. Therefore, to test the long-term impact of subcutaneous injection of IL-34 recombinant 

protein over the calvarial bone on the emotion and levels of anxiety in female and male 

3x-Tg mice, we first measured the number of head dips using an elevated zero test. As 

shown in Fig. 1A, the number of head dips decreased in female 3x-Tg mice exposed to 

IL-34 compared to the control group. In addition, a tendency to reduce the number of head 

dips in response to local calvaria injection with IL-34 was also observed in 3x-Tg male mice 

(Fig. 1A). Our data concur with previously published observations that chronic stress and 

inflammation reduced the number of head dips in AD-like APPS1 mouse mode [40]. Since 

head dipping is linked to exploratory behavior and anxiety in rodents [41], it is plausible that 

IL-34 reduces exploratory behavior in 3x-Tg mice. Typically, AD patients with concomitant 

apathy or depression interfering with their social interaction behavior display elevated serum 

and cerebrospinal fluid levels of inflammatory mediators [42,43]; however, no levels of 

IL-34 were evaluated in these published observations.

In addition to the reduced number of head dips, elevated defecation is another indicator 

of the anxiety behavior for mice exposed to a new and potentially dangerous environment 

[44–46]. Therefore, we next examined whether IL-34 promotes defecation in 3x-Tg mice 

using the open field test [28]. The number of defecation boli was significantly elevated 

in females exposed to IL-34 compared to their control groups (Fig. 1B). In contrast, no 

significant changes in the number of defecation boli were detected between IL-34 exposed 

and a control group of male 3x-Tg mice, indicating that local calvarial injection with 

IL-34 recombinant protein elevates defecation and anxiety in 3x-Tg female mice. It is 

essential to mention that patients with dementia have an increased risk of fecal incontinence 

complications than healthy individuals [47]. Furthermore, positive correlation between 

elevated levels of inflammatory markers and a higher degree of anxiety was observed in 

AD patients [43]. Future studies might explore the potential implications of IL-34 in AD 

anxiety manifestations.

AD indeed correlates with pathophysilogical changes in brain regions involved in the 

learning and memory process [48–50]. Therefore, we also evaluated the spatial working 

memory in IL-34-exposed 3x-Tg mice using the Y-maze spontaneous alteration test [51]. It 

is expected that a mouse with intact working memory will remember the arms previously 

visited and demonstrate the tendency to enter a less recently visited arm [52]. However, 

we observed that the percentage of spontaneous alterations in IL-34-exposed female 3x-Tg 

mice was significantely elevated compared to males and corresponding control groups of 

mice (Fig. 1C&D). Since a study reported that wild-type mice have a reduced percentage 

of spontaneous alternation behaviors compared to 3x-Tg mice [53], our data indicated 

Ho et al. Page 7

Biomed Pharmacother. Author manuscript; available in PMC 2023 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that IL-34 elevates cognitive deficits in female 3x-Tg mice. These results correlate with 

previous findings demonstrating elevated impairments in female 3x-Tg mice only [54]. 

On the other hand, various studies reported no sex differences in the 3x-Tg behavioral 

phenotype indicating that housing conditions play a critical role [53–55]. Specific housing 

conditions difference may critically contribute to the discrepancy between our results and 

previous Y maze spontaneous alterations test findings. Altogether, these behavioral results 

demonstrated that local calvaria injection with recombinant IL-34 protein promotes anxiety 

and pathological memory changes in female 3x-Tg mice.

3.2. IL-34 elevates accumulation of β-Amyloid precursor protein, p-Tau and RAGE in the 
brain cortex of 3x-Tg female mice

Published evidence demonstrated that amyloid beta (Aβ), hyperphosphorylation of tau (p-

Tau), and RAGE are significant hallmarks of pathological features of neurodegeneration 

and neuroinflammation in patients with AD [3,8,56]. Since AD-related behavioral and 

cognitive changes often correlate with pathological changes in prefrontal cortex [57–59], 

we tested next the impact of IL-34 administration on the expression levels of β-Amyloid 

precursor protein, p-Tau/Thr231 in the brain cortex of female and male 3x-Tg mice using 

immunofluorescence assay. In this study we observed that the fluorescent intensity levels 

of β-Amyloid precursor protein and p-Tau/Thr231 were dramatically elevated in the brain 

cortex from the IL-34 exposed female group compared to males and corresponding controls 

of 4-month-old mice (Fig. 2A–D). Surprisingly, it was demonstrated that progressive 

amyloidogenesis appears between 6 and 12 months of age in relation to sex [24, 60]. 

