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For medicine to fulfill its promise of personalized treatments based on a better understanding of disease biology, 
computational and statistical tools must exist to analyze the increasing amount of patient data that becomes 
available. A particular challenge is that several types of data are being measured to cope with the complexity of 
the underlying systems, enhance predictive modeling and enrich molecular understanding.

Here we review a number of recent approaches that specialize in the analysis of multimodal data in the context of 
predictive biomedicine. We focus on methods that combine different OMIC measurements with image or genome 
variation data. Our overview shows the diversity of methods that address analysis challenges and reveals new 
avenues for novel developments.
1. Introduction

The development of personalized treatment for patients with any 
disease and condition is a current ambition in the medical research 
field. With our access to diverse molecular and phenotypic readouts 
of human bodies, their tissues, and cells, we hope to eventually under-

stand their relationships and decipher all possible causal mechanisms 
behind diseases to act upon them. However, at the moment, this still 
seems like a distant goal. There is still much to be understood about the 
mechanisms of diseases and why certain drugs work the way they do.

A big challenge along this path of discovery is the integration of 
patient data measured from multiple modalities (multimodal). In this 
review we summarize recent computational advances for multimodal 
analysis of data for the following tasks: (i) patient survival prediction, (ii) 
disease biomarker and subtype classification, (iii) therapy response predic-

tion, and (iv) clinical decision making (Fig. 1).
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1.1. Multimodal data types

For these predictive tasks, we consider combinations of five high-

level classes of data types. First, are genetic data that measure parts 
of the DNA sequence of patients, such as single nucleotide polymor-

phisms (SNPs) or copy-number variations (CNVs) using SNP arrays, 
enriching for regions of interest using panel-based, whole-exome, or 
whole-genome-sequencing (WGBS) approaches. These data allow us to 
assess DNA sequence variation and link them to disease [1].

Second, proteogenomic measurements of gene products from the hu-

man genome are a common source of measurement, as the activity of 
a subset of genes is often changed in diseased cells due to misregula-

tion. Measuring the transcriptome of human cells is most commonly 
done using RNA-seq these days [2,3]. It allows quantifying the ex-

pression activity of tens of thousands of transcripts made from cells. 
Many different types of RNAs can be quantified in this way for ex-

ample messenger RNAs (mRNAs) or micro RNAs (miRNAs). After DNA 
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Fig. 1. Overview of multimodal data types and prediction tasks that are discussed in this review.
transcription, mRNA transcripts are converted into proteins, which can 
be measured with Mass spectrometry (MassSpec) technologies some of 
which are directly applicable in a clinical setting [4]. MassSpec can be 
quantitative and can measure up to thousands of proteins in cells study-

ing their protein synthesis dynamics [5].

Third, epigenomic data provides a useful source of information to 
investigate the function of genomic regions. Epigenome activity dif-

fers between human cell types albeit the DNA nucleotide sequence of 
these cells is the same. Epigenome activity can be measured by detect-

ing histone modifications or accessible chromatin using different ap-

proaches [6,7]. These measurements provide a genome-wide readout on 
accessible regions, where regulatory proteins, such as transcription fac-

tors, bind which play an important role in diseases. Another important 
epigenomic variation is DNA methylation (DNAm), a stable modifica-

tion of the DNA, which can be measured from cells or liquid biopsies 
and with changes related to the occurrence of many diseases [8].

Fourth, imaging of human body parts and cells is routine in many 
clinical applications and different technologies exist. For example, thin 
tissue sections, stained with hematoxylin and eosin (H&E), are fre-

quently used as a gold standard in pathology to confirm the presence 
of certain diseases and are thus available for most patients. To further 
solidify a diagnosis for some of the cases an IHC (immune histo chem-

istry) staining can be prepared in addition, where a certain protein is 
labeled by an antibody. These stained tissue sections can nowadays be 
digitalized with slide scanners and are called whole slide images (WSIs). 
Other technologies, such as Magnetic resonance Imaging (MRI), can be 
used to record living parts of patient bodies such as organs or individual 
blood vessels. Each method has different advantages concerning resolu-

tion, cost, and time involved and some clinical applications may involve 
the generation of multimodal images using different technologies [9].

Finally, clinical data that is compiled as part of medical examina-

tions can contain a diverse set of measurements (e.g. blood pressure, 
blood glucose levels, or inflammatory markers) or patient character-

istics (e.g. sex, age). It also may contain a record of a patient’s drug 
prescription schedule or the history of previous therapies that may be 
utilized by models. Clinical data is used in daily routines to aid deci-

sions and thus is vital to be considered in multimodal methods.

1.2. Resources for multimodal data

To be able to integrate data from different modalities one often 
needs to obtain large datasets from existing resources [10]. Many 
such resources are created from systematic datasets that are produced 
by large consortia. In the course of the papers discussed the fol-

lowing consortia are important. For example, The Functional ANno-

Tation Of the Mammalian genome (FANTOM) Consortium has gen-

erated many proteogenomic datasets for analysis [11]. The Interna-

tional Cancer Genome Consortium (ICGC) and The Cancer Genomics 
Atlas (TCGA) program [12] have gathered measurements of all five 
data types discussed here (Fig. 1). The international human epige-
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nomics consortium (IHEC) [6] has gathered diverse epigenome and 
proteogenomic datasets. The Genotype-Tissue Expression (GTEx) [13]

consortium has measured genetic and RNA expression data from diverse 
tissues. Consortia for pathological analyses that will collect and pro-

vide data are BigPicture (https://bigpicture .eu) and PathLAKE (https://

www .pathlake .org /our -partners/). Finally, the UK Biobank [14] pro-

vides one of the largest datasets of genetic data with additional image 
and clinical data currently available.

