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Single-cell transcriptomics stratifies organoid
models of metabolic dysfunction-associated
steatotic liver disease
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Daniel S Pratt1,3 & Alan C Mullen1,2,4,5,*,‡

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is
a growing cause of morbidity with limited treatment options. Thus,
accurate in vitro systems to test new therapies are indispensable.
While recently, human liver organoid models have emerged to
assess steatotic liver disease, a systematic evaluation of their
translational potential is still missing. Here, we evaluated human
liver organoid models of MASLD, comparatively testing disease
induction in three conditions: oleic acid, palmitic acid, and TGF-β1.
Through single-cell analyses, we find that all three models induce
inflammatory signatures, but only TGF-β1 promotes collagen pro-
duction, fibrosis, and hepatic stellate cell expansion. In striking
contrast, oleic acid ameliorates fibrotic signatures and reduces the
hepatic stellate cell population. Linking data from each model to
gene expression signatures associated with MASLD disease pro-
gression further demonstrates that palmitic acid and TGF-β1 more
robustly model inflammation and fibrosis. Our findings highlight
the importance of stratifying MASLD organoid models by signa-
tures of clinical disease progression, provide a single-cell reference
to benchmark future organoid injury models, and allow us to study
evolving steatohepatitis, fibrosis, and HSC susceptibility to injury
in a dynamic, multi-lineage human in vitro system.
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Introduction

Chronic liver injury promotes sustained inflammation, leading to

liver fibrosis, which can progress to cirrhosis (Loomba et al, 2021),

a major cause of morbidity and mortality worldwide (Sepanlou

et al, 2020). Metabolic dysfunction-associated steatotic liver disease

(MASLD, also known as non-alcoholic fatty liver disease or NAFLD)

(Rinella et al, 2023) is tightly linked to obesity and metabolic syn-

drome (Anstee et al, 2019). It is among the most common causes of

chronic liver disease (Sepanlou et al, 2020) and the most rapidly

increasing indication for liver transplantation in the United States

(Younossi et al, 2021). While the majority of MASLD cases that lead

to end-stage liver disease progress from simple steatosis (fatty liver)

to metabolic dysfunction-associated steatohepatitis (MASH, inflam-

mation due to steatosis) and then fibrosis (Kisseleva & Bren-

ner, 2021; Huby & Gautier, 2022), it is important to acknowledge

that only approximately 30% of individuals with liver steatosis

develop MASH (Younossi et al, 2016). While the progression from

MASH to fibrosis is well documented, there are currently few treat-

ment options to disrupt this process other than weight loss

(Ferguson & Finck, 2021). More broadly, there are no approved

treatments available that target common inflammatory or fibrotic

pathways arising from chronic liver injury, which could prevent the

progression of MASH or other chronic liver diseases (Ferguson &

Finck, 2021). Thus, the development and evaluation of in vitro

human cell models of liver inflammation and fibrosis are critical for

creating and testing new approaches to prevent liver failure.

A key prerequisite for MASLD-associated chronic liver injury is

the continued exposure to excess fatty acids (Nehra et al, 2001;

Donnelly et al, 2005; Neuschwander-Tetri, 2010). The free fatty

acids (FFAs) oleic acid (OA) and palmitic acid (PA) accumulate in

MASLD and thus are widely used to model MASLD in vitro (Müller
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& Sturla, 2019; Ramli et al, 2020). OA, a monounsaturated fatty acid

(MUFA), induces hepatocyte steatosis but has also been reported to

exert protective effects against MASLD (Chen et al, 2018; Zeng

et al, 2020). PA, a saturated fatty acid (SFA), promotes hepatocyte

apoptosis (Akazawa et al, 2010; Miura et al, 2013).

FFA-induced hepatocyte damage activates pro-inflammatory

signaling pathways in resident liver cells (Anstee et al, 2019).

This leads to the secretion of cytokines such as tumor necrosis

factor (TNF) (Anstee et al, 2019; Kisseleva & Brenner, 2021), acti-

vating resident liver macrophages (Kupffer cells) (Sunami

et al, 2012). Kupffer cells and recruited immune cells (Zigmond

et al, 2014) are a source of transforming growth factor beta

(TGF-β) (Lodyga et al, 2019), which activates hepatic stellate cells

(HSCs), and promotes their transdifferentiation towards myofibro-

blasts (Tsuchida & Friedman, 2017). These HSC myofibroblasts

produce extracellular matrix (ECM, predominantly collagen type I

and III) that accumulates to form the fibrotic scar (Tsuchida &

Friedman, 2017). Hallmarks of fibrosis include the up-regulation

of transcripts COL1A1, COL3A1, TIMP1, TNFS members, and the

receptor-ligand-pair PDGFB/PDGFR (Tsuchida & Friedman, 2017;

Ramachandran et al, 2019). Additionally, chronic liver injury is

also associated with the expansion of cells with ductular charac-

teristics, which can originate from cholangiocytes, hepatic progen-

itors, and hepatocytes to replace injured hepatocytes (Espa~nol-

Su~ner et al, 2012; Raven et al, 2017; Deng et al, 2018; Sato

et al, 2019).

Recently, the generation of multi-lineage hepatic organoids from

human pluripotent stem cells (hPSCs) has emerged (Ouchi

et al, 2019; Wu et al, 2019; Sekine et al, 2020; Guan et al, 2021;

Shinozawa et al, 2021). These systems contain cells of at least

endodermal and mesodermal identity (e.g., hepatocyte-,

cholangiocyte-, and HSC-like cells) and are also referred to as

multi-tissue organoids (Marsee et al, 2021). Some multi-tissue

organoids, herein referred to as human liver organoids (HLOs)

(Ouchi et al, 2019), have been shown to recapitulate aspects of

liver inflammation and fibrosis (Ouchi et al, 2019; Guan

et al, 2021), and thus are promising in vitro models for MASLD.

However, to validate their translational potential, a comparative

evaluation of such systems is urgently needed. Single-cell RNA

sequencing (scRNA-seq) has emerged as a key tool to identify dis-

ease signatures in human organoids at high resolution (Bock

et al, 2021). To our knowledge, there are currently no studies

comparing the hepatic injury type and MASLD severity induced by

different agents in HLO models at single-cell resolution.

Here, we develop a structured approach to evaluate MASLD

models in an HLO system and provide a reference of � 100,000

single-cell transcriptomes reflecting the HLO injury landscape. We

examine OA, PA, and TGF-β1 for their potential to induce collagen

production and select the optimal 3D culture environment for this

purpose. Next, we apply functional and 10× scRNA-seq transcrip-

tomic analysis to evaluate the induction of inflammatory and

fibrotic signatures. Finally, we apply clinical MASLD gene signa-

tures to score the severity of the generated HLO injury. This

approach allows us to stratify in vitro MASLD models by their align-

ment to disease progression in patients and identifies PA as the

more robust FFA model of MASH.

Results

Human liver organoids recapitulate the transcriptional landscape
of major cell types in the adult human liver

We first differentiated hPSCs into HLOs as described (Ouchi

et al, 2019; Thompson & Takebe, 2020) (Fig 1A). We confirmed loss

of the canonical pluripotency genes SOX2, NANOG, and POU5F1 by

day 16 of differentiation and induction of the human liver genes

ASGR1 and HNF4A (hepatocyte markers, Aizarani et al, 2019),

KRT19/CK19 and SOX9 (cholangiocyte markers, MacParland

et al, 2018) as well as VIM and DES (HSC markers, Payen et al, 2021)

in day 21 HLOs (Fig 1B). To evaluate HLO identity at the protein and

histologic level, we performed hematoxylin and eosin (H&E) staining

and immunohistochemistry (IHC) and found that HLOs at day 21 dis-

play an organized, sphero-luminal structure, and multiple cells

express the nuclear hepatocyte marker CEBPα (Fig 1C, Appendix

Fig S1). These results are in agreement with previous observations

on the emergence of distinct liver cell types from at least two differ-

ent lineages in HLOs after day 20 (Ouchi et al, 2019).

To further investigate the cellular composition of HLOs, we

performed 10× scRNA-seq on day 21 and analyzed a total of 16,835

cells after quality control (QC) (Appendix Fig S2a, Materials and

Methods). Annotation of HLO populations can create difficulties

since differentiating systems may contain transient cell states and

retain premature features (Bhaduri et al, 2020). To address these

challenges, we initially evaluated three different annotation strate-

gies (Clarke et al, 2021). We first annotated cell clusters based on

marker genes from the literature for fetal and adult liver cell types

(Appendix Fig S2b, Dataset EV1), rendering four main clusters of

hepatocyte-like, HSC-like, cholangiocyte-like cells, and a small frac-

tion of embryonic stem cell (ESC)-like cells (Appendix Fig S2c). In a

second approach, we evaluated CellTypist (Dom�ınguez Conde

et al, 2022), a logistic regression-based classifier to compare the

major HLO clusters to scRNA-seq data from the developing human

liver (Wesley et al, 2022) (Appendix Fig S2d). The CellTypist anno-

tations are consistent with the literature approach, except the

embryonic stem cell-like population is attributed to the hepatoblast-

like cluster, potentially reflecting the partial expression of pluripo-

tency genes such as NANOG in hepatoblasts (Wesley et al, 2022).