Sex-specific genetic studies point to a strong association between expression levels of AD 

genetic loci and Aβ42 and tau, as well as tangle density among female, but not male, AD 

patients [61]. In contrast, a recently published study demonstrated no sex differences in 

p-tau/Th231 levels in cerebrospinal fluid collected from patients with AD [31].

Our group and others previously demonstrated that elevated production of Aβ peptides 

from its precursor protein APP and tauopathy is associated with systemic inflammation [62–

64]. Among multiple signaling pathways implicated in systemic inflammation, increasing 

evidence shows that RAGE signaling has been involved in AD and related dementia 

[8,65,66]. Fig. 2 (E&F) demonstrates that the immunohistochemical distribution of RAGE 

was significantly elevated in the brain cortex of 3x-Tg female mice, not males, exposed 

to IL-34 compared to their control at 4-month-old age. In other studies, it was reported 

that RAGE expression was increased in the cortex and hippocampus of the 22–24 months 

old 3x-Tg female mice [25]. Furthermore, a similar age-dependent increase in RAGE 

expression was reported in transgenic AD mice with overexpression of the Swedish 

mutant form of APP [25,67,68]. In postmortem brains of AD patients, hippocampal RAGE 

immunoreactivity shows an explicit disease stage dependency, with linearly increasing levels 

from early to advanced AD as a function of AD pathology severity [69]. Thus, our data 

indicate that IL-34 exacerbates the expression of RAGE in the brain cortex of 3x-Tg 

mice. Together, these observations suggested that locally injected recombinant IL-34 protein 

promotes neurodegeneration and neuroinflammation in female 3x-Tg mice via upregulation 

of amyloidogenesis, phosphorylation of tau, and RAGE.
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3.3. Local injection of IL-34 elevates inflammatory osteolysis in 3x-Tg female calvaria

Since emerging evidence suggested that AD pathology correlates with elevated levels of 

osteolysis along with an increased number of inflammatory cell infiltrates and TRAP+ 

osteoclasts [70], we examined whether local administration of IL-34 promotes osteolysis 

in 3x-Tg mice. Histological images of calvarial tissues demonstrate elevated numbers of 

TRAP+ osteoclasts in IL-34-exposed female and male 3x-Tg mice compared to control 

groups, indicating that locally injected IL-34 recombinant protein accelerates osteolysis 

in 3x-Tg mice independently of sex (Fig. 3A&B). A study demonstrated that systemic 

administration of IL-34 to mice reduces trabecular bone mass in wild-type mice [19]. 

Our data agree with emerging evidence that chronic inflammatory osteolysis contributes to 

neuroinflammation and dementia, indicating that chronic peripheral inflammation mediated 

by IL-34 may be a novel therapeutic target for AD [71–73].

Our findings of osteolysis in 3x-Tg mice are also consistent with studies using different 

mouse models of AD. As an example, significant increases in osteoclastogenesis and bone 

resorption were observed in Tg2576 mice in which the Swedish mutant APP is ubiquitously 

expressed under the control of a prion promoter [74]. In their studies they demonstrate 

that activation of the RAGE receptor in osteoclast lineage cells, leads to increased 

osteoclastogenesis, bone resorption, and an overall osteoporotic bone phenotype[74]. 

Additionally, the 5xFAD and hTau mouse models of AD have also been reported to exhibit 

osteoporotic phenotypes and numerous other genetically modified mice have been shown to 

have low bone mass and their genetic alterations are associated with AD as was recently 

reviewed [75–78]. Of note, the incidence of osteoporosis and AD increases during/following 

menopause, suggesting a role for sex-based hormones in these diseases. Indeed, hormones, 

including sex-based hormones such as follicle-stimulating hormone and estrogen have been 

strongly implicated in both AD and osteoporosis and treatments targeting this axis may 

improve bone health as well as AD. Important to these studies, estrogen and IL-34 levels 

appear to correlate in many inflammatory disorders, further suggesting that targeting IL-34 

could be a novel method for improving both diseases.