There are resources specialized for the data types. For example, the 
NHGRI-EBI GWAS catalog harbors results from genome-wide associa-

tion studies (GWAS) from human genetic studies [15]. Many processed 
epigenome datasets can be downloaded from the IHEC portal [16]. 
RadImageNet is a new resource specialized to enable transfer learning 
efforts using deep learning derived models for the analysis of radiology 
images [17]. The cancer imaging archive [18] holds mainly radiology 
images, but also whole WSIs and metadata and the NCI Imaging Data 
Commons [19] holds many different types of images from cancerous 
tissue.

Data from other resources that catalog interactions between gene 
products, i.e. STRING [20], or between regulatory regions and genes, 
i.e. EpiRegio [21], are sometimes used as prior information for integra-

tion.

1.3. Computational challenges in integrating multimodal data

A holistic characterization of patients and model organisms, which is 
key for progressing personalized medicine, requires the comprehensive 
integration of data from all available sources. However, the complex na-

ture of these heterogeneous multi-modal data poses distinct challenges 
for successful integration in a predictive setting.

First, missing values are very common in omics data due to dropouts, 
the limited sensitivity of measuring instruments, and patients missing 
appointments.

Second, in predictive medicine clinical data is often available in 
addition to molecular data - the efficient integration of this typically 
low-dimensional data with high-dimensional omics data poses a chal-

lenge to many standard algorithms.

Third, often models need not only to have a high predictive power, 
but also be interpretable. In particular for deep-learning based methods 
there is a trade-off between discriminative power and interpretability, 
with those models with the highest predictive power often being black-

box in nature. Related to this challenge is the existence of a wealth of 
prior knowledge in the form of gene set annotations or protein-protein-

interaction networks. Integration of this knowledge into multi-omics 
models is challenging but can not only aid interpretability but also boost 
model performance.

A common strategy to address these challenges is representation 
learning (Fig. 2). In this modeling paradigm, un-observable latent vari-

ables are inferred from observed high-dimensional data. For predictive 
tasks, these latent variables are learned such that they are associated 

with an outcome of interest (e.g. survival or therapy response). In mul-

https://bigpicture.eu
https://www.pathlake.org/our-partners/
https://www.pathlake.org/our-partners/
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Fig. 2. Representation learning for multi-omics data integration. Low-dimensional latent variables (LVs, middle) are derived from multimodal, high-dimensional 
molecular data (omics layers, left). Based on different techniques including deep neural networks, autoencoders, or graph-based methods (integration method) and 
optionally leveraging existing prior knowledge, LVs are inferred such that they are associated with a clinical outcome of interest (right).
timodal representation learning, a joint representation across all modal-

ities is inferred that paints a comprehensive picture of the underlying 
biological processes driving the outcome of interest. If available, prior 
knowledge e.g. in the form of protein-protein interaction networks can 
further guide the inference of interpretable latent representations. An 
explanation of all abbreviations used in the manuscript can be found in 
Table 3.

2. Overview of multimodal analysis methods

2.1. Methods for multi-omics

With advances in high-throughput techniques for molecular profil-

ing, omics data - molecular data that comprehensively assess a set of 
molecules - has been becoming more and more prevalent in the context 
of predictive biomedicine [22]. These data quantify different aspects of 
the proteogenomic and epigenomic makeup of patients and a plethora 
of methods has been developed to integrate these diverse data types. In 
the following, we will focus on algorithms that were specifically devel-

oped to solve one of the four predictive tasks outlined above.

2.1.1. Predictive multimodal data integration methods

Generally, we may group predictive multimodal data integration 
methods into two main categories – two-step or end-to-end approaches 
– depending on whether the discriminative task is optimized directly or 
in a post hoc manner. A two-step approach typically involves a prelim-

inary decomposition of the observed data modalities into an integrated 
and lower dimensional latent space. Subsequently, this latent represen-

tation can be utilized to perform a supervised task in clinical settings 
such as subtype prediction or survival analysis. Multi-omics factor anal-

ysis (MOFA) [23] is a well-established statistical method for integrating 
single-cell multi-omics data. Inspired by group factor analysis [24], 
MOFA infers latent factors that capture sources of variability within 
and across different data modalities. MOFA was initially applied to pa-

tients of chronic lymphocytic leukemia profiled across multiple modal-

ities such as RNA expression, DNA methylation, and drug response. A 
recent study on the proteogenomic characterization of acute myeloid 
leukemia (AML) applies a two-step approach based on MOFA to iden-

tify a subpopulation of patients exhibiting poor survival outcomes, that 
is characterized by a high expression of mitochondrial proteins [25]. 
More elaborate frameworks combine multiple unsupervised modules 
and statistical tests before generating the relevant features for the dis-

criminative task such as survival analysis [26–29]. Poirion et al. [30]

propose an ensemble framework of deep learning and machine learn-
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ing approaches for analyzing patient survival times. Normalized fea-
tures of each modality are passed to the corresponding autoencoders, 
which transform the high-dimensional input into compact latent codes. 
A second set of modules applies a univariate Cox proportional hazards 
model [31] for each feature inferred from the bottleneck part of the au-

toencoders and selects only significant features based on a log-rank test. 
Next, a Gaussian mixture model detects patient subpopulations with 
clinical relevance regarding survival. Finally, a set of supervised classi-

fiers predicts the disease subtype in new patients. We refer to [32–34]

for a more comprehensive overview of unsupervised methods for mul-

timodal integration.

