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EZH2 inhibition stimulates repetitive element
expression and viral mimicry in resting splenic
B cells
Seung J Kim1,2,3 , Patti K Kiser4, Samuel Asfaha1,2,4,5 , Rodney P DeKoter6 & Frederick A Dick1,2,4,*

Abstract

Mammalian cells repress expression of repetitive genomic
sequences by forming heterochromatin. However, the conse-
quences of ectopic repeat expression remain unclear. Here we dem-
onstrate that inhibitors of EZH2, the catalytic subunit of the
Polycomb repressive complex 2 (PRC2), stimulate repeat misexpres-
sion and cell death in resting splenic B cells. B cells are uniquely
sensitive to these agents because they exhibit high levels of histone
H3 lysine 27 trimethylation (H3K27me3) and correspondingly low
DNA methylation at repeat elements. We generated a pattern rec-
ognition receptor loss-of-function mouse model, called RIC, with
mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In
both wildtype and RIC mutant B cells, EZH2 inhibition caused loss
of H3K27me3 at repetitive elements and upregulated their expres-
sion. However, NF-jB-dependent expression of inflammatory
chemokines and subsequent cell death was suppressed by the RIC
mutations. We further show that inhibition of EZH2 in cancer cells
requires the same pattern recognition receptors to activate an
interferon response. Together, the results reveal chemokine expres-
sion induced by EZH2 inhibitors in B cells as a novel inflammatory
response to genomic repeat expression. Given the overlap of genes
induced by EZH2 inhibitors and Epstein–Barr virus infection, this
response can be described as a form of viral mimicry.
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Introduction

Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the

Polycomb Repressive Complex 2 (PRC2) that deposits di- and tri-

methylation of histone 3 at lysine 27 (H3K27me2/3) (Cao

et al, 2002; Kuzmichev et al, 2002; Margueron et al, 2008). These

are repressive histone modifications that cooperate with histone 2a

lysine 119 ubiquitination (H2AK119ub) to silence transcription and

compact chromatin (M€uller et al, 2002; Dellino et al, 2004; Francis

et al, 2004; Wang et al, 2004; Ku et al, 2008; Eskeland et al, 2010;

Leeb et al, 2010; Tamburri et al, 2020). The latter modification is

catalyzed by the Polycomb Repressive Complex 1 (PRC1), and the

two PRCs were originally described in Drosophila as repressors of

homeotic genes that dictate segmentation along the anterior–poste-

rior axis (Schuettengruber et al, 2007). In mammals, the catalytic

activity of EZH2 in PRC2 facilitates roles in cell fate determination

(Yin et al, 2015), stem cell renewal (Collinson et al, 2016), and

tumorigenesis (Souroullas et al, 2016). For example, EZH2 is

required for B cell differentiation in the bone marrow during hema-

topoiesis (Su et al, 2003), and germinal center (GC) formation

(B�eguelin et al, 2017). Furthermore, EZH2 overexpression and gain-

of-function mutations have been identified in different cancer types

and are prominent in B cell lymphomas (Varambally et al, 2002;

Kleer et al, 2003; Velichutina et al, 2010; Wassef et al, 2015; Zhao

et al, 2019; B�eguelin et al, 2020). Mechanistically, somatic muta-

tions at EZH2Y641 render it dominantly active, increasing H3K27me3

globally, and repressing cell cycle control genes such as CDKN2A

(Yap et al, 2011). This has prompted the development of EZH2

inhibitors that are either recently approved or are in clinical trials

(McCabe et al, 2012; U.S. Food and Drug Administration, 2020;

Morschhauser et al, 2020).

Regulation of gene expression represents only one facet of EZH2

activity. Repetitive sequences that make up the majority of mamma-

lian genomes harbor H3K27me3 and other repressive epigenetic

modifications (Kondo & Issa, 2003; Martens et al, 2005; Day

et al, 2010; de Koning et al, 2011; Karimi et al, 2011;

Bulut-Karslioglu et al, 2014; Liu et al, 2014; Ishak et al, 2016). These

modifications repress transcription of repetitive elements and limit

mobility in the host genome. Loss of epigenetic modifications such

as H3K27me3 results in their upregulation. While a subset of
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genomic repeats have been exapted to serve the host cell, their dere-

pression and subsequent upregulation have been linked to tumori-

genesis (Howard et al, 2008; Lamprecht et al, 2010; Levin &

Moran, 2011; Lock et al, 2014; Doucet-O’Hare et al, 2015; Ewing

et al, 2015; Babaian & Mager, 2016; Desai et al, 2017;

Rodriguez-Martin et al, 2020). Overall, the impact of EZH2 in medi-

ating repression of repetitive elements in normal mammalian physi-

ology is relatively unexplored.

Pharmacologically induced upregulation of repetitive elements

by inhibiting repressive epigenetic writers has been shown to elicit

anti-tumor responses (Chiappinelli et al, 2015; Roulois et al, 2015;

Liu et al, 2018; Morel et al, 2021). Tumor cells treated with small

molecule inhibitors against DNA and histone methyltransferases

derepress the transcription of repetitive elements (Chiappinelli

et al, 2015; Roulois et al, 2015; Liu et al, 2018; Morel et al, 2021).

These transcripts form secondary structures that are detected by

nucleic-acid sensing pattern recognition receptors (PRRs) such as

RIG-I, MDA5, and cGAS. In general, PRRs are a part of the innate

immune surveillance that detect molecular patterns associated with

infectious agents such as bacteria and viruses, and signals down-

stream to either neutralize the threat or further activate the adaptive

immune system (Schmidt et al, 2012; Goubau et al, 2013). This phe-

nomenon has been described as ‘viral mimicry’, as upregulation of

repetitive elements and activation of PRRs mimics a viral infection.

While viral mimicry has been demonstrated in cancer cells as a ther-

apeutic paradigm, it is unclear if untransformed cells with normal

establishment of DNA and histone methylation to silence repeat

expression are susceptible to viral mimicry responses caused by

therapeutic agents.

Interestingly, mice with defective EZH2 recruitment to repetitive

elements caused by a mutation in the retinoblastoma tumor sup-

pressor protein (pRB) ectopically express repeats and succumb to

lymphomas that often arise in the spleen and lymph nodes (Ishak

et al, 2016). To investigate the significance of EZH2 regulation of

genomic repeats, we utilized pharmacological inhibition of EZH2 to

investigate its acute effects on repeat regulation. Short-term EZH2

inhibition with three different inhibitors induced expression of

repetitive elements specifically in B cells and was accompanied by

inflammation and cell death. To investigate if this effect is depen-

dent on repeat expression, we generated triple mutant Rigi, Ifih1

(MDA5), and Cgas mutant mice (referred to as RIC mutant) to block

detection by pattern recognition receptors. In both WT and RIC

mutant B cells, EZH2 inhibition induced loss of H3K27me3 at repeti-

tive elements and increased repeat expression. Unlike WT, the RIC

mutant mice failed to upregulate pro-inflammatory chemokine

genes and recruit effector immune cells, preserving B cell viability.

In contrast, treatment of murine cancer cells with the same EZH2

inhibitor activates a PRR-dependent interferon response. This

dichotomy of gene expression programs emphasizes that normal,

resting B cells are capable of a unique form of viral mimicry.

Results

Pharmacological EZH2 inhibition causes splenic B cell apoptosis

Constitutive loss of EZH2-mediated repression of repetitive elements

in immune cells caused by mutations in Rb1 leads to their sporadic

expression and the eventual formation of lymphomas (Ishak

et al, 2016). To determine the effect of acute inhibition of EZH2 in

resting splenocytes, 6–8 week-old-mice were injected with vehicle

or three different EZH2 inhibitors (GSK343, UNC1999, and

EPZ6438). Spleens were harvested for histology and flow cytometry

1 or 2 days later (Fig 1A). In contrast to vehicle treatment, tingible

body macrophages were evident within follicles upon treatment

with all three EZH2 inhibitors, suggesting B cell death and engulf-

ment (Fig 1B and C). Distinct staining for cleaved caspase 3 in

spleen follicles (Fig 1B), the increased percentage of positively

stained cells in the spleen (Fig 1D), and reduction in B cells (Fig 1E)

further suggests B cell death in response to EZH2 inhibition. Follow-

ing 5 days of GSK343 treatment we performed H&E staining as well

as IHC staining for CD68, a marker of monocytes and macrophages.

This revealed that GSK343 treatment extensively reduced follicular

regions of spleens and the smaller follicles that remained included

notable acellular regions (Appendix Fig S1A). CD68 staining in vehi-

cle treated controls was largely restricted to red pulp while GSK343

induced infiltration of these cells into the follicles (Appendix

Fig S1B). Overall, these results show that targeted, short-term inhi-

bition of EZH2 extensively disrupts splenic follicles. EZH2 inhibition

causes apoptotic B cell death and the coincident arrival of tingible

body macrophages indicates it is associated with inflammation. This

was observed with three chemically distinct inhibitors, emphasizing

that acute EZH2 inhibition underlies these observations.