We then evaluated ScType, a marker gene database validated on

human adult liver scRNA-seq data (Ianevski et al, 2022) (Fig 1D,

Dataset EV3). Analysis with the scType database showed similar

results to the previous approaches, and labeled a small embryonic

stem cell-like population in agreement with the literature-based

approach.

Overall, the attributions of hepatocyte, HSC, and cholangiocyte

identities are overlapping across annotation strategies, and two out

of three strategies also indicated a small embryonic-stem cell popu-

lation as a fourth cell type in day 21 HLOs. Based on this compara-

tive analysis we decided to utilize the ScType (Ianevski et al, 2022)

database annotation method for all subsequent analyses since it

allows for the annotation of potentially emerging cell types beyond

the repertoire of a literature list or a single reference study. To

account for the in vitro generation of the cells, we refer to them as

cell type-like in this study.
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We confirmed that each cluster was represented in all replicates

(Appendix Fig S2e and f) and further ensured cellular identities by

evaluating the expression of canonical marker genes for each cell

type compared to consensus annotations (Fig 1E). These results sup-

port the annotations from the previous strategies, however, KRT19

was still positive in the hepatocyte-like population, indicating they

retained premature features on day 21 in HLOs. We then performed

pathway enrichment analysis, revealing upregulated signatures for

liver-characterizing metabolic processes and lipid metabolism in

hepatocyte-like cells. HSC-like cells were enriched for pathways

related to extracellular matrix and focal adhesion. Cholangiocyte-

like cells showed enrichment for pentose phosphate metabolism and

sphingolipids (Fig 1F). Together, these results indicate the presence

of hepatocyte-, HSC-, and cholangiocyte-like cells in day 21 HLOs

across cell type annotation strategies.

Hepatocyte maturation and cell type distribution are regulated
by mechanical culture conditions

To gain insights into the differences between HLOs cultured under

different conditions, we compared HLOs conventionally cultured on

an ultra low attachment plate with 10% Matrigel (Thompson &

A

D

F

E

B C

Figure 1.

� 2023 The Authors The EMBO Journal 42: e113898 | 2023 3 of 25

Anja Hess et al The EMBO Journal



Takebe, 2020) (ULA-HLOs) and HLOs isolated from Matrigel and

cultured on an orbital shaker (OS-HLOs, Fig 2A). We analyzed a

total of 11 HLO scRNA-seq samples on ULA plates (n = 3 ULA day

21, Fig 1D) and control HLOs on the OS (n = 8 from day 25)

(Fig 2B). After joint QC and normalization, our dataset contained a

total of 16,835 single cells from ULA-HLOs and 49,011 single cells

from OS-HLOs. We next ran our standard pipeline and determined

optimal clustering resolution by calculating cluster robustness met-

rics (Appendix Fig S2g), which detected four cell clusters in each

HLO culture context, and projected the clusters on a force-directed

layout for optimal global structure preservation (Huang et al, 2022).

ULA-HLO cells displayed the same cell types shown in Fig 1D, and

the OS-HLOs were annotated as hepatocyte-, cholangiocyte-, HSC-,

and fibroblast-like cells (Fig 2B). No cluster of embryonic stem cell-

like cells was identified in OS-HLOs. Stem cells were additionally

searched by using an algorithm specifically designed to detect rare

cell types (Lubatti et al, 2023) and were not detected. We further

observed that ULA-HLOs contained a greater proportion of

cholangiocyte-like cells, while the hepatocyte-like cell population

expanded in OS-HLOs (Fig 2C). We also found higher expression

levels of HSC marker genes in ULA-HLOs (Fig 2D, Appendix

Fig S2h). Together these results indicate that OS-HLOs show a distri-

bution of cell types that more closely resembles the adult liver com-

pared to ULA-HLOs. Importantly, OS conditions display a reduced

expression of collagen transcripts and lowered average HSC frac-

tions, potentially reflecting a reduced baseline fibrotic activity.

We next focused on the hepatocyte lineage. OS-hepatocyte-like

cells showed enrichment in genes involved in specialized hepatocyte

metabolic processes, such as estrogen metabolism and coagulation-

related pathways in addition to metabolic and lipid particle processes

(Fig 2E). We then annotated OS-hepatocyte-like cells with marker

genes for hepatocyte development (Wesley et al, 2022) in order to

derive the closest matching hepatocyte identity based on marker

gene expression (Fig 2F, Materials and Methods). which revealed a

mix of hepatoblast-, fetal hepatocyte-, and adult hepatocyte-like cells

(Dataset EV3). A cluster mapping close to the adult hepatocyte-like

cells containing cells in G2M phase was termed cycling adult

hepatocyte-like cells (Appendix Fig S2i). We next evaluated the

expression of marker genes for normal hepatocyte development

stages (Wesley et al, 2022) across the jointly preprocessed and nor-

malized cells from OS- and ULA-HLOs (Fig 2G). Unlike OS-HLOs

which contained clusters across hepatocyte development, ULA-HLO

clusters were all categorized as hepatoblast-like (Dataset EV3). Con-

sistent with a less mature phenotype, SOX2 and SOX17 were still

expressed in one ULA-HLO hepatocyte cluster. Furthermore a broad

proportion of ULA-HLO hepatocytes expressed proliferation markers,

in contrast to only two hepatocyte subclusters in OS-HLOs. Most

importantly, OS-HLOs displayed a major sub-cluster of KRT19low

cells expressing adult hepatocyte-markers NFIA, ADH1C, CES1, APCS

and CFI. To understand the zonal composition of the non-cycling

adult hepatocyte-like cells, we sub-clustered the 16,671 adult

hepatocyte-like cells and calculated a hepatocyte zonation score

based on marker genes from a human adult liver scRNA-seq refer-

ence (MacParland et al, 2018) (Materials and Methods). This

revealed adult hepatocyte-like cells representing periportal, inter-

zonal, and pericentral zones (Fig 2H), with a bias towards interzonal

hepatocytes. Together, these analyses suggest a more mature tran-

scriptional landscape of hepatocyte-like cells developed with OS cul-

ture conditions.

Inducible liver injury phenotypes in HLOs upon TGF-β1 and fatty
acid treatment

We next evaluated conditions to induce a fibrotic phenotype in the

HLO model. TGF-β1 drives liver fibrogenesis in vivo (Kanzler

et al, 1999; Kim et al, 2018), and we treated HLOs with TGF-β1 (10

and 25 ng/ml) in four different 3D culture systems and evaluated

collagen expression, as a metric of fibrosis. The final differentiation

steps for HLOs are performed in Matrigel, and HLOs were either left

in Matrigel or removed from Matrigel and cultured on (i) ULA plates

(Ouchi et al, 2019), (ii) 1% agarose coated plates, and (iii) an orbital

shaker (Fig 3A).

◀ Figure 1. Human liver organoids recapitulate the transcriptional landscape of major cell types in the adult human liver.

A Overview of the experimental design. Human pluripotent stem cells (hPSCs) are differentiated into human liver organoids (HLOs) and cultured in four different
mechancial environments. The environment suitable for collagen induction is selected, and three injury scenarios (OA, PA, TGF-β1) are evaluated for their potential to
model inflammation and fibrosis by functional and transcriptomic readouts, with a total of 17 HLO samples being subjected to 10× single-cell RNA sequencing
(scRNA-seq). Transcriptomic signatures for inflammation and fibrosis are derived and evaluated. Finally, a MASLD/MASH severity score is applied, allowing for the hier-
archical ordering of HLO injury models by their potential to model MASLD disease progression.

B Expression of pluripotency genes is reduced with HLO differentiation, while liver markers are induced. Relative gene expression is measured by quantitative reverse
transcriptase (qRT) PCR and normalized by housekeeping gene ACTB and displayed relative to hPSC controls (2�ΔΔCt ). Comparison between hPSCs and HLOs from the
same experiment were performed at day 16 or 21 as indicated. N ≥ 6 individual experiments (batches) as indicated by circles. Horizontal lines in violin plots
represent quartiles, Kernel density estimates are trimmed to the range of the observed data. Mann–Whitney-U-statistics (two-tailed) hPSCs vs. HLOs: P-valuesday 16

HLOs = 0.0024, Bonferroni-adjusted level of significance: 0.0125 (*); P-valuesday 21 HLOs = 0.0022, Bonferroni-adjusted level of significance: 0.0071 (**).
C HLOs on day 21 show an organized, luminal structure and express human liver proteins. Representative immunohistochemistry images of HLOs stained in

hematoxylin & eosin (H&E), CEBPa, and negative control with secondary antibody on day 21. Arrowheads indicate sites of nuclear protein staining. Scale bars, 50 μm.
N = 3 individual experiments (batches).