Due to being very general in their approach, these methods per-

form relatively poorly in specific prediction tasks when compared to 
related end-to-end methods, which attempt to learn tailored represen-

tations for the task at hand. The main difference between end-to-end 
approaches when compared to two-step approaches is the association 
of the observed multimodal data with the ground truth targets during 
the optimization procedure.

In the next section, we focus exclusively on end-to-end methods 
that attempt to perform classification, e.g. mortality, short- and long-

term survival, and therapy response, or perform time-to-event analysis 
such as survival prediction. There are, however, approaches that accom-

modate both classification and survival analysis tasks simultaneously. 
Zhang et al. [35], for instance, propose OmiEmbed, an end-to-end multi-

task deep learning framework for performing supervised tasks in mul-

timodal data. OmiEmbed is based on a variational autoencoder (VAE), 
which serves as an embedding module for mapping the observed modal-

ities onto a lower dimensional and non-linear manifold. The inferred 
latent code from each encoder is then concatenated into a single la-

tent code, which serves as the input for further downstream analysis 
tasks. The authors demonstrate the feasibility of their approach to dis-

ease subtype classification and prognosis prediction on a brain tumor 
multi-omics dataset and the Genomic Data Commons (GDC) pan-cancer 
dataset.

2.1.2. Classification

DNN-based approaches Sun et al. [36] propose a deep learning frame-

work for integrating multimodal data (MDNNMD) for the prognostic 
prediction of breast cancer. Their approach incorporates individual 
deep neural networks (DNNs) for extracting non-linear representations 
from each observed modality, which are then aggregated by a score-

fusing module. The aggregation function implements a weighted linear 
combination of the output from each DNN to balance the contribution of 
each modality for the discriminative task. The authors validate their ap-

proach to classifying short- and long-term survivors on the METABRIC 

and TCGA dataset of breast cancer patients, which includes gene expres-
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sion profiling, copy number variation (CNV), and clinical information. 
Similarly, Lin et al. [37] suggest concatenating the latent features in-

ferred from each subnetwork before passing the resulting vector to a 
final classification network. A related model for drug response classifi-

cation, MOLI [38], introduces an additional constraint in the objective 
function that encourages responders to the drug to be more similar to 
each other than to non-responders. Alternative approaches impose other 
statistical constraints on the latent space.

AE-based approaches Lee and van der Schaar [39] introduce DeepIMV, 
a deep learning framework based on the principle of information bottle-

neck to learn a joint latent space that maximizes the mutual information 
between the latent code and the prediction target, while at the same 
time minimizing the mutual information between the observed modal-

ities and the latent code. The reasoning behind this dual optimization 
objective is to ensure that the latent code depict a minimal sufficient 
statistic of the observed modalities for the observed label, while prun-

ing all additional task-irrelevant information. The authors validate their 
approach on two real-world multi-omics datasets from TCGA and the 
Cancer Cell Line Encyclopedia, comprising multiple modalities such as 
mRNA expression, DNA methylation, DNA copy number, microRNA ex-

pression, and reverse phase protein array, where they attempt to predict 
the 1-year mortality and drug sensitivity of patients, respectively. Alter-

natively, MOSAE [40] apply a similar approach to DeepIMV but com-

pute an average of the latent code inferred from each modality instead 
of employing a product of experts module. Alternative approaches rely 
on graph-based data structures to better capture feature- and sample-

wise similarities. Moreover, sources of domain knowledge in compu-

tational biology typically support graph structures, e.g. protein-protein 
interaction networks [20], and can be effectively incorporated to fur-

ther facilitate interpretability.

Graph-based approaches Ma and Zhang [41] propose a multi-view fac-

torization autoencoder (MAE) architecture that accommodates prior 
information in terms of molecular interaction networks across the ob-

served features. This poses an additional constraint on the inferred 
feature representation by the decoder, by encouraging connected fea-

tures to have similar numerical embeddings. The authors predict the 
progression-free interval (PFI) and the overall survival (OS) events 
on two patient cohorts from the TCGA database, namely the bladder 
urothelial carcinoma (BLCA) and brain lower-grade glioma (LGG), each 
comprising gene expression, miRNA expression, protein expression, and 
DNA methylation as well as clinical data. Wang et al. [42] introduce a 
multimodal graph convolutional network (GCN) framework for biomed-

ical classification. After applying a preprocessing step for removing 
noisy and technical artifacts in each data modality, MOGONET utilizes 
GCNs for learning a sample-wise similarity graph, which serves as a 
basis for selecting discriminative features and better learning of rela-

tionships between nodes, i.e. samples. Finally, MOGONET learns the 
correlation structure across modalities by employing a view correlation 
discovery network (VCDN) to integrate the relevant information origi-

nating from each modality and provide the final features for the predic-

tion task. The authors apply MOGONET on several classification tasks 
such as predicting patients with Alzheimer’s Disease in the ROSMAP 
dataset, predicting the grade in low-grade glioma (LGG) patients, and 
classifying the cancer type in the kidney (KIPAN) and breast (BRCA) 
cancer patients. Each sample spans across three modalities: mRNA ex-

pression, DNA methylation, and miRNA expression.