Unique B cell heterochromatin structure allows EZH2 inhibition
to increase repeat expression

Given EZH2’s role in B cell lineage development (Su et al, 2003), we

sought to understand how its inhibition affects transcript levels in

resting B cells and compare it with other resident cells of the spleen.

Since EZH2 inhibition causes apoptosis in vivo (Fig 1B), we treated

splenic B cells in vitro with GSK343 and harvested before loss of via-

bility was observed to determine the most direct impact of these

inhibitors.

We separated erythrocyte-lysed splenocytes into a CD43� mature

splenic B cell fraction and a CD43+ fraction composed of neutro-

phils, T cells, and others using paramagnetic beads (Figs 2A and

EV1A). We treated B cell cultures with DMSO or 1 lM GSK343 for

48 h in biological triplicates. RNA was extracted and sequenced

followed by analysis with two established analysis pipelines (Cris-

cione et al, 2014; Liao et al, 2014; Teissandier et al, 2019) to quan-

tify expression of repetitive elements annotated in RepeatMasker

(Karolchik et al, 2004). This experiment revealed that B cells upre-

gulated numerous repetitive elements including LINE/SINEs, LTR

containing ERVs, satellite sequences, and DNA transposons (Figs 2B

and EV1B). To confirm these findings with multiple EZH2 inhibitors

and compare with other cells in the spleen, we carried out qRT–PCR

for three classes of repeats identified as increased by RNA-seq.

Figure 2C shows significant upregulation of three different classes of

repetitive elements upon EZH2 inhibitor treatment of B cells (top

row), but these elements were infrequently altered by the same

treatment of CD43+ splenocytes (bottom row). These data indicate

repeat misexpression is a unique consequence of EZH2 inhibition in

B cells and not other resident splenocytes.

To understand the regulation of B cell heterochromatin better,

cultures of B and CD43+ cells were incubated for 48 h with
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Figure 1. EZH2 inhibition induces B cell apoptosis and inflammation.

A Schematic illustrating I.P. drug injection schedule for 1 or 2-day treatments.
B H&E staining of spleens following 2 days of vehicle, 100 mg/kg GSK343, 100 mg/kg UNC1999, or 1 day of 100 mg/kg EPZ6438. White arrows indicate tingible body

macrophages (left). DAB staining for cleaved caspase 3 on consecutive spleen sections corresponding to H&E staining. Scale bars: 200 lm (wide), 100 lm (zoom).
C Number of tingible body macrophages per mm2 in the spleens from vehicle or EZH2 inhibitor treated mice (n = 6–9 biological replicates). Horizontal line indicates

the mean. *P < 0.05, ***P < 0.001 by one-way ANOVA with Dunn’s multiple test correction.
D Percentage of cells positive for cleaved caspase 3 in the spleens from vehicle or EZH2 inhibitor treated mice (n = 6–9 biological replicates). *P < 0.05, ***P < 0.005,

****P < 0.0005 by one-way ANOVA with Kruskal–Wallis multiple test correction.
E Percentage of CD19+ cells from spleens of vehicle or EZH2 inhibitor treated mice (n = 9–10 biological replicates). ***P < 0.05, by unpaired Student’s t-test.

Source data are available online for this figure.
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increasing concentrations of EZH2 inhibitors (Fig 2D). Histones

were extracted and analyzed by Western blotting for H3K27me3 to

directly investigate the effect of EZH2 inhibition. This demonstrated

that B cells have higher baseline H3K27me3 compared to CD43+

cells (Fig 2D). In addition, loss of H3K27me3 was observed with

increasing inhibitor concentration in B cells with all three EZH2

inhibitors (Fig 2D). Cells in the CD43+ fraction did not show an

obvious reduction in H3K27me3 levels in response to any of these

treatment conditions. This indicates a unique reliance on EZH2 for

the maintenance of heterochromatin in B cells that is distinct from

other cell types in the spleen.

Repression of repeat expression is also known to be mediated by

DNA methylation; therefore, we also investigated its status in B and

CD43+ cells. We performed a genome-wide DNA methylation micro-

array on DNA extracted from vehicle or GSK343 treated B and

CD43+ cells. Differential beta value analysis between vehicle treated

B vs. CD43+ cells revealed that probes annotated as representing

repetitive elements had low levels of DNA methylation in B cells

compared to CD43+ splenocytes (Fig 2E). As expected, GSK343

treatment did not affect DNA methylation in either cell fraction.

Only a small proportion of differentially methylated repeat probes

was more methylated in B cells compared to the CD43+ fraction

(Fig 2F). By comparison, DNA methylation levels observed at

probes annotated for promoters, genes or CpG islands displayed

much greater similarity between B and CD43+ populations

(Fig EV1C). These data demonstrate low level DNA methylation at

repeat elements uniquely in B cells. Taken together, these

experiments show that splenic B cells specifically upregulate tran-

scription of repetitive elements upon EZH2 inhibition. This corre-

sponds with loss of H3K27me3 and constitutively low levels of DNA

methylation at repetitive elements.

Pattern recognition receptors are required for EZH2 inhibitor-
induced B cell death in the spleen

Ectopic expression of repetitive elements and subsequent inflamma-

tory signaling are described as a state of viral mimicry (Ishak & De

Carvalho, 2020; Chen et al, 2021). Transcripts from repetitive ele-

ments form secondary structures that mimic those of viral replica-

tion and transcription. Cytosolic nucleic acid sensing pattern

recognition receptors (PRRs) such as RIG-I, MDA5 and cGAS bind to

dsRNA/DNA to activate a signaling cascade that upregulates inflam-

matory gene expression. Notably, others have shown that these

cytosolic PRRs are mechanistically required for DNMT or EZH2

inhibition-induced anti-tumor immune responses. We sought to

determine if activation of pattern recognition receptors in splenic B

cells underpins the inflammatory response and cell death following

EZH2 inhibition.

We created a loss of function mouse model in which PRR genes

are disrupted. Briefly, three gRNAs, each targeting a coding exon

for one of Rigi, Ifih1 (MDA5), and Cgas were microinjected with a

Cas9 expressing mRNA into single-cell zygotes to simultaneously

mutate all three genes (Wang et al, 2013) (Fig 3A). The resulting

founder pups were bred together to create biallelic F1 mice that

◀ Figure 2. Splenic B cells are uniquely sensitive to EZH2 inhibitors.

A Schematic describing magnetic-assisted cell sorting (MACS) to separate B and CD43+ cells from the spleen.
B Volcano plot depicting up- or downregulated repetitive elements in purified splenic B cells treated with DMSO or 1 lM GSK343 for 48 h in culture (n = 3 biological

replicates).
C qRT–PCR of indicated repetitive elements in splenic B cells (top row) or CD43+ cells (bottom row) treated with DMSO, GSK343, UNC1999 or EPZ6438 (n = 7 biological

replicates). Whiskers represent the 10th and the 90th percentile. Boxes represent the first quartile, the median, and the third quartile. *P < 0.05, **P < 0.005,
***P < 0.001 by one-way ANOVA with Dunn’s multiple test correction.

D Western blots of H3K27me3 and total H3 from histone extracts of B or CD43+ cells treated with DMSO or increasing concentrations of indicated EZH2 inhibitors for
48 h in culture. Numbers below H3K27me3 blots refer to H3K27me3 signal normalized to total H3.

E Heatmap of DNA methylation probe beta values at top 200 differentially methylated probes annotated with repetitive elements by repClass between DMSO-treated B
and CD43+ cells.

F Histogram of difference in beta values (DMSO-treated B vs. CD43+ cells) among top 200 differentially methylated probes shown in (E).

Source data are available online for this figure.

▸Figure 3. Rigi/Ifih1/Cgas (RIC) triple mutant mice are resistant to EZH2 inhibitor killing of B cells.

A Schematic highlighting the key steps of generating RIC triple mutant mice. gRNAs and Cas9 mRNA are microinjected into zygotes and transplanted into a surrogate
female. Resulting mosaic founders are bred together to generate biallelic triple mutant mice.

B Western blots of RIG-I and cGAS from whole cell extracts of WT and RIC mutant splenocytes.
C Western blots of MDA5 from whole cell extracts of WT and RIC mutant splenocytes harvested from mice injected with poly(I:C).
D Western blots of cGAS pulldown with biotinylated ISD45 probe and streptavidin beads from whole cell extracts of WT and RIC mutant splenocytes.
E H&E staining of the spleens following 2 days of vehicle or 100 mg/kg GSK343 in WT or RIC mutant mice. White arrows indicate tingible body macrophages. Scale

bars: 100 lm.
F Percentage of cells positive for cleaved caspase 3 in the spleens from vehicle or GSK343 I.P. injected RIC mutant mice (n = 6–9 biological replicates). Horizontal line

indicates the mean. ns P > 0.05 by Mann–Whitney test.
G Dose response curves of WT and RIC mutant splenic B cells to GSK343. Viability was quantified by trypan blue exclusion assay (n = 3 biological replicates). Error bars

represent the standard deviation.
H Schematic describing adoptive transfer of CD45.1 WT B cells into CD45.2 RIC mutant mice, followed by vehicle or GSK343 injections.
I Percentage of CD45.1+ CD19+ adoptively transferred, WT B cells in RIC mutant spleens upon vehicle or GSK343 injections (n = 3 biological replicates). *P < 0.05 by

unpaired Student’s t-test.