3.4. IL-34 elevates the production of AD-associated pro-inflammatory cytokines from SIM-
A9 microglia and macrophages in vitro

Our data indicated that local injection of IL-34 elevates brain inflammation in 3x-Tg 

mice (Fig. 2). Therefore, to extend our findings beyond the IL-34 barrier, we compared 

pro-inflammatory effects between IL-34 and M-CSF on non-treated M0, pro-inflammatory 

M1, and anti-inflammatory M2 SIM-9 microglia-like cells in vitro. Using Real-Time PCR, 

we evaluated the expression of pro-inflammatory cytokines, including TNF-α, IL-1β, and 

IL-6 mRNA, in the SIM-A9 microglia promoted toward M0, M1, and M2 phenotypes (Fig. 

4A). Compared to M-CSF/M1, exposure to IL-34 significantly elevated TNF-α, IL-1β, and 

IL-6 mRNA expression patterns in M1 microglia. Using ELISA assay, we also observed that 

TNF-α, IL-1β, and IL-6 concentrations were significantly elevated in the culture supernatant 

compared to M-CSF/M1 microglia (Fig. 4B). However, no significant increase in those 

cytokine levels was detected in M0 or M2 SIM-9 cells exposed either to M-CSF or IL-34.
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Next, BMDM isolated from female and male 3x-Tg mice were exposed either to mouse 

recombinant IL-34 or M-CSF and then induced toward M0, M1, and M2 macrophages 

in vitro. After 24 h, we observed that expression of TNF-α, IL-1β, and IL-6 mRNAs 

in IL-34/M1 macrophages was significantly elevated compared to M-CSF/M1 cells (Fig. 

4C&D). It is important to note that we detected elevated release of TNF-α and IL-6 from 

female IL-34/M1 macrophages, while male IL-34/M1 demonstrated elevated production of 

IL1β. No or little effect on M2 macrophages was observed in response to M-CSF and IL-34.

It was also shown that recombinant IL-34 protein elevates systemic inflammation mediated 

by macrophages in wild-type mice compared to M-CSF-proliferated macrophages [79]. 

Furthermore, a recently published study demonstrated reduced clearance ability of Aβ 
pathological forms by IL-34 proliferated microglia compared to those proliferated by M-

CSF in experimental models of AD [80]. A study demonstrated that expression patterns 

of CSF-1r and M-CSF are upregulated, while IL-34 was decreased in postmortem brains 

collected from patients with AD [81]. Furthermore, it was also reported that IL-34 induces 

differentiation of macrophages isolated from healthy human individuals and wild-type 

mice toward anti-inflammatory M2 phenotype [82]. In addition, IL-34 improves healing 

in wild-type rats [83], indicating that the role of IL-34 in neuroinflammation and promotion 

of dementia pathologies remains controversial. Nonetheless, data from the current study 

indicate that the production of pro-inflammatory cytokines is elevated from IL-34/M1-

proliferated SIM-9 microglia and bone marrow-derived macrophages isolated from 3x-Tg 

mice compared to those cells proliferated toward M-CSF/M1 in vitro.

3.5. Aβ40 and Aβ42 exacerbates RANKL-primed osteoclastogenesis in the presence of 
IL-34 in vitro

Because we observed that IL-34 elevates inflammatory osteolysis in 3x-Tg female mice, 

we compared the impact of IL-34 and M-CSF on RANKL-primed osteoclastogenesis in 

the presence of the AD-associated Aβ40 and Aβ42 peptides in vitro using BMDM isolated 

from 3x-Tg females. As illustrated in Fig. 5A–E, both Aβ40 and Aβ42 elevate expression 

patterns of pro-osteoclastogenic Acp5/TRAP mRNA and the number of TRAP+ osteoclasts 

in response to IL-34/RANKL axis compared to M-CSF/RANKL exposed BMDM. These 

data correlate well with an earlier report demonstrating that Aβ enhances RANKL-primed 

osteoclastogenesis [84]. In contrast, a study demonstrated that IL-34 regulates osteogenesis 

and enhances fracture healing in wild-type mice [83]. Surprisingly, it was also demonstrated 

that Aβ promotes bone formation in wild-type mice [85]. Therefore, further investigations 

are warranted to elucidate the impact of IL-34 and M-CSF in inflammatory osteolysis and 

bone remodeling in the context of AD and related dementia.

4. Conclusion

In this study, we demonstrated that local calvaria injection of recombinant IL-34 protein 

dramatically elevated AD-like behavior and neuroinflammation in 3x-Tg female mice. 