D scRNA-seq analysis of day 21 HLOs identifies the major cell types of the human liver as annotated by scType (Ianevski et al, 2022) database marker genes. UMAP plots
showing cells from 10× scRNA-seq in day 21 HLOs (n = 3 technical replicates of one experimental batch). Cell type annotations by EnrichR over-representation analy-
sis (Kuleshov et al, 2016; Fang et al, 2022) with scType (Ianevski et al, 2022), adjusted P-value as indicated in the figure.

E Dotplot showing the expression of canonical cell-type-specific marker genes expected in the human liver across clusters. Cell types defined by single-cell data are
displayed on the y-axis, and marker genes (bottom) are sorted by cell type (top). The fraction of cells expressing a gene is indicated by the size of the circle, and the
scaled mean expression of a gene is indicated by color. Hierarchical clustering is represented by the dendrogram on the right.

F Top enriched WikiPathways (Martens et al, 2021) terms for the three major cell types in day 21 HLOs. Terms were sorted by combined score and have been shortened
for readability. Dot sizes correspond to the negative decadic logarithm of the adjusted P-value, dot color represents the Odds ratio for each term.

Source data are available online for this figure.
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We observed morphological changes in HLOs cultured in Matrigel

and on the orbital shaker after 4 days of TGF-β1 treatment, including

HLO tissue consolidation, and surface roughening (Fig 3B, Appendix

Fig S3a). For comparison, we also evaluated HLOs treated with OA,

which did not demonstrate the same compaction in Matrigel as

observed with TGF-β1 but was associated with a darker appearance

on light microscopy when cultured in the orbital shaker, as previ-

ously described (Ouchi et al, 2019). These results suggest HLOs are

reacting in an injury-specific manner to the applied treatments.

We further quantified the contractile effect of TGF-β1 by cultur-

ing HLOs in Matrigel drops and measuring the Matrigel drop area

after TGF-β1 application. This analysis demonstrates a significant

reduction in droplet size with TGF-β1 treatment, consistent with

increased contractile activity (Fig 3C). To further investigate alter-

ations in HLOs we stained for H&E and observed the intraluminal

accumulation of hyaline, monomorphic structures upon TGF-β1
treatment (Fig 3D), providing further evidence of an injury response

to TGF-β1 treatment.

A

D E

F

B C

G H

Figure 2.
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We next performed Sirius red staining (Fig 3E), a standard

method for quantification of type I and III collagen deposition in

liver fibrosis (Huang et al, 2013). We optimized an existing pipeline

(Materials and Methods) for the computational quantification of Sir-

ius red staining in liver for sections with low tissue amounts and

options to select individual HLO areas of interest for the calculation

of Sirius red percentage per tissue and per area separately (Materials

and Methods). We utilized our pipeline to analyze HLOs cultured

via the four previously described methods and treated with TGF-β1
(10 ng/ml) for 4 days. We found a significant increase in collagen

deposition only in Matrigel and OS-HLOs (Fig 3F), suggesting the

latter culture methods lead to accumulation of type I and III collagen

as observed in liver fibrosis.

We next evaluated gene expression response across the four cul-

ture methods in HLOs when treated with TGF-β1. Canonical tran-
scriptional changes in steatohepatitis include the activation of TNFA

(Loomba et al, 2021), while induction of the alpha-1 subunit of type

1 collagen (COL1A1) is characteristic of fibrosis (Ramachandran

et al, 2019). We analyzed mRNA levels for the respective genes. We

found that only OS-HLOs with TGF-β1 showed a significant increase

in TNFA and COL1A1 expression (Fig 3G), while the fetal liver tran-

script alpha-fetoprotein (AFP) was reduced in HLOs cultured on

Matrigel and 1% agarose, potentially reflecting different levels of

TGF-β1-responsive progenitor-like cells across culture conditions

(Damdinsuren et al, 2006; Yang et al, 2016). These results show that

culturing in the orbital shaker provides the conditions under which

HLOs demonstrate the most robust inflammatory and fibrotic

response to TGF-β1.
We therefore focused on the orbital shaker method to evaluate

the response to fatty acids. Treatment with OA and PA resulted in

the formation of lipid droplets, observed as stain-free vacuoles on

H&E (Appendix Fig S3b, arrowheads). Treatment with TGF-β1, OA,
and PA resulted in the formation of lipid droplets, observed as

BODIPY enrichment in immunofluorescence imaging, with OA

inducing the greatest accumulation of lipid droplets (Fig 3H). These

results were confirmed in HLOs derived from an additional PSC-line

(Appendix Fig S3c). We also assessed lipid accumulation by quanti-

fying the proportion of stain-free tissue in regions of interest (ROIs,

200 × 200 μm) capturing individual organoids. Only OA-treated

HLOs showed significant tissue rarefaction due to steatosis (Fig 3I,

Appendix Fig S3d). In addition, triglyceride levels increase in each

condition, with OA showing the greatest increase and TGF-β1 the

least increase in two PSC lines (Fig 3J, Appendix Fig S3e).

We then sought to understand if OA and PA could induce colla-

gen production. Surprisingly, OA treatment led to a reduction in Sir-

ius red staining and the quantified percentage of Sirius red positive

tissue, as a marker of collagen deposition, while PA did not change

Sirius red staining (Fig 3K, Appendix Fig S3f). In line with these

results, treatment with OA significantly reduced COL1A1 mRNA

levels at the transcriptional level, and COL1A1 levels did not change

with PA (Fig 3L). However, PA treatment led to a significant

increase in TNFA mRNA levels, whereas OA was associated with a

significant reduction in TNFA at 400 μM concentration (Fig 3L,

Appendix Fig S3g). These results show that OA induced more robust

steatosis, while PA induced TNFA, consistent with an inflammatory

response. Neither OA nor PA induced fibrotic injury, with OA treat-

ment actually reducing levels of collagen at both the transcriptional

and protein level.

Oleic acid, palmitic acid, and TGF-β1 induce distinct
inflammatory and fibrotic responses at the single-cell level

To dissect cell-type-specific transcriptional injury-response patterns,

we treated HLOs cultured on an orbital shaker with OA, PA, or

TGF-β1 for 4 days before performing scRNA-seq (Fig 4A). We ana-

lyzed 82,467 cells after QC (Materials and Methods) from 14 HLO

samples, annotating cell types with the scType database. We next

incorporated hepatocyte sub-stages (Fig 2G) and sub-clustered

◀ Figure 2. Hepatocyte maturation and cell type distribution are regulated by mechanical culture conditions.

A Overview of the two mechanical environments selected for 10× scRNA-seq.
B ForceAtlas2 plots mapping cells from control ULA-HLOs (cultured in ultra low attachment plates, n = 16,835 cells, n = 3 replicates) and control OS-HLOs (cultured in

orbital shaker, n = 49,011 cells, n = 8 replicates). Dotted line highlights the embryonic stem cell-like population, which is only present in ULA-HLOs. ScType database
annotations in OS-HLOs: Hepatocytes (P = 2.56E-07), Cholangiocytes (P = 0.01), Hepatic stellate cells (P = 1.3E-10), Fibroblasts (P = 0.003).

C OS-HLOs show a relative reduction of HSC- and cholangiocyte-like cells while the fraction of hepatocyte-like cells is increased. Barplots showing the cell cluster pro-
portions as the fraction of total cells per sample for each of the individual OS- and ULA-HLO replicates. The color indicates the cell type as annotated in (B), and cell
types are listed in the order they are displayed.

D Violin plots displaying the normalized, scaled expression of hepatic stellate cell marker genes in OS- and ULA-HLOs across all cells. Corresponding ForceAtlas2 repre-
sentations are provided in Appendix Fig S2h.

E Doplot showing the top enriched WikiPathways (Martens et al, 2021) terms by combined score. Dot sizes correspond to negative decadic logarithm of the adjusted
P-value, colors represent the odds ratio. Terms have been shortened for readability.

F ForceAtlas2 plots mapping hepatocyte-like cells from control OS-HLOs. Cells were annotated to the human fetal liver development atlas (Wesley et al, 2022).
n = 32,719 cells (n = 8 controls).

G HLOs exposed to the OS-environment show KRT19low hepatocyte subpopulations expressing mature hepatocyte markers. Matrixplot shows the scaled mean expres-
sion for marker genes for stages of hepatocyte development for OS-hepatocyte lineage subclusters (top) as annotated in (F). in comparison to ULA-hepatocyte-like
subpopulations (bottom). Marker genes (bottom) are sorted by cell type (top). Dendrogram representing hierarchical clustering for lineages with > 2 hepatocyte-like
subgroups is shown on the right. ULA: n = 2,624 cells (n = 3 controls), OS: n = 32,719 cells (n = 8 controls). Annotations were selected based on the highest-ranked
annotation by marker gene overlap. P-values (sub-clustered ULA populations): HB1 (cluster 1, P = 0.99), HB1 (cluster 2, P = 0.99), HB1 (cluster 3, P = 0.99), HB2 (clus-
ter 4, P = 0.99), HB2 (cluster 1, P = 0.92), HB2 (cluster 2, P = 0.98). Sub-clustered OS-populations: AH (P = 0.94), HB2 (P = 0.46), HB1 (P = 0.79), FH1 (P = 0.88), FH2
(P = 0.733), cluster 6 (P = 0.73, manually annotated as cycling AH, Appendix Fig S2g).