Source data are available online for this figure.
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were characterized for their mutant alleles (Fig EV2A). Mutants

were identified using a restriction fragment length polymorphism

assay to identify indels in the three genes in F1 mice (Fig EV2B

and C). All mutant alleles in our triple mutant colony were

sequenced to characterize how they disrupt their respective gene

(Appendix Table S1). Lastly, we sought to identify any off-target
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mutations created by the gRNAs in the F1 mice that we bred for

experiments. We sequenced the two highest ranked coding and

non-coding, in silico predicted (Cradick et al, 2014), off-target loci

per gRNA (six in total) in the three F1 mice. Out of 36 possible

alleles, we only found two, one-bp deletions and both were in

non-coding regions (Appendix Table S2) confirming high fidelity

of targeting by this strategy. All triple mutant Rigi, Ifih1, and Cgas

mice (henceforth called RIC mutant) used in this study are descen-

dants from these three F1 animals and were compared against

C57BL/6NCrl controls.

We characterized expression from these mutant alleles by

Western blotting. RIC mutant splenocytes completely lost RIG-I

and MDA5 expression (Fig 3B and C), confirming that Rigi and

Ifih1 mutations are null alleles. The truncated cGAS detected by

Western blotting (Fig 3B) agrees with the 48-bp deletions found in

two distinct Cgas alleles (Fig EV2D and E). These N-terminal, in

frame deletions, encode functionally inactive cGAS as it fails to

bind a known dsDNA target, ISD45, in a streptavidin-biotin pull-

down assay (Hansen et al, 2014) (Fig 3D). Furthermore, strepta-

vidin alone has been shown to bind and activate cGAS, and

truncated cGAS has also lost this interaction (Zhang et al, 2020)

(Fig 3D).

To understand the role of PRRs in the response to EZH2 inhibi-

tion, systemic treatment of RIC mutant mice with GSK343 was

performed and spleens were examined after 2 days. Infiltration of

tingible body macrophages was less prominent in RIC mutant folli-

cles (Fig 3E). Furthermore, the percentage of cells positive for

cleaved caspase 3 was not significantly increased upon GSK343

treatment in RIC mutants (Fig 3F). These observations suggest that

the functional loss of the cytosolic PRRs in the RIC mutant largely

abrogates the cell death phenotype in spleens of GSK343 treated

mice. Furthermore, WT or RIC mutant B cells were isolated from

spleens and treated with GSK343. This revealed a similar dose

response to GSK343 (Fig 3G), indicating that the cell intrinsic

response to GSK343 is unaffected by the RIC mutations. However,

all cells in the RIC mutant mouse are disrupted for PRRs and not

just their B cells. PRR mutations may affect other cell functions,

possibly those involved in an inflammatory response that could

prevent B cell death in response to EZH2 inhibitors. To rule out

this possibility we isolated B cells from C57BL/6 CD45.1 donors

and transferred them to CD45.2 RIC mutant recipients where they

were treated with GSK343 for 2 days (Fig 3H). Flow cytometry to

identify CD45.1 B cells from the spleens of these mice revealed

that GSK343 treatment diminished WT B cells in a RIC mutant

host (Fig 3I). These data argue that the mutant host has no ability

to block B cell death induced by inflammation from EZH2

inhibitors. Collectively, triple mutant RIC mice that are deficient

for PRR function demonstrate that PRRs respond to misexpressed

repeats in B cells following EZH2 inhibitor treatment, causing

inflammation and cell death.

EZH2 inhibition induces H3K27me3 loss at repetitive elements in
B cells

We investigated the effect of EZH2 inhibition at the chromatin

level in isolated WT and RIC mutant B cells. We performed

ChIP-seq for H3K27me3 in DMSO or GSK343 treated cells in

biological duplicates. We obtained high-quality sequencing

libraries from input controls and H3K27me3 associated frag-

ments (Fig EV3A–C), we then identified H3K27me3 peaks using

MACS2 and quantified read fragment enrichment at those peaks.

As expected, most high-scoring peaks found in vehicle treated

samples were shared by WT and RIC mutants (Fig EV3D),

confirming that the baseline locations of H3K27me3 deposition

is independent of PRRs. We then compared loss of H3K27me3

upon GSK343 treatment with their respective vehicle treated

genotype controls. Figure 4A depicts normalized read fragment

enrichment where each row represents a scaled peak length

with 1 kb flanking each end. The sum of the rows represents

all the peaks identified in vehicle-treated, control ChIP samples

for each genotype (WT and RIC mutant). At these baseline

H3K27me3 peaks, GSK343 decreased enrichment in both WT

and RIC mutants (5th and 6th vs. 7th and 8th columns). Next, we

sought to determine which genomic features were associated

with these H3K27me3 peaks. We annotated the peaks found in

each ChIP sample (pooling biological replicates together) based

on their proximity to known genes. The absolute fold decrease

in peak count was the greatest in intronic and intergenic

regions for both WT and RIC mutant upon GSK343 treatment

(Fig 4B and C). Intronic and intergenic regions contain repeti-

tive elements and the absolute number of repetitive elements

that intersect with peaks was similarly decreased upon GSK343

treatment in both genotypes (Figs 4D and E, EV3E and F). In

addition, we confirmed that H3K27me3 enrichment at peaks

intersected with specific repeat element families identified by

RNA-seq and that these were decreased upon GSK343 treatment

in both genotypes (Fig 4F). These ChIP experiments show that

EZH2 inhibition decreases H3K27me3 preferentially at repetitive

elements in both WT and RIC mutant B cells. It confirms that

inactivation of cytosolic PRRs has no bearing on H3K27me3

containing heterochromatin or the effect of EZH2 inhibition on

H3K27me3 reduction.

▸Figure 4. GSK343 induces loss of H3K27me3 at repetitive elements in splenic B cells.

A Heatmap of input and H3K27me3 ChIP-seq read enrichment at all peaks called in DMSO-treated samples. Splenic B cells were treated with either DMSO or 1 lM
GSK343 for 48 h (n = 2 biological replicates). Enrichment was quantified as reads per genomic content (RPGC). Each row represents a scaled DMSO peak location with
1 kb flanking each end. Rows are sorted by decreasing enrichment.

B Distribution of peaks among the indicated genomic features in each sample.
C Fold-change of the number of called peaks annotated with indicated genomic features. Horizontal dotted lines indicate the average overall fold change.
D Number of repetitive elements in each indicated repClass that intersect with called peaks in each sample condition shown.
E Enrichment profiles of H3K27me3 ChIP-seq reads at peaks called in DMSO or GSK343 treated samples intersecting with repetitive elements. Each box shows the aver-

age profile of scaled repetitive elements with 1 kb flanking each end. Biological duplicates for each treatment condition are shown as separate curves.
F Three genome track views showing normalized coverage (RPGC) of H3K27me3 signal track for indicated sample conditions at repetitive elements. Horizontal bars

indicate either peak calls or repetitive element annotations.
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Cytosolic PRRs are required for pro-inflammatory gene
expression upon EZH2 inhibition

Since GSK343 induces comparable loss of H3K27me3 in both WT

and RIC mutant B cells, we next investigated its effects on the tran-

scriptome. WT and RIC mutant B cells were treated with DMSO or

GSK343 as before, RNA was extracted, and we performed RNA-seq

to identify differentially expressed repetitive elements, genes, and

significantly enriched gene sets.

This revealed that the most differentially upregulated genes upon

EZH2 inhibition were correlated with loss of H3K27me3 at their pro-

moters (Fig 5A), and this effect was observed in both genotypes.

Consistent with similar effects by GSK343 on H3K27me3 between

WT and RIC mutant mice, upregulation of many of the same repeats

also took place in RIC mutants (Figs 5B and EV4A and B). From

these analyses, we conclude that EZH2 inhibition leading to

H3K27me3 loss causes similar increases in gene and repeat tran-

script levels in WT and RIC mutants.