Trustworthy approaches Addressing crucial requirements on the trust-

worthiness of predictive models in safety-critical tasks, Han et al. [43]

propose a deep learning framework for trustworthy multimodal clas-

sification in safety-critical applications. Their approach, termed Multi-

modal Dynamics, quantifies for each sample its corresponding feature-
5832

level and modality-level informativeness for the predictive task. They 
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introduce a regularized gating module to achieve sparse feature repre-

sentations via the 𝑙1-norm, and implement True Class Probability (TCP) 
as a criterion to assess the classification confidence of each modality. A 
low prediction confidence translates to higher uncertainty, meaning the 
corresponding modality provides little information and vice versa. The 
authors benchmark their approach against a comprehensive benchmark 
of competitive models including MOGONET [42], and demonstrate the 
utility of their method on several datasets from TCGA, and ROSMAP.

2.1.3. Survival

DNN-based approaches Huang et al. [44] propose a deep learning 
framework for performing survival analysis with multi-omics neural 
networks (SALMON). In order to significantly reduce the number of 
features during the analysis, while preserving relevant information, the 
authors compute eigengene matrices of gene co-expression modules in 
an intermediate step, before passing the result to the neural network. 
Each neural network module learns a latent representation by perform-

ing consecutive non-linear transformations to the input features of its 
corresponding modality. The set of latent representations is then con-

catenated with additional clinical information into a feature vector, 
which serves as the input of a Cox regression module for predicting 
overall survival of the patients. The authors validate their method on 
breast cancer (BRCA) patients comprising several modalities like gene 
expression, miRNA, as well as demographic and clinical information 
such as estrogen or progesterone receptor status. A hierarchical fac-

torized bilinear fusion strategy is proposed by Li et al. [45] with the 
HFBSurv for the integration of images, gene expression, CNV and clin-

ical information in the context of breast invasive carcinoma survival 
prediction. The decomposition of the embedding problem into multi-

ple levels reduces the trainable parameters and consequently the model 
complexity. A modality-specific attentional factorized bilinear module 
(MAFB) captures the modality-specific relations and a cross-modality 
attentional factorized bilinear module (CAFB) is used for describing the 
relations between modalities.

AE-based approaches Tong et al. [46] extend the architecture in [44]

by introducing two multimodal integration networks. Their first model, 
ConcatAE, is similar to SALMON in that it performs a concatenation of 
the inferred latent features during optimization. However, the authors 
employ an autoencoder pipeline which introduces a trade-off in the loss 
objective, by balancing the reconstruction error of the input features 
with the discriminative error generated by the survival prediction task. 
In addition, the authors omit the gene co-expression analysis, and in-

stead perform a PCA or select highly variable features to reduce the 
input dimensionality. Their second proposed model is a cross-modality 
autoencoder, CrossAE, which encourages each data modality to recon-

struct the input features of complementary modalities. The authors 
validate their approaches on synthetic and real data of breast cancer 
patients from the TCGA database, incorporating gene expression, DNA 
methylation, miRNA expression, and copy number variation.

Several other methods experiment with different approaches for in-

tegrating the intermediary features of each modality network into a 
single latent code representing each patient numerically. Cheerla and 
Gevaert [47] introduce a similarity loss that maximizes the cosine simi-

larity between the latent feature vectors of the same sample, i.e. patient, 
while at the same time minimizing the cosine similarity of the latent 
feature vectors of different patients. Vale-Silva and Rohr [48] follow 
a simpler approach for encoding each patient by computing the maxi-

mum along each dimension in the latent space, effectively allowing only 
one modality to contribute in each latent dimension. While both mod-

els perform an end-to-end multimodal survival analysis, [47] employ 
a Cox-PH approach, whereas [48] rely on a discrete-time survival pre-

diction method for cancer patient prognosis estimation. In recent work, 
Wissel et al. [49] attempt to compare different integration techniques in 
a unified benchmark, and suggest a hierarchical autoencoder architec-
ture that outperforms the current state-of-the-art in survival prediction 
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from multimodal data. Specifically, the authors compare several ap-

proaches in combining latent features such as simple concatenation, 
mean-pooling, and max-pooling. The authors find that incorporating 
more modalities during the analysis does not necessarily translate to 
better results. On the contrary, this may even diminish the overall per-

formance. The experiments suggest the choice of the integration method 
is significantly less important than the choice of the right modalities 
to include in the analysis. However, when including all the available 
modalities, the hierarchical autoencoder architecture outperforms all 
other baselines. The authors claim that this approach casts the problem 
as a group-wise feature selection problem by introducing a soft modal-

ity selection mechanism, thereby focusing the optimization on the most 
informative modalities.

Graph-based approaches In contrast to most of the aforementioned 
methods, which tackle the challenge of integrating multiple views by 
introducing individual feature-extracting modules followed by an ag-

gregation step, Althubaiti et al. [50] rely on graph convolutional net-

works and graph-based domain knowledge to achieve data integration. 
The authors introduce DeepMOCCA, an end-to-end deep learning model 
that integrates multi-omics data by incorporating domain knowledge 
of cross-omic feature networks such as protein-protein interaction net-

works [20], followed by a Cox-PH module. DeepMOCCA relies on an 
attention mechanism that propagates predictions back to individual 
features, thereby identifying cancer drivers and prognostic markers of 
clinical relevance.

2.2. Methods for combining genetic and other data

Previously we introduced universal methods that combine multi-

modal data. Now we want to focus on an important type of data when it 
comes to medical analysis: the measurement of genetic mutations, such 
as those derived from SNP arrays, exome, or whole-genome sequenc-

ing. While the occurrence of SNPs can be modeled as a feature matrix 
and included in other methods mentioned thus far, there are other types 
of multimodal methods, that are specialized to handle properties of ge-

netic data. For example, SNPs that are in the genomic vicinity often 
show genetic correlation due to linkage disequilibrium. While infor-

mative, the genome is, mostly, static in cells, and understanding the 
cellular context in which genomic mutations are relevant and which 
genes are important for a disease are challenges. Thus, other types of 
data need to be leveraged to address those questions. We will illustrate 
different methods that combine the interpretation of genome data in 
clever ways with image or epigenome data.