H Adult hepatocyte-like cells from HLOs exposed to the OS-environment display hepatocyte zonation. ForceAtlas2 plots mapping OS-adult hepatocyte-like cells from (F).
Color indicates the hepatocyte zonation score as calculated based on marker genes from a human adult liver scRNAseq reference (MacParland et al, 2018) (Materials
and Methods). n = 16,671 cells (n = 8 controls).
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cholangiocyte-like cells in order to resolve shifts within major HLO

populations under treatment conditions. This yielded two new sub-

clusters with expression patterns associated with ductal cell (DC)-

like, and smooth muscle cell (SMC)-like cells (Fig 4B, left, Appendix

Fig S4a–e). The DC-like 2 population did not meet statistical signifi-

cance for a specific cell type (Dataset EV9), and was assigned to the

DC-like cluster after evaluating marker gene expression and distance

dendrograms (Appendix Fig S4d).

We then evaluated how cell type distributions change with each

condition. TGF-β1-treated HLOs displayed a significant increase in

HSC-related populations. HSC-like cells increased from < 10%

in controls (5.4 and 6.6%) to > 10% (15.7 and 13.5%) with TGF-β1
treatment. DC-like cells increased significantly from 4 and 7% in the

controls to 61 and 72%, potentially mirroring the ductular reaction

seen in chronic liver injury. SMC-like cells increased significantly

from 0.2% to 14 and 37% with TGF-β1 treatment. In contrast,

hepatocyte-like populations decreased by more than 10-fold from 59

to 63% to �5%, and a near-total loss of cycling cells was observed,

though not reaching statistical significance (Fig 4B, right,

Dataset EV3), in line with previously reported cell cycle arrest

through TGF-β1 (Laiho et al, 1990; Sheahan et al, 2007). While the

analysis shows an expansion of HSC-, and ductal-like cells in

response to TGF-β1, as observed in the development of liver fibrosis

(Raven et al, 2017; Deng et al, 2018; Kisseleva & Brenner, 2021), no

significant alterations in cell population proportions were observed

with PA treatment.

In contrast, OA-treated HLOs showed a dramatic and statistically

significant reduction of HSC-like cells from 38 and 48% to 1.9 and

1.6%, even though HSCs were comparatively high in this batch of

OS-HLOs (see for Fig 2C). SMC- and fibroblast-like cells were not

affected. Conversely, adult-, fetal-, and most strikingly hepatoblast

2-like cells expanded under OA treatment, the latter from 26 and

8% in controls to 47 and 39% in OA-treated HLOs, and these effects

were statistically significant for fetal hepatocyte 1- and hepatoblast

2-like cells. Zonal analysis of adult hepatocyte-like cells revealed a

relative loss of pericentral hepatocyte-like cells with TGF-ꞵ1 (Appen-

dix Fig S4f). These results suggest that OA treatment in HLOs

reduces HSC-like cells and expands hepatocyte-like cells, specifically

hepatoblast-like sub-populations.

Variability in the relative number of cell types can be observed

with each batch of HLO differentiation, as observed for HSCs in con-

trol conditions (Fig 4B, right). To confirm a reduction in HSCs in

response to OA, we repeated our analysis using DES expression as a

marker of relative HSC abundance in HLOs (Fig 4C). HLOs differenti-

ated from the original PSC line and those differentiated from a second

iPSC line both showed significant reduction in DES expression with

◀ Figure 3. Inducible liver injury phenotypes in HLOs upon FFA and TGF-β1 treatment.

A Overview of the four mechanical environments evaluated for their potential to promote collagen induction with injury models.
B HLOs in the Matrigel- and OS-environments display morphologic changes when treated with TGF-β1 and OA. Brightfield images of whole Matrigel domes with

embedded HLOs (upper panel, scale bar 3 mm) and HLOs isolated from Matrigel in the orbital shaker environment (lower panel, scale bar 0.1 mm) after 4 days of
treatment with TGF-β1 (10, 25 ng/ml), OA (400 μM), and controls. Contraction of the Matrigel dome with TGF-β1 treatment and darkening of color (among all treat-
ments) was observed.

C Compaction assay for Matrigel-environment cultured HLOs indicates a significant surface area reduction for HLOs treated with TGF-β1. Violin plots displaying the
Matrigel drop area normalized by the control. Kruskal–Wallis test (two-tailed) followed by a post hoc Conover’s test with Bonferroni correction. Dot colors represent
experiments, circles represent individual technical replicates. N = 3–4 experiments.

D H&E stainings of OS-HLOs (upper row), Matrigel-HLOs (middle row), and ULA-HLOs (lower row) after 4 days of treatment with TGF-β1 (10, 25 ng/ml) display wall
thickening in Matrigel- and ULA- HLOs while hyaline-like intra-organoidal mass accumulation is present only in OS-HLOs. Scale bar 100 μm. Precise numbers of tech-
nical replicates are represented by circles. N = 1 experiment.

E Thresholded images of Sirius red-stained HLOs cultured in four different environments stimulated with TGF-β1 (10 ng/ml) show collagen deposition in Matrigel- and
OS-HLOs. Scale bars 100 μm. 3 HLOs (technical replicates). N = 1–2 experiments.

F Sirius red staining quantification indicates significant collagen fiber deposition only in HLOs exposed to Matrigel- and OS-environments during stimulation with TGF-
β1 (10 ng/ml). Violin plots showing the percentage of Sirius red positive tissue normalized by the mean of the control. Horizontal lines in violin plots represent quar-
tiles. Kruskal–Wallis (two-tailed) test followed by a post hoc Conover’s test with Bonferroni correction. Precise numbers of technical replicates per group as repre-
sented by circles. N = 1 experiment.

G qRT-PCR for COL1A1, TNFA, and AFP indicates a significant induction of COL1A1 and TNFA transcripts only in HLOs stimulated in the OS-environment. Violin plots
showing relative mRNA levels normalized to ACTB for each mechanical environment (2�ΔΔCt ). Kruskal–Wallis (two-tailed) test followed by a post hoc Conover’s test
with Bonferroni correction comparing three treatment groups per culture method. P-values as indicated in the figure, ns, not significant. N = 3–4 experiments.

H BODIPY staining of lipids in HLOs cultured in the OS-environment with exposure to TGF-β1 and FFAs. Representative BODIPY immunofluorescence images of day 25
OS-HLOs treated TGF-β1, PA, and OA (right) or the control solutions (left). BODIPY staining (green), nuclear DNA staining with Hoechst (blue), scale bar, 50 μm. N = 2
experiments. See Appendix Fig S3c for analysis of HLOs derived from a second PSC line.

I Tissue quantification for 200 × 200 μm regions of interest (ROIs) around single HLOs treated with OA, PA, and their respective controls. Kruskal–Wallis test (two-
tailed) followed by a post hoc Conover’s test with Bonferroni correction. P-values as indicated in the figure, ns, not significant. 66 HLOs (technical replicates). N = 3
experiments.

J Triglyceride (TAG) content is quantified in OS-HLOs treated with TGF-β1, PA, and OA for 4 days. Bar plots display the total TAG concentration in μM for a representa-
tive experiment. Individual dots represent technical replicates, bar plots show mean � SD. Kruskal–Wallis test (two-tailed) followed by a post hoc Conover’s test. P-
values as indicated in the fig N = 1 experiment.

K Sirius red quantification in HLOs treated with OA, PA, and their controls. Shown is the percentage of Sirius red positive tissue by total tissue (normalized by the mean
of the control HLOs in each experiment). Quantification for 200 × 200 μm regions of interest (ROIs) around single HLOs. Horizontal lines in violin plots represent
quartiles. Kruskal–Wallis test (two-tailed) followed by a post hoc Conover’s test with Bonferroni correction, ns, not significant. 95 HLOs (technical replicates). N = 3–4
experiments.

L COL1A1 expression is reduced in OS-HLOs treated with OA for 4 days, TNFA expression is induced in OS-HLOs treated with PA for the same duration. Shown are qPCR
results for relative mRNA levels of COL1A1 and TNFA normalized to ACTB. Mann–Whitney-U test (two-tailed). P-values as indicated in the figure, ns, not significant.
N = 3–5 experiments (represented by individual dot colors).