To understand the consequences of PRR loss in response to

EZH2 inhibition, we searched for differences in gene expression that

were not the consequence of direct regulation by H3K27me3. Most

genes that were significantly up or downregulated in GSK343 treated

RIC mutant cells showed a similar change in WT (Fig EV4C), and

many gene sets were commonly upregulated in both WT and RIC

mutants (Figs 5C and EV4D, Tables EV1–EV4, and Datasets EV1 and

EV2). However, RIC mutants showed a smaller absolute number of

genes with altered expression compared to WT (Fig EV4C). Further-

more, several pathways that were significantly enriched in WT,

were missing in RIC mutants (Fig 5C). In particular, pathways

related to chemotaxis were enriched in GSK343 treated WT samples

but not RIC mutants, suggesting a potential source of inflammatory

signaling dependent on PRRs. We note that interferon signaling,

described in previous studies of viral mimicry upon epigenetic inhi-

bition (Chiappinelli et al, 2015; Roulois et al, 2015; Liu et al, 2018;

Morel et al, 2021), is not activated by GSK343 in B cells (Fig 5C and

D). Upregulation of monocyte chemotaxis genes was more consis-

tent and robust in WT compared to RIC mutants (Fig 5E). Notably,

several of these genes were secreted chemokines with

pro-inflammatory functions. Importantly, upregulation of

these chemokines in WT, but not RIC mutant B cells, was not asso-

ciated with direct loss of H3K27me3 as evidenced by the absence of

peaks at these genes under all experimental conditions (Fig 5F).

This suggests that their upregulation is mediated by GSK343-

induced repetitive element expression, activation of cytosolic PRRs

and subsequent signaling. Consistent with gene expression data,

detection of secreted cytokines by array analysis demonstrates RIC

dependent upregulation of MIP-1a (encoded by Ccl3) and MDC

(encoded by Ccl22) (Fig 5G). In sum, these data indicate that the

cytosolic PRRs are required to upregulate chemokine production

upon EZH2 inhibition with GSK343 and this effect is blocked in RIC

mutants.

EZH2 inhibition induces an NFjB dependent gene expression
program that resembles B cell infection by Epstein–Barr virus

To understand if EZH2 inhibition induced inflammation and B cell

death represent synthetic chemical effects or are triggering a natural

physiological response, we compared our findings with B cells fol-

lowing an in vitro viral infection. We performed the same GSEA on

existing RNA-seq data of Epstein–Barr Virus (EBV) infected human

B cells (Wang et al, 2019a, Data ref: Wang et al, 2019b). This

revealed that monocyte chemotaxis was a commonly shared and

highly ranked gene expression category from both EBV infection

and EZH2 inhibition (Fig 6A and B). In contrast, IFN-related gene

sets were not significantly upregulated (Fig EV4E). Furthermore, we

found that the monocyte chemotaxis gene set was significantly

enriched in EBV-infected cells compared to control at five out of six

time points following infection (Fig 6C). Next, we compared the

number of gene sets that were commonly upregulated between

EBV-infected human B cells and GSK343 treated WT or RIC mutant

B cells. This revealed that gene sets upregulated in RIC mutant B

cells were generally exclusive to themselves (red), As expected,

human B cells infected with EBV for various durations shared many

commonly upregulated gene sets. Importantly, GSK343 treated WT

B cells shared more gene sets with EBV-infected B cells (purple)

compared to RIC mutants (yellow). Taken together, these data sug-

gest that loss of PRRs in RIC mutants abrogated upregulation of gene

sets that are induced in a bona fide viral infection in human B cells.

Based on this similarity we describe EZH2 inhibition as a viral mim-

icry response and emphasize that its mechanism of action is clearly

distinct from previously reported viral mimicry that is highly depen-

dent on interferon signaling.

▸Figure 5. Cytosolic PRRs are required for GSK343-induced inflammatory signaling in B cells.

A Scatter plot showing a negative correlation between loss of H3K27me3 near promoters and upregulation of nearby genes in WT and RIC mutant splenic B cells. Top
50 upregulated genes annotated with H3K27me3 fold change nearby are shown. Fold change reflects GSK343 treatment compared to vehicle. A test for non-
parametric Spearman’s correlation was performed.

B Volcano plot depicting up- or downregulated repetitive elements in RIC mutant splenic B cells treated with DMSO or 1 lM GSK343 for 48 h in culture (n = 3 biologi-
cal replicates).

C Bar plot depicting adjusted P values (FWER) of GSEA of Gene Ontology (GO) biological processes and Hallmark gene sets based on a weighted Kolmogorov–Smirnov
statistic. Horizontal dotted line indicates P value cut-off at 0.1.

D Net enrichment scores (NES), q-value (FWER) and rank among gene sets (color legend) for chemotaxis or IFN-related gene sets for WT (left) and RIC mutant (right)
based on a weighted Kolmogorov–Smirnov statistic. Horizontal dotted line indicates P value cut-off at 0.1.

E Expression heatmap of genes annotated in “monocyte chemotaxis” gene set in WT and RIC mutant splenic B cells. Expression is shown as a Z-score of the mean of
each row and chemokine genes are indicated. FDR cutoff: 0.05.

F Genome track view showing normalized coverage (RPGC) of H3K27me3 signal tracks at genes encoding chemokines in “monocyte chemotaxis” GO pathway.
G Quantification of MIP-1a (Ccl3) and MDC (Ccl22) from cell culture supernatant of WT and RIC mutant splenic B cells treated with DMSO or 1 lM GSK343 for 48 h in

culture (n = 3 biological replicates). *P < 0.05, **P < 0.001 by two-way ANOVA with Dunnett’s multiple test correction.

Source data are available online for this figure.
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Figure 6. EZH2 inhibition mimics B cell infection by Epstein–Barr Virus.

A GSEA plot of “monocyte chemotaxis” GO gene set significantly enriched in GSK343-treated splenic B cells compared to vehicle based on a weighted Kolmogorov–
Smirnov statistic.

B GSEA plot of “monocyte chemotaxis” GO gene set significantly enriched in EBV-infected human B cells compared to control based on a weighted Kolmogorov–Smirnov
statistic.

C Adjusted P values (FWER) and position in ranked list (out of all tested gene sets) of “monocyte chemotaxis” GO biological process pathway at indicated days post EBV
infection in human B cells based on a weighted Kolmogorov–Smirnov statistic. Horizontal dotted line indicates P value cut-off at 0.1.

D Upset plot showing numbers of commonly or exclusively upregulated GO biological process gene sets upon EBV infection or GSK343 treatment.
E Western blot of NFjB p65 in chromatin fractions from WT and RIC mutant splenic B cells treated with DMSO or 1 lM GSK343 for 48 h in culture. Representative

image of biological duplicate experiments.
F Schematic describing the strategy to genetically delete IKKb.
G Western blot showing IKKb expression in control or KO splenic whole cell extracts.
H qRT–PCR quantification of indicated chemokines in splenic B cells treated with DMSO or GSK343 (n = 4 biological replicates). ns P > 0.05, *P < 0.05, **P < 0.005 by

two-way ANOVA with Sidak’s multiple test correction.

Source data are available online for this figure.
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We sought to understand the mechanism downstream of PRRs

that upregulates chemotaxis-related genes. We observed that the

NFjB family protein, p65, increased its chromatin binding upon

GSK343 treatment in WT, but not RIC mutant B cells (Fig 6E).

Therefore, we hypothesized that p65 was the mechanistic link

between PRRs and gene expression as described above. To test this,

we abrogated p65 activation by genetically deleting its upstream

activator, IKKb (Fig 6F). We confirmed successful deletion by west-

ern blotting (Fig 6G). As previously, we treated splenic B cells from

these mice with GSK343 in culture, and quantified chemokine

expression by qRT–PCR. In IKKb KO B cells, Ccl5, Ccl22 and Cx3cl1,

were not significantly upregulated compared to controls (Fig 6H).

Ccl3, however, was still upregulated despite inactivation of p65 sig-

naling, indicating that IKKb independent pathways also contribute.

Generation of IKKb deficient B cells in this model required an

interferon dependent Mx-cre inflammatory signaling mechanism

induced by dsRNA polyIC administration. Since this chemical stimu-

lant induces interferon, and B cells do not die, we also investigated

gene expression in WT splenic B cells following polyIC treatment.

This revealed clear activation of interferon stimulated genes Isg15,

Ifitm3, and Ifih1 (Fig EV4F), as well as chemokines identified above

such as Ccl3 and Ccl5. These observations further emphasize that

GSK343 induced chemokine activation in B cells is distinct from

interferon signaling.

EZH2 inhibition can induce multiple viral mimicry pathways

The lack of interferon and interferon stimulated gene (ISG) activa-

tion upon EZH2 inhibition and downstream PPR-dependent signal-

ing contrasts with existing literature investigating its effects in

cancer cells (Morel et al, 2021). Therefore, we sought to study the

effect of EZH2 inhibition and the role of cytosolic PRRs in B16-F10

mouse melanoma cells, and to compare their gene expression

changes to splenic B cells.

Using lentiviral transduction and CRISPR gene editing, we cre-

ated cell populations that are either Rigi, Cgas or Rigi/Cgas double

KO (Fig 7A). These cell lines were then treated with vehicle or 2 lM
GSK343 for 4 days in culture. We extracted total RNA and

performed qRT–PCR for three IFN-stimulated genes (ISGs). Ifih1,

Isg15, and Ifitm3 were significantly upregulated in control cells, but

not in any of the three KO lines (Fig 7B). We performed RNA-seq

and GSEA and compared with our B cell transcriptome data

(Datasets EV3–EV6). In control cells, GSK343 treatment significantly

upregulated pathways related to sterol metabolism and IFN
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Figure 7.