Furthermore, we also observed that IL-34 promoted calvaria inflammatory osteolysis 

compared to the sham control injected group of mice. Finally, we also demonstrated 

that IL-34-proliferated pro-inflammatory/M1 SIM-A9 microglia and BMDM isolated from 
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3x-Tg mice released significantly higher amounts of pro-inflammatory cytokines, TNF-α, 

IL-1β, and IL-6, compared to M-CSF-proliferated/M1 cells in vitro. In addition, IL-34 

elevates RANKL-primed osteoclastogenesis in the presence of Aβ40 and Aβ42 peptides in 
vitro. While a more comprehensive assessment of the IL-34 role in AD pathology is required 

in future studies, our data indicated that a novel therapeutic regimen targeting IL-34 could 

mitigate neuroinflammation, neurodegeneration, and elevated bone loss observed in patients 

with AD.
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Fig. 1. 
Local subcutaneous calvaria injection with recombinant IL-34 protein elevates AD-like 

cognitive behavioral phenotype in 3x-Tg female mice. A: Number of head dips observed in 

female and males of 3x-Tg mice exposed to recombinant IL-34 protein using the Elevate 

Zero maze. B: Defecation levels observed in the Open Field maze; C: Y-maze spontaneous 

alterations heat maps of female and male 3x-Tg mice exposed to IL-34. D: The percentage 

of spontaneous alterations counted from the Y-maze heat maps. Data are expressed as the 

Mean ± SEM (n = 10/group). *p < 0.05, * *p < 0.01.
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Fig. 2. 
Effect of local calvaria injection with recombinant IL-34 protein on the expression beta 

amyloid precursor protein (β-APP), phosphorylated Tau (Thr231), and RAGE (shown in 

Red) in the brain cortex of 3x-Tg mice. To label nuclei, the slices were incubated with 

Hoechst 33342 (Blue). T-test was used to evaluated statistical significance between sex-

matched, IL-34 treated and control groups. Data are expressed as the Mean ± SD. * **p < 

0.001.
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Fig. 3. 
Manifestations of osteolytic lesions found in calvaria locally exposed to recombinant IL-34 

protein in female and male 3x-Tg mice. Histological evaluation of TRAP+ osteoclasts (A) 

counted in a microscopic field of TRAP-stained sections (B) in IL-34 exposed and control 

mice. Arrowheads demonstrate TRAP+ osteoclasts. Data are expressed as the Mean ± SD. 

T-test was used to evaluated statistical significance between sex-matched, IL-34 treated and 

control groups. Data are expressed as the Mean ± SD. * **p < 0.001. Scale bar = 100 μm.

Ho et al. Page 19

Biomed Pharmacother. Author manuscript; available in PMC 2023 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Effects of IL-34 and M-CSF on the release of pro-inflammatory cytokines from SIM-9 

microglia cell line and bone-marrow-derived macrophages isolated from 3x-Tg in vitro. 

mRNA expression and protein release of TNF-α, IL-1β, and IL-6 from SIM-A9 (A, B) 

and bone marrow derived macrophages, BMDM, (C, D) exposed either to IL-34 or M-CSF 

and then proliferated toward M0, M1, and M2 phenotypes. Specifically, we induced M1 

proliferation using a mixture of LPS and IFN-γ (10 ng/ml each); M2 were proliferated 

using IL-4 (20 ng/ml); M0 are non-treated control cells. Comparisons among groups were 

performed with the one-way ANOVA followed by post hoc Tukey’s test. Data are expressed 

as the Mean ± SD *p < 0.05, * *p < 0.01, * **p < 0.001.
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Fig. 5. 
Effects of IL-34 and M-CSF on RANKL-primed osteoclastogenesis exacerbated by AD-

associated Aβ40 and Aβ42 peptides in vitro. Bone marrow cells were isolated from 

3x-Tg female mice and then proliferated either with IL-34 or M-CSF for 3 days. 

Then, osteoclastogensis was mediated by mouse recombinant RANKL protein in the 

presence or absence of various concentrations of Aβ40 and Aβ42 peptides. Expression of 

osteoclastogenic ACP5/TRAP mRNA in RANKL-primed osteoclast precursors proliferated 

by IL-34 or M-CSF in the presence or absence of various concentration of Aβ40 (A) and 

Aβ42 (B) peptides. C: Microscopic evaluation of the TRAP staining and quantification of 

TRAP+ multinucleated cells in RANKL stimulated BMDM (D &E). Comparisons among 

groups were performed with T-test. Data are expressed as the Mean ± SD. * **p < 0.001.
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