Source data are available online for this figure.
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OA treatment, which did not occur with either TGF-ꞵ1 or PA (Appen-

dix Fig S4g and h). In both cases, the loss of HSCs was also accompa-

nied by reduced expression of COL1A1 with OA treatment, as

previously observed (Fig 3I). These results provide additional evi-

dence to support the conclusion that OA reduces the number of HSC-

like cells. Evaluation of marker gene profiles revealed that DC-like

cells were positive for KRT19 and HNF4A as previously reported for a

bi-potent cell type induced under conditions of chronic liver injury

(Deng et al, 2018; Pu et al, 2023). Interestingly, DC-like, SMC-like,

and fibroblast-like cells acquired a myofibroblast-like gene expres-

sion signature (TAGLN, MYL9, SPARC) accompanied by a reduction

in the expression of ductal markers EPCAM, CD24, and CLDN4

(Fig 4C).

To define gene expression signatures activated with each treat-

ment, we evaluated injury-response scores based on gene ontology

(The Gene Ontology Consortium, 2000) term scoring. OA and PA-

treated HLOs showed induction of immune response-related scores

when compared to their controls and were enriched for chemokine-

activity associated genes, as well as fibroblast migration and activa-

tion signatures (Fig 4D). TGF-β1 treatment increased scores for

fibroblast proliferation and positive regulation of ECM organization

along with alterations in cell cycle phase distributions, while these

scores remained mostly unchanged in the OA and PA-treated HLOs.

Cells with induced inflammatory scores under OA treatment were

primarily hepatoblast-like cells, while PA-treated cells were more

broadly enriched for inflammatory scores. Induction of pro-fibrotic

scores with TGF-β1 occurred mostly in the mesenchymal clusters

(HSC-, fibroblast-like cells) and DC-like cells.

Differential gene expression analysis per cell cluster further

displayed injury-specific signatures depending on the respective cell

type. The fibrotic module included COL1A1, TAGLN2, and TGFBI and

was induced across TGF-β1 treated cell types, with AH-, DC-, and HSC-

like cells showing the strongest relative induction (Fig 4E). The inflam-

matory module of differential genes included Interleukin 32 (IL32) (the

top up-regulated gene in MASLD, Baselli et al, 2020) and other canoni-

cal inflammatory genes including NFKBIA and CCL20 (Fig 4E,

Dataset EV6), showing the strongest relative induction in AH-, and

hepatocyte precursor-like cells treated with PA, followed by DC- and

HSC-like populations. Interestingly, OA caused a relative reduction of

the fibrotic signature across almost all cell types (indicated by a shift

towards blue color). Furthermore, the inflammatory module showed

only moderate changes in OA-treated adult hepatocyte-like cells, while

the expanding precursors, especially the hepatoblast 2-like cells

increased the expression of inflammatory genes.

To contextualize differential gene expression more broadly, we

performed cell-type-resolved pathway analysis and found TGF-β1-
treatment induced apoptosis-, and cytoskeleton-related pathways in

AH-like cells, while HSC-like cells were enriched for genes associ-

ated with MASLD (Fig 4F, Appendix Fig S5). Strikingly, PA-treated

DC-, hepatoblast 1 and 2-, and fibroblast-like cells displayed the

MASLD pathway among their top-ranked enriched terms. Addition-

ally, genes associated with TNFɑ-signaling were induced in PA-

treated AH-like cells. OA treatment resulted in lipid-metabolism

related hits. Together, these analyses show that PA and TGF-β1 mir-

ror MASLD-associated inflammatory responses, while the OA-

related signature is dominated by genes involved in adipogenesis,

fat metabolism, and steatosis alongside a general inflammatory

response mainly driven by hepatoblast-like cells.

OA induces an interactome distinct from crosstalk observed with
TGF-β1 and PA treatment

To understand the cell–cell interactions in OA, PA, and TGF-β1
injury models, we utilized CellPhoneDB (Efremova et al, 2020) and

assessed the relative abundance of interactions between each cell

type. Overall, the relative induction of interactions increased from

OA-, to PA-, to TGF-β1-treated HLOs (Fig 5A). OA moderately

induced interactions between hepatoblast 2-, cholangiocyte-, and

DC-like cells (HB2, CHOLs, DCs). PA-mediated crosstalk was mainly

driven by cholangiocyte-like, hepatocyte progenitor-, fibroblast- and

SMC-like cells (CHOLs, DCs, HB1, FIBs, SMCs). Only TGF-β1 yielded

a strong activation in cell–cell communication driven by SMC- (most

likely representing myofibroblast-like cells) and HSCs-like cells.

TGF-β1 also induced HSCs-SMC-like cell–cell interactions and HSC-

AH-like interactions (Fig 5A). Plotting the proportion of interactions

for each cell type revealed the relative reduction of SMCs-involving

interactions in OA-treated HLOs, and their relative induction with

TGF-β1 (Fig 5B). Hierarchical clustering of the delta values between

control and treatment fractions of each interaction suggested that

TGF-β1 induced an interaction pattern more distinct from the ones

characterizing HLOs treated with PA and OA (Fig 5C, Appendix

Fig S6a). These evaluations of the interactome reveal a hierarchical

increase in the relative interaction changes induced, in particular

with respect to fibrosis-related cell types (HSCs, SMCs), from OA-,

to PA, to TGF-β1 treatment.

We next aimed to understand which interactions were enforced

or reduced with each treatment when compared to its control. We

plotted chord diagrams for each cell type and each case, where

“enforced” indicates a positive delta value compared to the control

and “reduced” indicates a negative delta value (Fig 5D, Appendix

Fig S6b). This analysis showed that in OA-treated HLOs, particularly

SMC- and HSC-like cells lost more interactions than they gained,

and this was in line with the general decrease in interaction abun-

dance in these cell types (compare Fig 4B). In PA-treated HLOs the

fraction of SMC-like mediated interactions were shifted in favor of

targeting hepatocyte precursors and HSC-like cells. Even though

their proportion in cell numbers was not changed with PA (compare

Fig 4B), adult hepatocyte-like sourced interactions were shut down

across many interacting partners with PA in favor of enforced

communication with hepatoblast 1- and HSC-like cells. In TGF-β1-
treatment, we observed an increased fraction of SMC-like cell inter-

actions (Fig 5B). These cells globally expanded their interactions

and shifted their crosstalk specifically towards each other in the

presence of TGF-β1. Together, these results suggest OA-mediated

reduction in HSC- and SMC-like cellular crosstalk while TGF-β1 pro-

motes crosstalk between these cell types.

As a next step, we identified cell-type-resolved receptor-ligand

pairs exclusive for each injury type. With PA treatment, receptor-

ligand expression involving TNF superfamily (TNFS) members was

observed, reflecting the induction of previously described molecular

mediators of cellular responses to injury and inflammation in the

liver (Anstee et al, 2019). In TGF-β1-treated HLOs, receptor-ligand

expression was observed involving PDGFB and PDGFRB, recapitulat-

ing an important hallmark of liver fibrosis in vivo (Kocabayoglu

et al, 2015; Ying et al, 2017; Ramachandran et al, 2019). We further

identified CXL2 and DPP4 ligand-receptor pair expression signatures

indicative of OA treatment. Inhibitors of the exopeptidase
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dipeptidyl-peptidase 4 (DPP4) are anti-diabetes drugs and have been

shown to reduce steatosis in MASLD patients (Androutsakos

et al, 2022), though failing to consistently ameliorate liver inflam-

mation and fibrosis in larger meta-analyses (Dos Santos et al, 2021).

The induction of predominantly steatosis-related interacting tran-

scripts is in line with our previous analyses where OA induced stea-

tosis in HLOs without fibrosis (Fig 3) and had more localized effects

on the broad inflammatory response. This evaluation of the interac-

tome reveals groups of receptor-ligand pairs changing in response to

inflammatory and fibrotic injury in HLOs overlapping with molecu-

lar mediators previously reported in vivo.