▸Figure 7. RIG-I and cGAS deletion blocks B16-F10 cells from upregu-

lating IFN and innate immune genes and pathways upon GSK343

treatment.

A Western blots of control or KO cell pools.
B qRT–PCR quantification of three indicated ISGs upon GSK343 treatment

compared to vehicle. B16-F10 cells were treated with DMSO or 2 lM
GSK343 for 4 days (n = 3 biological replicates). Expression was normalized
to the average of DMSO treatment within each genotype. *P < 0.05,
***P < 0.0005, ****P < 0.0001 by two-way ANOVA with Sidak’s multiple
test correction.

C Adjusted P values of indicated GO biological process gene sets for each cell
line based on a weighted Kolmogorov–Smirnov statistic. Horizontal dotted
line indicates cut-off at 0.1 (top). Position in ordered rank list of indicated
GO biological processes gene sets for each cell line. Horizontal dotted line
indicates the 10th rank (bottom).

Source data are available online for this figure.
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activation, but not chemokine or chemotaxis pathways (Fig 7C). In

contrast, the sterol metabolic pathways were upregulated in all KO

cells, but the IFN response pathways were not. We found that genes

with a role in innate immune and IFN responses were among the

most significantly upregulated genes in the control cells (Appendix

Fig S2A), and these were essentially blocked in KO cells. Impor-

tantly, repetitive elements were comparably induced in all four cell

lines by GSK343 treatment (Appendix Fig S2B). The contrast

between gene expression changes upon the same EZH2 inhibition

and PRR dependence in B16-F10 cells strongly suggests that the EBV

infection-like viral mimicry response is unique to B cells.

Cytosolic PRRs mediate a cellular inflammatory response upon
EZH2 inhibition

We next determined if PRRs control a cellular inflammatory

response in the spleen in response to EZH2 inhibition. As before, we

injected either vehicle or GSK343 daily for 2 days. We harvested the

spleen and stained erythrocyte-lysed splenocytes with a multicolor

antibody panel to identify key cell populations (Fig EV5A). CD19+

staining of CD45+ cells demonstrated that in WT spleens B cells

were reduced nearly two-fold, but only modestly in the RIC mutants

(Fig 8A). We also found that the proportion of CD3+ T cells was

increased upon GSK343 treatment in WT mice. However, this effect

was also blunted in RIC mutants. Notably, the proportion of CD8+

cytotoxic T cells among CD3+ cells was increased in WT, but not sig-

nificantly changed in RIC mutants upon EZH2 inhibition (Fig 8B).

This suggests that in the absence of inflammatory cytokine signaling

from RIC mutant B cells, they not only survive, but fail to recruit T

effector cell populations.

We also quantified the proportion of myeloid cells in the spleen

and found that CD11b+ cells were significantly increased in WT

spleens, but unchanged in RIC mutants (Fig 8C). More specifically,

the increase in the proportion of Ly6C+ Ly6G+ neutrophils was sig-

nificantly limited in the mutants (Fig 8C). We also measured abso-

lute counts of each cell population per unit volume using counting

beads. These data largely corroborate the proportions of cells

described here (Fig EV5B). The significantly smaller proportions or

absolute counts of CD3+CD8+ cytotoxic T cells, and

CD11b+Ly6C+Ly6G+ neutrophils in GSK343-treated RIC mutant

spleens compared to WT implies that the inflammatory response in

the mutants is greatly reduced.

Given EZH2’s role in B lineage development we tested if GSK343

treatment in our 2-day experiments affected hematopoiesis. Staining

and flow cytometry of bone marrow cells indicates that overall

levels of CD19 and CD43 are unchanged in the course of experi-

ments (Fig 8D). This suggests that GSK343 treatment does not alter

progression of CD43+ CD19� progenitors to CD43� CD19+ immature

B cell, nor does it increase Ly6C+ Ly6G+ neutrophils in the bone

marrow (Fig 8D). This further suggests that the decrease in B cells

or increase in neutrophils in the spleen upon GSK343 treatment is

not due to similar changes in their production in the bone marrow

during hematopoiesis. Overall, this flow cytometric analysis of

splenic cells supports the conclusion that cytosolic PRRs mediate an

inflammatory response upon EZH2 inhibition that attracts T cells

and neutrophils, ultimately leading to B cell death.

Discussion

Our work demonstrates a central role for PRRs in responding to

EZH2 inhibition in mammals. We revealed that EZH2 inhibition

uniquely activates repetitive element expression in B cells. Repeat

misexpression is detected in WT and RIC mutant B cells treated with

EZH2 inhibitors, indicating that the functional loss of the PRRs does

not compromise the initial, on-target effects of EZH2 inhibition. In

contrast, loss of PRR function in RIC mutant B cells failed to activate

expression of pro-inflammatory chemokines and inflammation and

cell death were blocked. Based on these findings, we propose a sig-

naling model in which EZH2 chemical inhibition induces a viral

mimicry response leading to PRR and NFjB activation, chemokine

expression, and B cell death through immune effector cells (Fig 9A

and B). It is distinct from EZH2 inhibition in cancer cells that

induces repeats and activates interferon signaling using the same

PRRs (Fig 9C). This has important implications for EZH2 inhibitor

use and it suggests new applications for this class of therapeutic.

Our H3K27me3 ChIP-seq data from B cells reveal a striking pref-

erence for EZH2 inhibition causing decreased H3K27me3 in intronic

and intergenic regions in comparison with proximal promoters. Fur-

thermore, our work reveals that there is extensive overlap of

H3K27me3 intersecting with repetitive elements and EZH2 inhibi-

tors induces their expression. In addition, we demonstrate that B

cell repeat sequences lack CpG methylation. This unique combina-

tion of heterochromatin characteristics largely explains why B cells

are susceptible to viral mimicry in response to EZH2 inhibitors. We

are unaware of other cell types that possess this combination of

chromatin characteristics as we did not detect this striking cell death

and inflammation phenotype in other major organs or tissues.

Our data highlight the similarity between Epstein–Barr Virus

infection and the response to EZH2 inhibitors that is best appreci-

ated by the similarity of chemokines whose expression they both

activate. Expression of Csf1, Ccl22 (MDC), Ccl1, Ccl3, and Ccl5 are

all induced upon infection of B cells (Nakayama et al, 2004; Ehlin-

Henriksson et al, 2009), and these chemokines are all activated in a

▸Figure 8. Cytosolic PRRs mediate GSK343-induced inflammation.

A–C WT and RIC mutant mice were I.P. injected with either vehicle or 100 mg/kg/day GSK343 for 2 days. Spleens were harvested and erythrocyte-lysed splenic lympho-
cytes were subjected to flow cytometry to quantify different immune cell populations. In each panel, a representative dot plot is shown for indicated cell popula-
tions under each treatment for WT and RIC mutant mice. Graphs below or adjacent summarize the proportions of each immune cell type as indicated (n = 7–10
biological replicates). Horizontal red bars represent the mean.

D WT mice were I.P. injected with either vehicle or 100 mg/kg/day GSK343 for 2 days. Erythrocyte-lysed bone marrow cells were subjected to flow cytometry to quan-
tify different immune cell populations and analyzed as above (n = 5 biological replicates). Horizontal red bars represent the mean. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001 by two-way ANOVA with Tukey’s multiple test correction.

Source data are available online for this figure.
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PRR dependent manner by EZH2 inhibitors in our experiments. The

mechanism by which B cell death is induced by EZH2 inhibitors

likely depends on these chemokines and T cell recruitment. We

expect this is distinct from the mechanism by which EBV encoded

LMP1 activates a similar gene expression program during infection.

Intriguingly, viral infection can activate repeat expression and NFjB
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suggesting viral infection may engage this pathway in unexpected

ways (Jang & Latchman, 1989; Panning & Smiley, 1989, 1993; Wil-

liams et al, 2004; Karijolich et al, 2015). We compare gene expres-

sion programs with cell culture EBV-infected B cells, but note that

some studies indicate that EBV-infected cells are targeted by T and

NK cells following infection endogenously (Rickinson & Moss, 1997;

Smith et al, 2009), suggesting there may be more similarities

between EZH2 inhibition and EBV infection in vivo. Regardless of

the precise explanation for B cell death, this viral mimicry that

resembles EBV infection, reveals a distinct pathway activated by

EZH2 not observed in prior studies of interferon activating para-

digms described in cancer cells.