2.2.1. Genetic data and quantitative traits from images

Images of human body parts constitute a rich source of information 
to reveal parameters of disease, and despite many advances in auto-

mated analysis of images, there are novel ways in which images can be 
combined with genome data.

Commonly, two-step approaches are used to combine imaging-

derived quantitative patient phenotypes with genetic mutation data if 
they are available in large quantities. Pirruccello et al. [51] use UK 
Biobank cardiac MRI images to train a deep learning classifier that 
can predict the diameter of human aortas. They predict the thickness 
of the aortas for 38K participants from the UK Biobank in order to 
conduct a genome-wide association analysis (GWAS) and identify cor-

related genetic markers. They are able to discover over 100 loci related 
to aorta size and use the combination of genetic markers and their pre-

dicted scores to derive new polygenic risk scores for aortic disease risk. 
A similar approach was done using brain imaging by deriving brain 
phenotypes, such as grey matter cortical thickness or structural connec-

tivity from images. For each of these phenotypes associated SNPs are 
found using a GWAS, revealing novel genomic loci related to brain dis-
5833

orders [52].
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Building on this general idea, Kirchler et al. introduce the concept 
of transferGWAS [53]. Instead of quantifying human-visible phenotypes 
from images, they argue that CNNs can learn features that may go 
beyond previously known patterns. They first learn a CNN feature ex-

tractor on an image training dataset. Then the image representation in 
the latent states of the CNN are interpreted as phenotypes and are used 
for a classical GWAS analysis using statistical methods, essentially trans-

ferring an image-derived quantity to reveal genetic associations. They 
show that this kind of approach reveals novel loci related to eye-related 
diseases and traits.

A different type of method that uses image data is the DeepGestalt 
and GestaltMatcher software [54,55]. These are deep-learning based 
methods that predict the occurrence of rare diseases in patients from 
their facial images. Training machine learning models for diagnosing 
rare diseases is particularly hard, due to the lack of a large dataset. 
Computational prediction of a patient’s disease from facial images can 
be combined with exome-seq data and assessment of the clinical pheno-

types (from a physician’s inspection) to improve the prediction of rare 
diseases by supervised classification [56] in a method called PEDIA.

As the above-mentioned approaches often need a large cohort of 
image and genetic data, which is not standard, the number of pub-

lished studies is limited. However, with the availability of large paired 
datasets, e.g. the UK Biobank [14], more detailed methods for their 
analysis can be developed. Notably, the proposed methods for these 
problems are two-step approaches and do not employ tailored end-to-

end approaches, thus providing ample opportunity for improvement.

2.2.2. Genetic and epigenome data

The cell-type specificity of epigenome data can be exploited to re-

veal the contribution of different cell types and mutations to diseases. 
For example, partitioned LD-score regression allows estimating the en-

richment of genetic heritability of a phenotype using different genomic 
regions using statistical approaches [57]. These regions can be defined 
by epigenomic data or transcriptome data. Alternative formulations 
work particularly well for single-cell expression data in addition to the 
GWAS data [58].

Another challenge is to predict disease genes for complex diseases 
from the genetic mutation data, meaning genes that are causally con-

nected to the disease, and warrant further experimental investigation in 
relevant cell types and disease models to possibly aid clinical decision-

making. A variety of approaches exists, such as methods that utilize 
expression-QTLs to reveal disease genes using different approaches [59]

or exploit co-localization of eQTLS and SNPs [60]. Another example is 
the EPISPOT algorithm, which can be used to combine mutation data 
with epigenome data to predict molecular traits using a probabilistic 
graphical model [61] to investigate individual loci in more detail. This 
can be used to discern the complexity of hotspots of associated genetic 
mutations. Other methods specialize in using a large set of independent 
evidence in the form of multimodal information to prioritize genes most 
likely connected to the disease of interest. For example, the iRIGS risk 
gene prioritization method uses a Bayesian framework to combine sev-

eral types of information. Their problem formulation returns the gene 
in a GWAS locus, a genomic window around a significant GWAS SNP, 
which has the strongest association among the multimodal data and is 
close within a gene-gene network [62].

2.3. Methods for combining histopathological images and other data

Histopathological whole slide images (WSIs) contain information on 
the tissue and cell morphology while they also provide information 
on the microenvironment together with information on cell neighbor-

hoods. This information is completely distinct from genomic, radiology, 
and clinical data. So, intermediate and late fusion techniques are more 
suited for images in combination with other data types compared to 
early fusion techniques (no intermediate representation is learned, and 

pure features are used as an input for a single learner), as they have the 
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Fig. 3. Multimodal data fusion. Whole-slide images of a tissue (A) are segmented into smaller patches (B). (C) Image patch and genomic feature-specific embeddings 
are learned. (D) Multimodal-guided embeddings and concatenation allow prediction of survival or disease risk.
advantage to handle feature imbalances, missing modalities and espe-

cially the huge heterogeneity between the different extracted features. 
Late fusion approaches combine decisions made by models trained by 
different data modalities and intermediate fusion techniques learn a 
representation, which is fused in a later branch of the network [63].