We then examined injury-specific interactions between individ-

ual receptor-ligand pairs (Fig 5F). These analyses revealed new

DPP4-CXCL12 pairs with OA treatment potentially allowing

hepatocyte-like lineages and fibroblast-like cells to cleave CXCL12

expressed by HSC-like cells. The expression of TNF-Related Apopto-

sis Inducing Ligand (TRAIL), encoded by TNF superfamily member

TNFS10, in linkage with its decoy receptor Osteoprotegerin (OPG)

(Emery et al, 1998), encoded by TNFRSF11B, was observed exclu-

sively between HB-like cells (TNFS10) and SMC-like cells

(TNFRSF11B) in PA conditions. This interaction expanded with

TGF-β1 treatment to include interactions between SMC-like cells

and matured hepatocyte-like stages. OPG expression has been

suggested as an evasion mechanism from TRAIL-induced apoptosis

acquired by activated myofibroblasts in liver fibrosis (Habibie

et al, 2021), and the expansion in signaling to SMC-like cells

through this pathway from PA to TGF-β1 treatment suggests the

gradual acquisition of fibrogenic activation in these myofibroblast-

related cells. Osteopontin (encoded by SPP1) can bind CD44 to regu-

late cell adhesion and migration (Weber et al, 1996). SMC-like cells

with PA and TGF-β1 treatment induced autocrine interactions

through SPP1 and CD44, consistent with the behavior of activated

HSCs in mouse and human MASH livers (Wang et al, 2023). With

TGF-β1, the SMC-like cell-sourced SPP1/CD44 interaction further

expanded within the mesenchymal targeting HSC-like cells. TGF-β1
treatment also broadly induced PDGFB/PDGFR interactions, indicat-

ing the acquired potential for hepatocyte-like lineages to signal to

HSC-like cells through PDGFRA and hepatocyte- and DC-like line-

ages to signal to HSC- and SMC-like cells through PDGFRB, in line

with the critical role of PDGFB-mediated HSC-activation in liver

fibrogenesis (Kocabayoglu et al, 2015; Ying et al, 2017). We also

identified less studied interactions between cell types, including

TGF-β1-mediated TGFB1/Androgen receptor (AR) and CD44/FGFR2

crosstalk between SMC-like and hepatocyte-like cells. Together,

these findings highlight the alignment of subsequent cellular cross-

talk changes from OA, to PA, to TGF-β1-treated HLOs to pathways

involved in human MASLD progression. Our analyses further high-

light the androgen-receptor pathway as a potential molecular target

in fatty acid-induced liver injury and fibrosis.

Trajectory inference reconstructs the emergence of major HLO
lineages and injury-specific terminal states

Progression from steatosis to steatohepatitis and then fibrosis can be

understood as a sequential process that includes the emergence of

myofibroblast lineages (Anstee et al, 2019; Kisseleva & Bren-

ner, 2021). We investigated the projection of our steatosis (OA),

steatohepatitis (PA), and fibrosis model (TGF-β1) on a force-directed

layout in conjunction with Palantir (Setty et al, 2019) trajectory

inference analysis to dissect this process.

We first analyzed the hepatic progenitor lineage (Fig 6A) choos-

ing the ALBhighest/CEBPApos hepatoblast-like cell as the early cell

(Fig 6B, top). As expected from the immature gene expression signa-

tures in hepatoblast-like cells, pseudotime increased towards the

adult hepatocyte-like cluster (Fig 6B, top). Three terminal states

were identified, including the cycling adult hepatocyte-like state and

two DC-like terminal states emerging through the cholangiocyte-like

cells (Fig 6B, top). We next identified cells with high differentiation

◀ Figure 4. Oleic acid, palmitic acid, and TGF-β1 induce distinct inflammatory and fibrotic responses at the single-cell level.

A ForceAtlas2 representation of cells from OS-HLOs treated for 4 days with OA (500 μM), PA (500 μM), or TGF-β1 (10 ng/ml), and their respective controls, colored by
treatment condition. N = 82,467 cells from 14 replicates (n = 2 replicates per condition, n = 8 controls).

B ForceAtlas2 representation from (A), colored by cell type as annotated with the ScType (Ianevski et al, 2022) database and hepatocyte-like cells resolved to the human
fetal liver development atlas (Wesley et al, 2022) annotation (Materials and Methods). Barplot to the right shows cell cluster proportions as the fraction of total cells
per sample for each of the individual replicates. Color encodes cell type annotation, and annotations are listed in the order they are displayed. P-values for sub-
clustered populations: Ductal cell-like 1 (P = 2E-05), ductal cell-like 2 (P = 0.88, manually annotated, Materials and Methods, Appendix Fig S4d), smooth muscle cell-
like (P = 6.99E-07), cholangiocyte-like (P = 3.2E-06).

C Matrixplot shows the scaled mean expression for marker genes in each cluster from (B). Canonical marker genes (bottom) are sorted by cell type (top). Hierarchical
clustering is represented by the dendrogram on the right. N = 82,467 cells from 14 replicates (n = 2 replicates per condition, n = 8 controls). AH, adult hepatocyte;
CHOL, cholangiocyte; CYC, cycling; FH, fetal hepatocyte; HB, hepatoblast; HSC, hepatic stellate cell.

D OA and PA induce inflammatory signals, and TGF-β1 induces expanded fibrotic signatures. ForceAtlas2 plots show GO term (The Gene Ontology Consortium, 2000;
Carbon et al, 2021) scores for selected categories related to inflammation and fibrosis (labeled, left) for HLOs treated with OA, PA, TGF-β1, and controls (labeled, top).
Increased expression is indicated by a shift from blue to red. Cell cluster annotations are provided in (B). Scale bars indicate the expression score. N = 14 replicates
(n = 2 replicates per condition, n = 8 controls). Cell numbers are indicated.

E FFAs induce an inflammatory signature, TGF-β1 induces a fibrotic signature, and OA ameliorates the fibrotic signature in HLOs. Cell clusters were separated for
expression analysis (top). Differential expression score (pairwise comparison between treatment-specific controls and treatments, Materials and Methods) for selected
genes associated with fibrosis and inflammation for cell types indicated on the top. Differential gene expression (DGE) data are provided in Dataset EV6. AH, adult
hepatocyte-like; CHOL, cholangiocyte-like; DC, ductal cell-like; FH1, fetal hepatocyte 1-like; FIB, fibroblast-like; HB1, hepatoblast 1-like; HB2, hepatoblast 2-like; HSC,
hepatic stellate cell-like; SMC, smooth muscle cell-like.

F Top enriched WikiPathways (Martens et al, 2021) terms for treatment-specific differentially expressed genes in three HLO cell populations corresponding to (B), as
labeled. Circular bar plots display the negative decadic logarithm of adjusted P-values for the respective terms. Cut-off for plots is an adjusted P-value below 0.05.
White circles indicate negative decadic logarithm of adjusted P-values of 0.5 (inner white circle) and 1 (outer white circle). Terms have been shortened for readability,
full lists and further cell clusters are provided in Appendix Fig S5.
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potential (Fig 6B, bottom), showing enhanced activity in three

defined regions, including one at the hepatoblast/cholangiocyte

(arrowhead 1) and two at the cholangiocyte-ductal (arrowhead 2

and 3) interface. Terminal states are defined by a single cell and do

not allow us to evaluate the population of cells most closely related

to the terminal state. To understand the contribution of each treat-

ment to terminal states, we selected the top 100 terminal cells for

each of the three terminal states identified and projected these cells

on the force-directed layout (Fig 6C, top). Analysis of the cell pro-

portions revealed that the AH-like cycling terminal state (cAH) was

primarily composed of cells from the control conditions, while the

DC-like states were dominated by TGF-β1-treated cells (Fig 6C, bot-

tom). Performing a similar analysis on the HSC lineage (Fig 6D),

choosing the IGFBPhighest/DDIT4pos cell as the early cell, revealed

five terminal states in the regions of three HSC-like clusters (referred

to as HSC1-3), the fibroblast-like cluster (FIB), and one SMC-like

cluster (Fig 6E, top). The three regions of high differentiation poten-

tial corresponded to the interfaces between these major mesenchy-

mal cell types (Fig 6E, bottom, arrowheads 1–3). Analysis of the cell

proportions revealed that the FIB and HSC2 terminal states were

mostly represented by cells from the control condition, while the

HSC1 and HSC3 were primarily composed of cells from control and

TGF-β1-treated cells. In contrast, SMC-terminal state was largely

represented by TGF-β1-treated cells (Fig 6F, bottom). Together,

these analyses suggest that only TGF-β1-treatment favored the emer-

gence of a myofibroblast-like terminal state, consistent with a

canonical feature of fibrosis pathology (Kisseleva & Brenner, 2021).

To examine the differentiating regions as potential representa-

tions of healthy-to-injury transitions, we next applied MAGIC (van

Dijk et al, 2018) to generate imputed data and visualize the expres-

sion of relevant genes along the differentiation trajectory with a

focus on the acquisition of “pro-fibrotic” and “pro-inflammatory”

gene expression signatures. We selected genes based on GO terms

(The Gene Ontology Consortium, 2000) and sorted the genes

according to their imputed expression at the final pseudotime to

visualize whether these signatures were enriched towards each ter-

minal state (Fig 6G, Appendix Fig S7, Dataset EV8). For the hepatic

progenitor lineage, this analysis revealed an increase in pro-fibrotic

gene signature enrichment across pseudotime for cAH- and DC-like

terminal states (Fig 6G, top). In the HSC-like lineage, the SMC-like

terminal state enriched a broad spectrum of pro-inflammatory and

pro-fibrotic gene signatures along pseudotime, with variable enrich-

ment for HSC-like and fibroblast-like cells (Fig 6G, bottom). Interest-

ingly, OA-treated cells were hardly represented across the cells

constituting the extrema of trajectories leading to terminal states

with fibrotic signatures.