The rationale for generating EZH2 inhibitors is to counteract

overactive H3K27me3 deposition that arises from overexpressed or

mutationally activated EZH2. Our study reveals the consequence of

inhibition of endogenous, wild type EZH2. We suggest important

considerations and potential applications for EZH2 inhibitors in the

future. First, short-term treatment with these inhibitors is capable of
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C Pathways of EZH2 inhibitor effects in cancer cells that induce interferon based inflammatory signaling.
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inducing inflammation and depleting B cells. Recent studies using

other EZH2 inhibitors, DZNep or GSK126, to treat mouse models of

systemic lupus erythematosus demonstrated phenotypic improve-

ment in a number of measures of disease pathology (Rohraff

et al, 2019; Wu et al, 2021). These studies rationalized use of EZH2

inhibitors based on high level EZH2 expression even though this is

not observed in all patients or relevant immune cell types. Our work

demonstrates activation of viral mimicry in B cells after only brief

treatment and suggests an alternate explanation to reduced B cells

in these models. Secondly, the specificity of viral mimicry related

immune stimulation in cancer treatment is based on the concept

that cancer cells have precarious silencing of repeats. Epigenetic

alterations inherent to cell transformation alter heterochromatin

such that inhibitors of DNA methyltransferases selectively cause

repeat expression in cancer cells but not normal somatic cells. Our

work suggests that EZH2 inhibitors may be deployed based on a

similar logic whereby low levels of DNA methylation are acquired

through transformation and cells are susceptible to EZH2 inhibition

even without overexpression of EZH2 (Morel et al, 2021). Our find-

ings also raise the question of whether the activation of inflamma-

tory signaling upon EZH2 inhibition in B cells from prolonged

treatment with this class of inhibitor can lead to chronic inflamma-

tion. Overall, our work reveals a new effect of EZH2 inhibitors in

immune function that is likely to have a significant impact on the

use of these agents in clinical applications.

Materials and Methods

Mice

C57BL/6NCrl (Charles River, #027), B6.SJL-Ptprca Pepcb/BoyJ

(The Jackson Laboratory, #002014), B6.Cg-Tg(Mx1-cre)1Cgn/J;

Ikbkbtm2Mka (The Jackson Laboratory, #003556, Asfaha lab) and RIC

triple mutant mice (described below) were housed and monitored

according to institutional animal use guidelines (Western Univer-

sity, Animal Use Committee, protocol numbers 2020-039 and 2019-

021). Mice were given access to standard chow and water ad libitum

and exposed to 12 h light/dark cycles in a pathogen-free exclusion

facility. For I.P. injections and splenic B cell isolation, littermates 6–

8 week old mice of both sexes were randomly assigned to experi-

mental groups within each genotype.

Intraperitoneal injections

For EZH2 inhibition in vivo, 6–8 week old mice were I.P injected

daily with 100 mg/kg GSK343 (Tocris, #6128) for 2 or 5 days,

UNC1999 (Cayman Chemical, #14621) for 2 days, or EPZ6438 (Sell-

eckChem, #S7128) for 1 day in 20% (w/v) Captisol (Captisol, San

Diego), pH 4.5 (with 1 N acetic acid). Control mice were I.P injected

daily with 20% (w/v) Captisol (Captisol, San Diego), pH 4.5 (with

1 N acetic acid) for 2 or 5 days. Mice were sacrificed, and the spleen

and bone marrow were harvested for analysis. For poly(I:C)

(Millipore-Sigma, #P1530) treatment, 6–8 week old male or female

WT and RIC mutant mice were I.P injected with either 100 lg poly

(I:C) or PBS. To induce MDA5 expression as shown in Fig 3C, mice

were injected once 24 h before harvesting the spleens. To quantify

expression of ISGs and chemokines in splenic B cells as shown in

Fig EV4E, mice were injected twice 48 h apart. To delete IKKb as

shown in Fig 6F, mice were injected three times every 48 h, then

their spleens were harvested 1 week after the last injection. For

adoptive transfer experiments, MACS-purified splenic B cells

(2 × 107) from B6.SJL-Ptprca Pepcb/BoyJ mice were I.P. injected into

recipient C57BL/6NCrl mice 24 h before vehicle or GSK343

treatment.

Immunohistochemistry

Spleens were fixed in 10% neutral buffered formalin for 48 h prior

to paraffin embedding. Routine H&E staining was performed. For

immunohistochemistry, tissue sections were incubated in the fol-

lowing solutions for 3 min each: 100% xylene, 100% xylene, 100%

ethanol, 100% ethanol, 95% ethanol, 70% ethanol. Antigen

retrieval was performed in citrate (10 mM sodium citrate, pH 6.0)

buffer for CD68 (Abcam, #125212, 1:100), and cleaved caspase 3

(CST, #9661, 1:400) staining. Slides were incubated with the pri-

mary antibodies in a humidified chamber overnight at 4°C. Goat

anti-rabbit biotinylated IgG (VectorLabs, #BA-1000-1.5), peroxidase-

streptavidin (VectorLabs, #SA-5704-100) and DAB substrate kit

(VectorLabs, #SK-4100) were used the next day at RT to develop the

staining. Mayer’s hematoxylin was used to counterstain, then

washed with tap water to destain. Slides were dehydrated and

mounted with a coverslip and mounting medium (VectorLabs, #H-

5000). DAB positive cell detection based on a maximum threshold

in QuPath/0.3.2 was used to identify the percentage of cleaved

caspase 3 positive cells. Object classifier was used to identify

tingible body macrophages.

Cell culture

B16-F10 melanoma cells (ATCC, CRL-6475) were a gift from Dr.

Charles Ishak. The cells were grown in DMEM (Wisent) supple-

mented with 10% (v/v) FBS, 2 mM L-glutamine, penicillin, and

streptomycin at 37°C in 5% CO2. For lentiviral transduction,

HEK293T cells at 70% confluency on 6-well plates were transfected

with 12 lg pLentiCRISPRv2 (Addgene, #52961, targeting cGAS, RIG-

I or b-gal/luciferase), 9 lg pMD2.G (#12259) and 3 lg psPAX2

(#12260) using Lipofectamine 3000 (Life Technologies, #L3000001)

following manufacturer’s recommendations. After 48 h, the culture

media were harvested and passed through a 0.45 lm filter. B16-F10

cells were transduced with the appropriate filtrate containing 8 lg/
ml polybrene. To select for transduced cells, B16-F10 cells were

maintained in media containing 1 lg/ml puromycin. To isolate

cGAS/RIG-I single, or double KO cells, puromycin-selected cells

were seeded on 96-well plates at low density, and subpopulations

were tested for protein expression by Western blotting. Those with

confirmed loss of cGAS/RIG-I expression were pooled together for

subsequent experiments. Identities of B16-F10 cells and engineered

variants were confirmed by western blotting and cells were tested

for mycoplasma contamination.

For GSK343 treatment, B16-F10 cells (3 × 105) were seeded on 6-

well plates. Next day, DMSO or 2 lM GSK343 were added, and the

cells were treated for 4 days. Culture media were replaced daily.

For splenocyte culture, spleens were harvested from untreated

WT and RIC mutant mice, gently homogenized with a syringe

plunger and passed through a 40 lm mesh filter (Fisher Scientific,
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#08-771-1). Filtered cells were centrifuged at 300 g for 10 min at

4°C. The cell pellet was resuspended in ACK lysis buffer (150 mM

NH4Cl, 10 mM KHCO3, 0.1 mM EDTA, pH 7.2) for 4 min at RT to

lyse erythrocytes. Remaining splenic lymphocytes were washed

twice with FACS buffer (5% BSA, 2 mM EDTA in PBS) and incu-

bated in RPMI-1640 (Wisent) supplemented with 10% (v/v) FBS,

55 lM 2-ME, 2 mM L-glutamine, penicillin and streptomycin at

37°C in 5% CO2.

To isolate splenic B cells and CD43+ cells, washed splenic lym-

phocytes (5 × 107) were resuspended in 450 ll FACS buffer and

stained with 50 ll CD43 microbeads (Miltenyi Biotec, #130-049-801)

at 4°C for 30 min. Cells were washed once, resuspended in 500 ll
FACS buffer and passed through an LD column in a VarioMACS sep-

arator (Miltenyi Biotec, #130-042-901, #130-090-282) as per manu-

facturer’s recommendations. CD43 microbead-labeled CD43+ cells

were eluted from the column by applying the plunger. Purified B

cells or CD43+ cells were incubated in RPMI-1640 supplemented as

above plus 2 ng/ml IL-4 and 2 ng/ml BAFF (BioLegend, #574302,

#591202) at 37°C in 5% CO2 for all ex vivo experiments. These cells

were treated with DMSO, GSK343 (Tocris, #6128), UNC1999 (Cay-

man Chemical, #14621) or EPZ6438 (SelleckChem, #S7128) for 48 h

in culture. Cell viability was measured by trypan blue exclusion

assay and quantified by Countess II (ThermoFisher).

Infinium mouse methylation array

Genomic DNA was purified from B or CD43+ cells using Monarch

genomic DNA purification kit (NEB, #T3010). Further sample

processing and mouse methylation array (Illumina) were performed

by The Centre for Applied Genomics, The Hospital for Sick Children,

Toronto, Canada. “Combined rank” metric in RnBeads/3.17 was

used to generate an ordered list of differentially methylated probes

between DMSO-treated B and CD43+ cells (M€uller et al, 2019). In

addition to default probe annotations (cpgislands, genes, and pro-

moters), a custom repClass annotation was generated from Repeat-

Masker (downloaded from UCSC table browser) and applied to the

probes. Beta values of such annotated, differentially methylated

probes were represented as heatmaps (gplots /3.1.3).