WSIs are very large in size (˜1GB per image, despite jpeg compres-

sion), and contain tens of thousands of pixels, which makes it hard to 
process the whole image at once. In the case of deep learning the de-

fault strategy is to split the WSI into several tiles that are processed 
individually [64]. A patient-level diagnosis could e.g. be achieved by 
a simple consensus [65] or multiple instance learning(MIL) [66]. How-

ever, recent approaches process directly the complete WSI, but only 
with a minor performance benefit [67].

In general computational methods could help to overcome intra-

and inter-observer variabilities and the integration of several datatypes 
has the potential to increase the performance of algorithms, which later 
can be used as decision support tools. In contrast to the well-established 
predictions, which are based solely on histopathological WSI data [65,

66], models based on multi-modal data are not yet well explored in 
the field of computational pathology at the moment [68]. But next to 
the fusion of different data modalities of course the fusion of different 
stainings is an upcoming question. For instance, Dwivedi et al. [69]

proposed a method where a graph NN extracts embeddings from each 
stain, which are subsequently concatenated and used as an input for 
fully connected layers in order to predict the final score.

2.3.1. WSIs and molecular data

One of the big drawbacks of integrating WSIs with molecular data 
is the fact that molecular data is in many cases not available during 
routine diagnostics and is only generated for research or clinical tri-
als. Thus multi-modal data integration of molecular data together with 
WSI data from pathology is at an early stage: For example, a recent 
review from 2022 of Schneider et al. [70] have only identified 11 rele-

vant articles in the timespan of 2015 to 2020 in the field of combining 
CNN-processed WSI images, which is the state-of-the-art methodology 
in computational pathology, and molecular data (genomic and epige-

nomic DNA or transcriptome data). On the one hand, the combination 
of different data modalities improved the performance of all described 
algorithms in comparison to the individual data types. For data fusion, 
methods such as direct incorporation of features into fully connected 
layers or more advanced methods like tensor fusion or LSTM (long short 
term memory) are used. On the other hand, most of the 11 studies lack 
an external test dataset, indicating that little is known yet on the trans-

ferability and robustness of these algorithms.

Chen et al. [71] propose an interpretable, multimodal learning 
framework called MCAT (Multimodal Co-Attention Transformer) that 
can learn a dense co-attention mapping between WSIs and genomics 
to predict survival outcomes and enable interpretability (Fig. 3). The 
proposed model embeds the different modalities via a genomic-guided 
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co-attention (GCA) mechanism. Genomic features and image patches 
encoded as bags are forwarded to the attention layer and the set-based 
MIL Transformers. Tests on 7 different datasets reveal promising out-

comes [71]. The same authors have also extended their method and 
now use a self-normalizing network (SNN) for molecular feature ex-

traction and the Kronecker Product for fusion, which can recognize 
interactions between the different modalities. The results of 14 can-

cer types are stored in an open access database (PORPOISE) for further 
investigations and attention- and attribution-based interpretability are 
visualized [72]. Additional recent work by Vale-Silva and Rohr [48] at-

tempts to integrate six different data modalities: tabular clinical data, 
mRNA expression, microRNA expression, DNA methylation, gene copy 
number variation, and WSI data with multiple neural networks. Ev-

ery submodel (CNNs for the images and fully connected feed-forward 
networks for other data) is dedicated to one data type to extract fea-

ture representations, which are fused in an intermediate manner and 
passed into a common network that estimates survival. The MultiSurv 
model architecture achieves high prognostic accuracy for multiple can-

cer types, while being able to handle missing data.

2.3.2. WSIs and radiology data

Combining WSIs with images from radiology is very promising, as 
macroscopic and microscopic features are combined. The importance 
of this data integration task is also reflected by the fact that recently a 
challenge was initiated on the subtype classification of brain cancers us-

ing 3D MRI images in combination with WSIs (CPM-RadPath 2019 and 
2020): Within this challenge Yin et al. [73] was ranked first for the val-

idation set. Here for every data modality a separate network is trained 
first to separate subtypes: the tumor is segmented before classification 
in the MRI images using a 3D-CNN and for the WSIs irrelevant regions 
(normal regions with a low number of cell nuclei) are excluded before 
classification. For the final classification, the features of both modali-

ties are fused by a linear weighted module. A newer method, which was 
also tested against this data, needs no segmentation of the MRI images 
and performs better for the test set [74]. The authors trained separate 
CNNs for the subtype prediction and averaged the output probabilities 
to directly fuse their individual decisions. In addition, they performed a 
two-step approach for the classification, first, they separate Glioblas-

tomas from the rest and then differentiated between the remaining 
Oligodendrogliomas and Astrocytomas, because the latter two are much 
more similar to each other in comparison to Glioblastomas.

Other recent works consider the integration of pathology and ra-

diology data: already an early fusion approach with gradient-boosted 
decision trees using features directly extracted from MRI images and 
WSIs outperforms models that were exclusively trained on one data 
modality in predicting the tumor regression grade (TRG) in rectal can-

cer [75].

Boehm et al. [76] integrated not only image information from WSIs 
and CT images, they also included the HRD value, a clinicogenomic fea-

ture that is calculated based on gene panel sequencing, to stratify the 

patients according to their overall survival. The combination of these 
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Table 1

Overview of different algorithms for multimodal data integration for biomarker and subtype prediction and clinical decision making. Methods are grouped by 
application tasks, characterized with a brief method description, as well as the specific data types they integrate.