To resolve transcripts specific to each terminal state, we

projected the imputed expression of genes enriched in the above

analyses or related to hepatocyte precursor states on the force

directed layout for each lineage (Fig 6H). In the hepatic progenitor

lineage, inflammatory transcripts NFKBIA, CXCL6 and CXCL1

increased towards the TGF-β1-dominated DC-like terminal state. We

observed a targeted diffusion distribution of pro-fibrotic genes

towards the same cells, again corresponding to the TGF-β1 treat-

ment enriched trajectory (e.g., TGFBI and TIMP1). The hepatoblast-

like terminal state (that expanded under OA treatment, Fig 4B)

showed enrichment for hepatocyte precursor defining transcripts

AFP, APOA1, APOC1, HNF4A, and CEBPA, providing further evi-

dence that OA favors the expansion of hepatocyte precursor states.

Profiling of the HSC-related lineages revealed IL32 and HLA-C as

components of the inflammatory, and ITGAV and S100A11 as com-

ponents of the fibrotic signature towards the SMC-like terminal

state, which was overrepresented by TGF-β1 treated cells. These

transcripts are also characteristic of activated HSCs and a hallmark

of fibrosis in vivo (Henderson et al, 2013; Baselli et al, 2020),

suggesting the emerging SMC terminal state represents the activa-

tion of these HSC-like cells.

To better understand gene expression signatures accounting for

deviating terminal states observed in injured HLOs, we next

projected lineage-specific gene expression trends over pseudotime

(Fig 6I). This highlighted pro-fibrotic and pro-inflammatory genes

characterizing individual terminal states of the hepatic progenitor

lineage, which were the cAH- and DC-like states (Fig 6I, two left

columns; green, orange, and blue lines, respectively). In the HSC-

◀ Figure 5. OA induces an interactome distinct from crosstalk observed with TGF-β1 and PA treatment.

A CellPhoneDB (Efremova et al, 2020) analysis of cell–cell interactions in healthy and injured HLOs. Heatmaps show the fraction of total interactions per condition in
day 25 OS-cultured HLOs treated with OA, PA, TGF-β1, and their respective controls. HSC, hepatic stellate cell-like; AH, adult hepatocyte-like; cAH, cycling adult
hepatocyte-like; CHOLs, cholangiocyte-like; DC, ductal cell-like; FH1, fetal hepatocyte 1-like; FIB, fibroblast-like; HB1, hepatoblast 1-like; HB2, hepatoblast 2-like; SMC,
smooth muscle cell-like. N = 100 possible cell–cell interactions per condition, n = 2 replicates per condition, n = 6 controls.

B Stacked bar plots show the fraction of total interactions per condition for all cell clusters, where the respective cell is the source of the interaction. Abbreviations are
as listed in (A). Cell clusters are colored in the order of their appearance. N = 100 possible cell–cell interactions, n = 2 replicates per condition, n = 6 controls.

C Clustered heatmap shows the difference in the fraction of total interactions between each treatment and its control group. Dendrograms show the hierarchical
clustering by condition (top) and cell–cell interaction (left). N = 100 possible cell–cell interactions, n = 2 replicates per condition, n = 6 controls.

D Chord diagrams show the fraction of total interactions per source cell with its respective target cells in HLOs treated with OA, PA, and TGF-β1 relative to their controls.
Chord diagrams are divided by interactions that have (i) a higher fraction of total interactions in treatment conditions (“enforced”), and (ii) interactions with a lower
fraction of total interactions (“reduced”) compared to controls. Colored lines indicate interactions initiated by the source cell in each column, while gray lines show
interactions of other cell types targeting the source cell. N = 100 possible cell–cell interactions, n = 2 replicates per condition, n = 6 controls.

E UpSet plot displays the numbers of intersecting and unique significant (P-value < 0.05) cell-type-specific receptor-ligand interactions of HLOs treated with OA, PA,
TGF-β1, and controls. Examples for receptor-ligand pair categories containing unique interactions for each treatment are displayed (Materials and Methods).
N = 1,427 significant cell–cell partner-specific receptor-ligand pair interactions, n = 2 replicates per condition, n = 6 controls.

F Dotplots show receptor-ligand pairs with an induced number of significant cell–cell interactions in HLOs treated with OA, PA, TGF-β1, compared to their respective
controls. Receptor-ligand pairs with at least two induced interactions are shown. Mean expression (mean of all partners’ individual average expression, Materials and
Methods) is indicated by the circle size, and significant P-values < 0.05 are indicated by orange color. An interaction can be non-significant despite high mean expres-
sion among two partnering molecules. Receptor-ligand pairs are shown on the x-axes, and cell clusters are shown on the y-axes. N = 2 replicates per condition,
n = 6 controls.

Source data are available online for this figure.
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related lineages (Fig 6I, two right columns), inflammatory signa-

tures accompanied the trajectory towards the TGF-β1-specific SMC-

like terminal state (green line), along with fibrosis-related genes

such as PDGFB, S100A11 and TAGLN. The pseudotime is indicated

on the x-axis, with a value of 1 representing the greatest pseudo-

time. Some cell populations terminate before 1 based on pseudotime

calculations for each terminal cell state. Together, these results sup-

port the presence of inflammatory and fibrotic signatures on the

path towards fibrosis being modeled by PA and TGF-β1 treatments,

and underscore the induction of premature hepatocyte stages

by OA.

Gene signature scores predicting MASLD severity progressively
increase from PA to TGF-β1, and show a mixed response with OA

We next investigated how changes in gene expression following

treatment of HLOs with OA, PA, and TGF-β1 relate to the develop-

ment of fibrosis in patients with MASLD. We applied the 26 and 98

gene signatures established to predict fibrosis in MASLD (Pantano

et al, 2021) to bulk gene expression in HLOs. This analysis revealed

a significant increase in the scores with TGF-β1 and PA treatment

for both gene signatures, with the mean score increasing to the

greatest extent with TGF-β1 treatment, followed by PA (Fig 7A). We

then plotted expression signatures for individual genes that demon-

strated the greatest dynamic range in expression across clusters

(Fig 7B). Many of these genes show a trend of induction from con-

trol, to OA, to PA, to TGF-β1, including TAGLN2, CXCL6, CYTOR,

and S100A11, while other genes, such as S100A4 show the highest

expression with OA treatment. These results demonstrate a stepwise

induction of MASLD disease progression scores with PA and

TGF-β1, and a mixed response with OA in HLOs.

We then evaluated the 26 and 98 gene signatures at the level of

cell types. The 26 and 98 gene signatures increased across the major

cell types of adult hepatocyte-, HSC-, and cholangiocyte-like cells

with significance in at least one of the two signature scores for PA

and TGF-β1 treatment (Fig 7C). In contrast, we observed a reduction

in both 26 and 98 gene signatures with OA treatment for adult hepa-

tocyte, HSC- and cholangiocyte-like cells. The main contributors to

the OA-related MASLD signature were hepatocyte-like populations

within the 98 gene signature. To further dissect the contribution of

individual cell types to the score enrichment, we next plotted the

relative expression of individual genes per cell cluster across treat-

ment conditions (Appendix Fig S8). Adult hepatocyte-like cells in

HLOs treated with TGF-β1 showed higher expression of S100A11,

while OA and PA induced TCEAL9 in this population. HSC-like cells

showed induction of COL4A1, COL4A2, COL5A1, PKM, VIM, and

TPM4 with TGF-β1 treatment, while OA and PA treatment resulted

in increased expression of the inflammatory signature gene IL32 in

both epithelial and mesenchymal clusters. Together, these results

indicate the gradual acquisition of gene signatures linked to disease

progression in MASLD across the major HLO cell types with PA and

TGF-β1, additionally resolving a mixed response in the OA condi-

tion, where hepatocyte precursors were the main drivers of gene

expression changes observed with MASLD progression, while AH-,

cholangiocyte-, and HSC-like populations lost the MASLD fibrosis

signature.

Discussion

While studies have begun to decipher the contribution of individual

cell types to the development of cirrhosis in humans (Ramachan-

dran et al, 2019), our understanding of gene expression programs

and the interaction between cell types during evolving liver fibrosis

in the context of MASLD is limited. Conventional 2D cultures fail to

provide cellular complexity, and animal models come with ethical

constraints and do not involve human cells. Recent multi-lineage in

vitro organoid systems, such as human liver organoids (HLOs), hold

the promise to bridge the gap between cell culture and clinical

observations (Sharma et al, 2020). In HLOs, MASLD and fibrosis

◀ Figure 6. Trajectory inference reconstructs the emergence of major HLO lineages and injury-specific terminal states.

A ForceAtlas2 representation of the hepatic progenitor lineage composed of cells from healthy controls and OS-HLOs treated with OA, PA, and TGF-β1, colored by cell
type. N = 65,242 cells from 14 replicates (n = 2 replicates per condition, n = 8 controls).