RNA extraction, qRT–PCR and sequencing

Splenocytes or splenic B cells (5 × 106 cells/ml) were treated with

either DMSO or 1 lM GSK343 for 48 h. RNA was harvested using

Monarch Total RNA miniprep kit (NEB, #T2010) and residual geno-

mic DNA was digested by treating 1 lg total RNA with 1 U DNaseI

(ThermoFisher, #18068015) for 15 min at RT. DNaseI was then

inactivated by adding EDTA and incubating at 65°C for 10 min. For

qRT–PCR, RNA was then reverse-transcribed into cDNA with iScript

Supermix (Biorad, #1708840) and diluted five-fold with H2O. PCR

was performed with iQ SYBR Green Supermix (Biorad, #1708882)

on CFX96 (Biorad). All primer sequences are described in Table EV5

(Stetson & Medzhitov, 2006). For sequencing, DNaseI-treated RNA

was purified with Monarch RNA cleanup kit (NEB, #T2040). rRNA

depletion and library preparation were performed with VAHTS total

RNA-seq library prep kit (GeneBio, #NR603-01). Libraries were

pooled and sequenced on NextSeq 500 at the London Regional

Genomics Center with a high output 75 cycle kit to yield single-end

75-bp reads.

RNA sequencing analysis

Demultiplexed FASTQ files were downloaded from BaseSpace.

RepEnrich2 and featureCounts were used to quantify repetitive ele-

ment expression (Criscione et al, 2014; Liao et al, 2014; Teissandier

et al, 2019). Briefly, bowtie2/2.4.2 (Langmead & Salzberg, 2012)

was used to map reads to mm10 with default settings. Resulting

sam files were converted to bam files with samtools/1.12 (Li

et al, 2009). RepeatMasker track for mm10 was filtered to remove

simple repeats, then used to build a pseudogenome with RepEnrich2

subcommands. Fractional count tables were imported to Rstudio

running r/3.6.3. Alternatively, STAR/2.5.2b (Dobin et al, 2013) and

featureCounts were used with recommended settings (Teissandier

et al, 2019) with the filtered RepeatMasker track to generate count

tables. For gene expression quantification, reads were mapped to

mm10 genome with STAR/2.7.8a and resulting sam files were

converted to sorted, indexed bam files with samtools/1.12. HTSeq/

0.11.0 (Anders et al, 2015) was used to assign mapped reads to

GENCODE mouse M22 comprehensive gene annotation (Frankish

et al, 2019).

To identify differentially expressed repetitive elements or genes,

edgeR/3.28.1 (Robinson et al, 2010) was used with default

Benjamini-Hochberg P-value adjustment. Volcano plots, heatmaps,

and Venn diagrams were generated with EnhancedVolcano,

heatmap.2 and VennDiagram, respectively (Chen & Boutros, 2011).

GSEA was performed as recommended using a weighted

Kolmogorov–Smirnov statistic (Mootha et al, 2003; Subramanian

et al, 2005). Upset plot was generated using UpSetR/1.4.0.

ChIP sequencing

WT and RIC mutant splenic B cells (5 × 106 cells/ml, 7.5 × 106 cells

total) were treated with either DMSO or 1 lM GSK343 for 48 h.

Cells were washed with PBS and resuspended in 1 ml 1% (v/v)

formaldehyde in PBS to fix chromatin-protein complexes. After

5 min, the reaction was quenched by adding glycine to a final con-

centration of 0.125 M. Fixed cells were washed twice with PBS and

incubated on ice for 10 min in lysis buffer 1 (10 mM HEPES pH 6.5,

10 mM EDTA, 0.5 mM EGTA, 0.25% Triton X-100). The suspension

was centrifuged at 600 g for 5 min at 4°C to isolate the nuclei. They

were washed twice in wash buffer (10 mM HEPES pH 6.5, 1 mM

EDTA, 0.5 mM EGTA, 200 mM NaCl) and resuspended in lysis

buffer 2 (50 mM Tris pH 8.0, 1 mM EDTA, 0.5% Triton X-100, 1%

SDS) to 7.5 × 106 cell/200 ll in sonication tubes. The following pro-

tease inhibitors were added immediately before use to all of the

above buffers: 250 lM Na3VO4, 1 mM NaF, 0.1 mM PMSF, 5 lg/ml

aprotinin and leupeptin. DNA yield was quantified with Qubit fluo-

rometer (ThermoFisher). Chromatin was sonicated to 100–600 bp

fragments by four cycles of 30 s ON and OFF in Bioruptor Pico

(Diagenode, #B01060010). Debris was cleared by centrifugation at

16,000 g for 30 min at 4°C. Then, chromatin was pre-cleared with

30 ll Dynabeads Protein G (ThermoFisher, #10004D) by gentle end-

to-end mixing at 4°C for 2 h. Pre-cleared chromatin was diluted 10-

fold in dilution buffer (50 mM Tris pH 8.0, 1 mM EDTA, 150 mM

NaCl, 0.1% Triton X-100) and 5% (by volume) was saved as input

until later. H3K27me3 antibody (4 lg, Millipore-Sigma, #07-449)

was added to pre-cleared chromatin (30 lg) and mixed end-to-end

at 4°C overnight. The next day, antibody-chromatin complexes were
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captured by adding 50 ll Dynabeads Protein G and gentle end-to-

end mixing at 4°C for 2 h. They were washed once with low salt

buffer (20 mM Tris pH 8.0, 2 mM EDTA, 150 mM NaCl, 1% Triton

X-100, 0.1% SDS), once with high salt buffer (20 mM Tris pH 8.0,

2 mM EDTA, 500 mM NaCl, 1% Triton X-100, 0.1% SDS), once

with LiCl wash buffer (10 mM Tris pH 8.0, 1 mM EDTA, 0.25 M

LiCl, 1% NP-40, 1% sodium deoxycholate) and twice with TE buffer

(10 mM Tris pH 8.0, 1 mM EDTA). For each wash, the immunopre-

cipitated complexes were mixed end-to-end at 4°C for 5 min.

Antibody-chromatin complexes were eluted from Dynabeads by

incubating in elution buffer (0.1 M NaHCO3, 1% SDS) at 65°C and

vortexing. To the elution (ChIP) and input (saved earlier), NaCl was

added to a final concentration of 200 mM to reverse crosslinked

protein-DNA complexes and incubated overnight at 65°C. The next

day, the suspension was mixed with RNaseA and proteinase K to

digest RNA and proteins, respectively, and incubated at 45°C.

Finally, ChIP and input chromatin were purified with Monarch

PCR/DNA cleanup kit (NEB, #T1030) and eluted with H2O. Follow-

ing the manufacturer’s recommendation, input (25 ng) or ChIP

(0.5 ng) DNA were used to perform end repair, adaptor ligation,

and PCR amplification with NEBNext Ultra II DNA library prep kit

and Multiplex Oligos (NEB, #E7645, #E7600). AmpureXP beads

(Beckman Coulter, #A63880) were used at 0.9–1.0× reaction vol-

umes for size selection. Input or ChIP samples were amplified by 10

or 15 PCR cycles, respectively, which yielded ~ 600 ng DNA. Librar-

ies were pooled and sequenced on NextSeq 500 at the London

Regional Genomics Center with a high output 75 cycle kit to yield

paired-end 38-bp read pairs.

ChIP sequencing analysis

Demultiplexed FASTQ files were downloaded from BaseSpace. First,

ENCODE blacklist regions (Amemiya et al, 2019) were filtered out

from subsequent analysis. Reads were mapped to mm10 genome

with bowtie2/2.4.2 with sensitive-local setting. Samtools/1.12 was

used with -f 0x2 option to keep concordantly mapped read pairs.

Those read pairs were converted to sorted, indexed bam files. Bio-

logical duplicates were pooled together and MACS2/2.2.7.1 (Zhang

et al, 2008) was used to call broad peaks, outputting broadPeak

files. A subcommand of deepTools/3.5.1 (Ram�ırez et al, 2016),

bamCoverage, was used to generate reads-per-genomic-content

(RPGC) normalized signal track (bw files) for all sequenced librar-

ies. To account for composition biases in ChIP libraries, the trimmed

mean of M-values method available in csaw/1.32.0 was used to gen-

erate scaling factors, which were passed into bamCoverage subcom-

mand with scaleFactor (Lun & Smyth, 2016a, 2016b). csaw was also

used to quantify the loss of H3K27me3 at regions near genes and

promoters upon GSK343 treatment compared to vehicle. plotEnrich-

ment, computeMatrix, plotHeatmap, and plotProfile commands

(deepTools/3.5.1) were used to make barplots, heatmaps, and pro-

files. Bedtools/2.30.0 (Quinlan & Hall, 2010) was used to find peaks

or number of peaks that intersected with RepeatMasker features, or

were unique or common between treatment conditions or geno-

types. ChIPseeker (Yu et al, 2015) was used to annotate peaks based

on known genomic features. To show read mapping (color-coded by

strand) in Fig EV3B, samtools/1.12 was used with -f 0x40 option to

split read pairs into two bam files. A bam file of one of the read

mates (a ChIP sample of DMSO-treated WT B cells) was imported to

IGV/2.11.1 (Robinson et al, 2011) to show mapped reads at two

loci. To show H3K27me3 signal enrichment at indicated loci

(RPGC), bw files of biological replicates were merged together with

bigWigMerge and bedGraphToBigWig (Kent et al, 2010). Merged

signal track and broadPeak files were visualized on IGV/2.11.1.