Application Method Description Data Types Reference

Genetic Proteogenomic Epigenomic Images Clinical

Biomarker and Subtype Prediction

Prediction of aortic sizes and aortic disease risk CNN ✓ ✓ Pirruccello et al. [51]

Fine mapping of genetic loci Probabilistic graphical model ✓ ✓ ✓ Ruffieux et al. [61]

Prediction of disease risk genes in Schizophrenia Bayesian model ✓ ✓ ✓ Wang et al. [62]

Prediction of retinal related genes CNN ✓ ✓ Kirchler et al. [53]

Classification of breast cancer subtypes DL, latent feature concatenation ✓ ✓ ✓ Lin et al. [37]

Classification of multiple disease subtypes AE, uncertainty quantification ✓ ✓ Han et al. [43]

Clinical Decision Making

Prediction of rare diseases DL, SVM ✓ ✓ ✓ Hsieh et al. [56]

Classification of brain cancers CNN, linear weighted module ✓ Yin et al. [73]

Prediction of the cancer origin of unknown primary CNN, multiple instance learning ✓ ✓ Lu et al. [78]

Classification of tumor type and survival prediction AE, multi-task learning ✓ ✓ ✓ Zhang et al. [35]

Classification of multiple clinical outcomes AE, latent feature averaging ✓ ✓ ✓ Tan et al. [40]

Classification of multiple clinical outcomes AE, feature interaction network ✓ ✓ ✓ ✓ Ma and Zhang [41]

Classification of patients with Alzheimer’s disease GCN, correlation discover network ✓ ✓ Wang et al. [42]
three data types improved the performance significantly compared to 
the individual modalities. However, using only two data modalities (ra-

diology and pathology, but not the HRD value) also yielded similar 
results. Each datatype is processed individually to extract features and 
for data integration, a late fusion is chosen: For each data modality a 
Cox model is trained to infer the hazard for the individual patients and 
a multivariate Cox model integrates this information afterward. For the 
WSIs for example the tissue type of individual tiles is inferred by a CNN 
model and the cell nuclei were detected, based on that information the 
nuclei and tissue type features (serving as input for the Cox model) were 
calculated [76].

Another example by Schulz et al. [77] uses an intermediate fusion 
to integrate radiology (CT/MRI scans) and WSI data: individual images 
are all processed by a CNN, the individual network outputs are concate-

nated by an attention layer and a fully connected layer is used to e.g. 
perform binary classification of 5-year disease-specific survival in renal 
cancer. Special for this approach is, that two CNNs for histopathological 
data are used to capture information at different resolutions. Similar to 
the previous paper the addition of simple genomic data (presence and 
absence of the 10 most frequent mutations) did not increase model per-

formance further [77].

2.3.3. WSIs and clinical data

Similar to molecular and radiology data, the addition of clinical data 
to WSIs can increase model performance. For these kinds of data inte-

gration tasks, it is impressive that already few clinical features may 
improve the predictions. For example to identify the origin of a can-

cer with an unknown primary (CUP) a multiclass, multitask, multiple-

instance learning approach using a CNN encoder and an attention mod-

ule was suggested. Before the final classification layer clinical data is 
concatenated: in this case, only the sex as a binary variable is added, 
adding additional features (biopsy site) showed again reduced perfor-

mance [78].

Nevertheless, other reports use many clinical features in addition to 
the WSIs successfully. Yan et al. [79] used 29 clinical features, includ-

ing information on sex, personal and family disease history, and the 
potential tumor itself. Features of the clinical data are extracted using a 
denoising autoencoder and image features are extracted by a richer fu-

sion network, a CNN where after several convolution blocks an average 
pooling is performed and features are concatenated. The final decision 
is made via an intermediate fusion by three fully connected layers using 
all generated features as input [79].

However, reports on data integration of WSIs and clinical data are 
not always successful. For example, it is reported that for the skin cancer 
classification a WSI-based CNN classifier performed better than those 
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where the image information was fused to clinical data (e.g. sex, age, 
site of the lesion) using the concatenation or Squeeze-and-Excitation 
approach. In this case, a naive approach with a late fusion performed 
best, where the result of a CNN classifier, using single tiles of the WSI, 
was simply replaced by a random forest classifier using the clinical data 
in case the output score of the CNN is below a certain threshold [80].

3. Summary and outlook

In this review, we are not able to comprehensively reconstruct the 
historic use of multimodal methods for any of the data combinations 
studied. Instead, we want to highlight recent developments and inter-

esting methods for combining multimodal data, as we believe this is a 
universal challenge for all diseases or other phenotype studies of inter-

est. To summarize the key models that have emerged from those recent 
developments, we give an overview in Tables 1 and 2, where we group 
algorithms by application and characterize them with a brief method 
description, as well as the specific data types they integrate.

Tremendous progress has been made in recent years in developing 
new algorithms for multimodal data integration in predictive modeling 
tasks, mainly by leveraging advances in modern deep learning. How-

ever, the gap between the in silico modeling bench and bedside remains 
wide [81,82]. To narrow this gap and bring multimodal predictive mod-

els into the clinic, several challenges have to be overcome. First, to 
facilitate a translation into clinical application, models need to be trust-

worthy [83]. That is, practitioners need to be able to rely on a model’s 
predictions throughout its life cycle. This does not only imply a good in-

distribution generalization performance on data from the same patient 
cohort but also transferability to other cohorts that may exhibit some 
degree of distribution shift [84] as well as robustness to erroneous in-

puts. Importantly, for tools to be applied in a clinical setting, they must 
be able to reliably estimate their uncertainty and communicate to a 
practitioner when they “don’t know” [85].