Peaks with a score < 20 were filtered out.

Flow cytometry

Total splenocytes or bone marrow cells were isolated as described

above. 2 × 106 cells were resuspended in PBS with ZombieNIR

(1:500, BioLegend, #423105) and incubated on ice for 30 min to

stain dead cells. Then, they were washed with FACS buffer and

resuspended in pre-staining mix containing 50 ll Brilliant Stain

Buffer (BD Biosciences, #563794), 5 ll TruStain monocyte blocker

(BioLegend, #426102), 1 ll TruStain FcX plus (BioLegend,

#156603) and 27.4 ll FACS buffer. Splenocytes were stained with

the following antibody cocktail: anti-CD45.2 BV421 (BioLegend,

#109831), anti-CD19 BV510 (BioLegend, #115545), anti-Ly6C

BV605 (BioLegend, #128035), anti-CD11b FITC (BioLegend,

#101206), anti-CD3e PerCP/Cy5.5 (BioLegend, #100327), anti-

CD8a PE (BioLegend, #100707), anti-CD45.1 PE/Dazzle 594

(BioLegend, #110747) and anti-Ly6G APC (BioLegend, #127613).

Bone marrow cells were stained with a similar panel but with the

following substitution: anti-CD43 PerCP/Cy5.5 (BioLegend,

#143219) and anti-CD45R PE (BioLegend, #103207). Stained cells

were kept on ice for 30 min, then washed with FACS buffer.

Cells were fixed in 100 ll fixation buffer (BD Biosciences,

#554655) on ice for 20 min. They were washed and resuspended

in 500 ll FACS buffer and 100 ll Precision counting beads

(BioLegend, #424902). Flow cytometry was performed on LSR II

(BD Biosciences) at the London Regional Flow Cytometry Facility

and analyzed with FlowJo/10.8.1. AbC total antibody compensa-

tion beads and ArC amine reactive compensation beads (Thermo-

Fisher, #A10497, #A10628) were used to generate compensation

matrices in FACSDiva (BD Biosciences).

Protein extraction and pulldown assay

Erythrocyte-lysed splenocytes were lysed in RIPA buffer (50 mM

Tris pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate,

0.1% SDS, supplemented with protease inhibitors as above) on ice

for 10 min. Chromatin fractions were prepared by lysing cells

sequentially in buffer A (10 mM Tris pH 8.0, 10 mM KCl, 1.5 mM

MgCl2, 0.34 M sucrose, 10% (v/v) glycerol, 0.1% Triton-X, supple-

mented with protease inhibitors as above), then in buffer B (3 mM

EDTA, 0.2 mM EGTA, supplemented with protease inhibitors as

above) with occasional mixing. Cytoplasmic and nucleoplasmic

fractions were discarded by centrifugation, and resulting chromatin

was digested with DNaseI in digestion buffer (20 mM Tris pH 7.5,

10 mM MgCl2).

For cGAS pulldown assay, erythrocyte-lysed splenocytes were

lysed in non-ionic buffer (25 mM HEPES, 100 mM NaCl, 1 mM

EDTA, 10% (v/v) glycerol, 1% Triton X-100, supplemented with

protease inhibitors as above) on ice for 10 min. Debris was

cleared by centrifugation at 16,000 g for 30 min at 4°C. Bradford

assays were used to quantify protein concentration. For the pull-

down assay, 500 lg of extract was mixed with 400 pmol of 50
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biotinylated ISD45 dsDNA and gently mixed end-to-end overnight

at 4°C. The next day, 20 ll streptavidin Dynabeads (Thermo-

Fisher, #11205D) were added and gently mixed for 2 h at 4°C.

Pulldown complexes were washed once with non-ionic lysis

buffer and once with non-ionic lysis buffer supplemented with

300 mM NaCl.

For histone acid extraction, purified, cultured splenic B cells were

lysed in buffer (PBS, 0.5% Triton X-100, supplemented with prote-

ase inhibitors as above) on ice with gentle mixing for 10 min. Nuclei

were isolated by centrifugation at 2,000 rpm for 10 min at 4°C. The

pellet was resuspended in 0.4 N HCl overnight at 4°C. Next day, cell

debris was cleared by centrifugation, and trichloroacetic acid (1/3

volume) was added to the supernatant, and kept on ice for 2 h. Pre-

cipitated histones were washed twice with 0.1% HCl (v/v) in cold

acetone, then cold acetone. Residual acetone was removed by incu-

bation at 55°C. Histone pellet was resuspended in water before

quantification with Bradford assays.

SDS–PAGE and Western blot

RIPA extracts, histone extracts or pulldown samples were denatured

by adding Laemmli buffer to 1× and boiling at 95°C for 5 min. SDS–

PAGE was performed following standard procedures. Samples were

transferred to PVDF membrane using TransBlot Turbo (Biorad) and

blocked in 5% skim milk in TBST for 1 h at RT. Membranes were

incubated overnight at 4°C with gentle shaking with the following

primary antibodies: a- tubulin (CST, #2125, 1:5,000), cGAS (CST,

#31659, 1:1,000), MDA5 (CST, #5321, 1:1,000), RIG-I (Santa Cruz,

#376845, 1:1,000), H3K27me3 (CST, #9733, 1:3,000), total H3

(Abcam, #ab1791, 1:5,000), p65 (CST, #8242, 1:2,000), IKKb (CST,

##8,943, 1:2,000), GAPDH (CST, #2188, 1:4,000). The next day,

membranes were washed five times with TBST and incubated with

the following secondary antibodies for 1 h at RT with gentle shak-

ing: m-IgG Fc BP-HRP (Santa Cruz, #525409, 1:500) or AffiniPure

goat anti-rabbit IgG-HRP (JIR, #111-035-144, 1:5,000–10,000). After

five washes with TBST, membranes were incubated in SuperSignal

WestDura (ThermoFisher, #34075) and visualized on a ChemiDoc

(Biorad). Coomassie staining was performed with GelCode Blue

(ThermoFisher, #24590). Image Lab/6.1.0 was used to capture

images, detect lanes, and quantify H327me3 or H3 bands for densi-

tometry analysis.

CRISPR-Cas9 generation of RIC mutant mice

In vitro production of gRNAs and one-cell embryo injection were

all performed as previously described (Wang et al, 2013), by the

London Regional Transgenic and Gene Targeting Facility. C57BL/

6Crl mice were used as embryo donors, surrogate females and

stud males. For restriction fragment length polymorphism assays,

each of the three target loci was PCR amplified from tail DNA

with Phire Animal Tissue Direct PCR kit (ThermoFisher,

#F140WH). These products were either left undigested or restric-

tion digested with the indicated enzymes and resolved on an aga-

rose gel and EtBr stained. PCR reactions were also cloned into a

plasmid and Sanger sequencing was performed to find the exact

deletions in all mutant alleles present in the colony (Appendix

Table S1). In addition, potential off-target sites were predicted in

silico (Cradick et al, 2014) and the two highest ranked intergenic

and intragenic loci were genotyped through PCR amplification

and sequencing (Appendix Table S2).

Quantification and statistical analysis

All statistical analyses were performed with Prism 9. All relevant

details are described in the figure legends.

Data availability

The datasets produced in this study are available in the SuperSeries

(GSE198232, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE198232) which contains the following SubSeries:

• RNA-seq data: Gene Expression Omnibus GSE198159 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE198159), Gene

Expression Omnibus GSE239879 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE239879).

• ChIP-seq data: Gene Expression Omnibus GSE198158 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE198158).

• Infinium methylation data: Gene Expression Omnibus GSE229684

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2296

84).

RNA-seq data of EBV-infected human B cells was obtained from

GEO under GSE125974 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE125974) (Data ref: Wang et al, 2019b). Original

Western blot images have been submitted to the journal as source

files. This paper does not report original code. Any additional infor-

mation required to reanalyze the data reported in this paper is avail-

able from the lead contact upon request. B16-F10 cell lines

generated in this study are available from the lead contact upon

request. RIC mice are available from The Jackson Laboratory as

Stock No. 039010.

Expanded View for this article is available online.
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