A second, related challenge is explainability. For many biomedi-

cal applications, a good predictive power of a black-box model is not 
sufficient: practitioners also need to know why a model has made a 
specific prediction, a prerequisite for ensuring human oversight and fa-

cilitating accountability. While this is currently mainly being addressed 
via co-attention mechanisms [71,72], a plethora of algorithms for ex-

plainable AI has been developed in the context of single-view methods; 
the general mechanisms of these models are also applicable in many 
multi-modal modeling approaches and we refer to a recent survey on 
explainable AI approaches in medicine for a detailed overview [86]. A 
third challenge for translational multimodal modeling is for analyses 
to be privacy-preserving. While the use of multimodal data can often 
lead to improved predictive performance, caution must be taken when 

storing or allowing access to those. Individual data types could be ex-
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Table 2

Overview of different algorithms for multimodal data integration for survival prediction and therapy response prediction. Methods are grouped by application tasks, 
characterized with a brief method description, as well as the specific data types they integrate.

Application Method Description Data Types Reference

Genetic Proteogenomic Epigenomic Images Clinical

Survival Prediction

Prediction of survival for cancer patients DL, attention mechanism ✓ ✓ Chen et al. [71]

Prediction of breast invasive carcinoma survival DL, factorized bilinear model ✓ ✓ ✓ ✓ Li et al. [94]

Prediction of overall survival CNN, Cox model ✓ ✓ Boehm et al. [76]

Prediction of 5-year survival in renal cancer CNN, attention mechanism ✓ ✓ Schulz et al. [77]

Classification of breast cancer patient survival DL, linear weighted module ✓ ✓ Sun et al. [36]

Prediction of survival in breast invasive carcinoma DL, feature selection ✓ ✓ ✓ Huang et al. [44]

Prediction of survival in breast invasive carcinoma AE, feature selection ✓ ✓ ✓ Tong et al. [46]

Prediction of survival in pan-cancer data DL, CNN, Cox-PH ✓ ✓ ✓ ✓ Cheerla and Gevaert [47]

Prediction of survival in pan-cancer data DL, CNN, discrete-time surv ✓ ✓ ✓ ✓ Vale-Silva and Rohr [48]

Prediction of survival in bladder cancer and sarcoma AE, hierarchical ✓ ✓ ✓ ✓ Wissel et al. [49]

Prediction of survival in pan-cancer data GCN, feature interaction network ✓ ✓ ✓ Althubaiti et al. [50]

Therapy Response Prediction

Classification of drug response in cancer patients DL, triplet loss objective ✓ Sharifi-Noghabi et al. [38]

Classification of drug response and mortality AE, information bottleneck, PoE ✓ ✓ ✓ Lee and van der Schaar [39]

Table 3

Abbreviations and their corresponding descriptions.

Abbreviation Description

Data Types SNP Single Nucleotide Polymorphism

CNV Copy Number Variation

mRNA messenger RNA

miRNA micro RNA

DNAm DNA methylation

WSI Whole Slide Image

Resources FANTOM Functional ANnotation Of the Mammalian genome

ICGC The International Cancer Genome Consortium

TCGA The Cancer Genomics Atlas

CCLE Cancer Cell Line Encyclopedia

GDC Genomic Data Commons

IHEC The International Human Epigenomics Consortium

GTEx Genotype-Tissue Expression

GWAS Genome-Wide Association Studies

STRING Search Tool for the Retrieval of Interacting Genes/Proteins

ROSMAP Religious Orders Study/Memory and Aging Project

PORPOISE Pathology-Omics Research Platform for Integrative Survival Estimation

Modeling Approaches LVM Latent Variable Model

DL Deep Learning

VAE Variational AutoEncoder

DNN Deep Neural Network

CNN Convolutional Neural Network

GCN Graph Convolutional Network

Models MOFA Multi-Omics Factor Analysis

MOLI Multi-Omics Late Integration

MOSAE Multi-omics Supervised Autoencoder

MAE Multi-view Factorization AutoEncoder

MDNNMD Multimodal Deep Neural Network by integrating Multi-dimensional Data

MOGONET Multi-Omics Graph cOnvolutional NETworks

SALMON Survival Analysis Learning with Multi-Omics Neural Networks

HFBSurv Hierarchical Factorized Bilinear fusion for cancer survival prediction

DeepMOCCA Deep Multi Omics CanCer Analysis

MCAT Multimodal Co-Attention Transformer
ploited to re-identify the patient [87–89], which may then be used to 
investigate molecular details of a patient in other data layers. Thus a 
topic that will gain more attention in the future will be the data-privacy 
secure analysis of multimodal data.

While method development has focused on common data modali-

ties, such as proteogenomics and imaging, new technologies have led 
to a rise in novel data types including spatial transcriptomics [90], pro-

teome sequencing [91] and single-cell proteomics [92]. To date, only 
the first attempts have been made to develop tools integrating such 
data in an unsupervised manner via a clustering approach [93]. Devel-

oping novel predictive algorithms for data integration that generalize 
to these novel data types will lead to ever more powerful tools in many 
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areas of predictive biomedicine.
However more data does not always lead to better models. It is im-

portant to choose the modalities wisely and to ensure that they (at least 
have the potential) to contain complementary information for the ques-

tion at hand. Therefore, future research must also address in which data 
analysis scenarios extension to more modalities may be helpful, as ad-

ditional data leads to increased costs and analysis time. Even so, given 
that many processes and genes remain unknown for the majority of dis-

eases, we believe that multimodal data integration methods will play 
an important role in future discoveries.
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