B ForceAtlas2 representation from (A), colored by Palantir trajectory inference results based on the ForceAtlas2 representation, showing pseudotime (top) and
differentiation potential (bottom). For pseudotime, black arrowheads indicate three pseudotime maxima, and the white arrowhead identifies the early cell (selected
based on the highest level of AFP expression among cells expressing CEBPA, both of the genes marking hepatocyte precursors, Wesley et al, 2022). Regions of high
differentiation potential are indicated by arrowheads 1–3.

C Projection of the top 100 terminal branch cells (sorted by branch probabilities) for each terminal state identified by Palantir on the ForceAtlas2 representation from
(A) (top). Corresponding barplots below displaying the relative distribution of treatment conditions among the top 100 terminal branch cells for each terminal
state.

D–F Display the plots from (A) to (C) for the HSC lineage, in this case the early cell is selected based on the highest level of IGFBP2 expression among cells expressing
DDIT4, as a marker of fetal HSCs (Wesley et al, 2022). N = 17,225 cells from 14 replicates (n = 2 replicates per condition, n = 8 controls).

G Gene expression trends reveal the increase in inflammatory and pro-fibrotic transcripts along the pseudotime ordering towards PA and TGF-β1 dominated terminal
states. Heatmaps showing the imputed gene expression over Palantir pseudotime for GO term (The Gene Ontology Consortium, 2000; Carbon et al, 2021) derived
inflammation (left) and fibrosis (right) related genes sorted by their imputed expression level at each terminal state (indicated on top of each heatmap). Imputed
expression levels are indicated by color, y-axes correspond to genes, and x-axes display the pseudotime. Ranked gene lists are provided in Dataset EV8.

H ForceAtlas2 representations for hepatic progenitor and HSC lineages from (A) and (D), showing the MAGIC-imputed gene expression of selected inflammation- and
fibrosis-related genes from (G) enriching towards specific terminal states. Fetal hepatocyte-related transcripts enrich along the trajectory towards the OA-treated
hepatoblast-like cells. Projection of the imputed gene expression of transcripts related to inflammation, fibrosis, and the developmental stage of hepatoblasts is
indicated by section headings. Color represents the range of imputed expression values for each gene.

I Gene expression trends for hepatic progenitor (left three columns) and HSC (two right columns) lineages of representative enriched genes from (G). The pseudotime
is indicated on the x-axes and normalized expression is shown on the y-axes. Cell types are indicated by color (top) and can be identified in (A) and (D). Note that
not not all terminal cells reach the maximum pseudotime value of 1 and therefore terminate their trend line before the x-axis maximum (compare (B) and (E)).
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Figure 7. Gene signature scores predicting MASLD severity progressively increase from PA to TGF-β1, and show a mixed response with OA.

A Application of 26 and 98 gene signatures (Pantano et al, 2021) to predict fibrosis stages across MASLD to control and injured OS-HLOs. Dot plot showing the ratio of
the mean gene signature score in treatments and their respective controls. P-values derived from pairwise Mann–Whitney-U-statistics (two-tailed) comparing scores
across all cells in treatment vs. their respective control condition. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ns, non-significant. All P-values are provided in the source data
of the fig N = 82,467 cells from 14 replicates (n = 2 replicates per condition, n = 8 controls).

B Dotplot shows the scaled mean expression of commonly expressed genes from the 98-signature score across treatment conditions. Dot sizes correspond to the per-
centage of cells expressing the respective gene in each condition, and the level of expression is indicated by color.

C Deconvolution of the scores from (A) to individual cell types as annotated in Fig 4B. Dot plot showing the ratio of the mean gene signature score in treatments and
their respective controls. P-values derived from pairwise Mann–Whitney-U-statistics (two-tailed) comparing scores across all cells of the indicated cell type in treat-
ment vs. their respective control condition. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ns, non-significant. All P-values are provided in the source data for the figure. N num-
bers are indicated below cell cluster names.

Source data are available online for this figure.
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have been studied so far by oleic acid (OA) treatment (Ouchi

et al, 2019) and genetic manipulation (Guan et al, 2021). However,

saturated FFAs, like 16:0 palmitic acid (PA), show a tighter associa-

tion with MASLD (Hliwa et al, 2021) and more efficiently induce

hepatocyte damage (Ricchi et al, 2009; Moravcov�a et al, 2015).

Despite the critical importance of choosing the most suitable HLO-

MASLD model, a systematic evaluation of the efficacy on MASLD

transcriptome induction among lipotoxic agents in HLOs has not yet

been performed.

Here, we examined the effect of OA-, PA-, and TGF-β1-mediated

injury in HLOs and the ability of each condition to model the pro-

gression of steatohepatitis and fibrosis caused by MASLD-induced

liver disease. This analysis covered histologic, phenotypic, and gene

expression studies, including the creation of a reference of

� 100,000 single-cell transcriptomes of injured and healthy MASLD-

HLOs. We find that OA induces patterns of gene expression that are

more reflective of benign steatosis, while the inflammatory changes

of steatohepatitis are induced with PA, and the combination of stea-

tohepatitis and fibrosis is most prominent with TGF-β1.
While OA induces steatosis, inflammatory changes were only

observed in hepatocyte precursors. Unexpectedly, OA treatment not

only fails to induce COL1A1 mRNA measured by qRT-PCR and

reduces intra-organoidal collagen levels as quantified by Sirius red

stainings, but it also significantly ameliorates fibrotic gene signa-

tures across cell types and largely reduces the HSC population in

HLOs. In contrast, PA induces a more robust steatohepatitis signa-

ture from more mature hepatocyte sub-populations, while having

minimal effect on HSC population size or gene expression. TGF-β1
is the only agent tested that generated a global fibrotic phenotype

including collagen type 1 induction. Additionally, only TGF-β1 treat-

ment results in the expansion of the KRT19/HNF4A+ DC-like popu-

lation, consistent with the reaction observed with chronic liver

injury in vivo (Espa~nol-Su~ner et al, 2012; Raven et al, 2017; Deng

et al, 2018; Sato et al, 2019; Pu et al, 2023). It is not clear why previ-

ous studies in HLOs (Ouchi et al, 2019) show a more marked

fibrotic change with OA treatment, but it may reflect differences in

culture conditions or the presence of a small number of Kupffer-like

cells, which we do not observe in our HLOs. However, the conclu-

sion that PA is a more effective model for steatohepatitis in HLOs is

consistent with both human and mouse studies.

OA, a monounsaturated fatty acid, is the major component of

olive oil (Yubero-Serrano et al, 2019). Olive oil is an integral compo-

nent of the Mediterranean diet (MD) (Dinu et al, 2018), and growing

evidence over the past decades has demonstrated health benefits

from the MD, attributed to its high olive oil content (Dinu

et al, 2018). The beneficial effects on cardiovascular disease are well

established (Estruch et al, 2018; Delgado-Lista et al, 2022), and a

recent meta-analysis of randomized controlled trials highlights the

positive effects of the MD in MASLD, with the observation of

reduced ALT levels and liver stiffness (Haigh et al, 2022). In vivo

studies in mice and rats have also demonstrated that OA protects

against inflammatory and fibrotic effects in models of MASH (Lee

et al, 2011; Chen et al, 2018; Zeng et al, 2020). The observation that

OA reduces the fraction of HSCs and induces an almost pan-cellular

reduction of fibrotic signatures in HLOs could help explain benefi-

cial effects observed in these studies.

Differential effects have been observed for OA and PA in vitro

that also indicate OA could reduce fibrosis. While OA and PA induce

steatosis in hepatocytes, and OA is observed to have a more pro-

nounced effect on steatosis than PA in some studies and similar

effects in other studies (Müller & Sturla, 2019), PA more potently

induces cytotoxicity and apoptosis compared to OA (Ricchi

et al, 2009; Moravcov�a et al, 2015). Additionally, evidence for OA-

mediated protection from lipotoxicity in cultured hepatocytes has

been observed (Ricchi et al, 2009). Treatment of HSCs directly with

OA leads to reduced collagen, ɑSMA, and vimentin levels and

inhibits proliferation (Hetherington et al, 2016; Hong et al, 2018). In

contrast, PA has been linked more directly to fibrosis, as condi-

tioned media from PA-treated hepatocytes induces fibrotic gene

expression in HSCs (Piras et al, 2020).

Our study does come with limitations. First, in their current state,

HLO systems do not fully mimic the cellular landscape found in

vivo. This is evident in alternate cell type proportions in HLOs com-

pared to the human liver, such as the relative abundance of

cholangiocyte-like cells. HSC-like cells consistently range at higher-

than-physiological fractions in HLOs (Ouchi et al, 2019). We

addressed this limitation through the relative reduction of HSC-like

and cholangiocyte-like cells with the OS culture method, resulting in

a relative expansion of hepatoblast- and hepatocyte-like fractions.

Adult hepatocyte-like cells are also detected in OS conditions with

expression profiles consistent with zonation, but with an under-

representation of pericentral hepatocytes. While HSC- and

cholangiocyte-like cells decrease in OS conditions, they remain more

frequent than observed in the liver, where both cell types comprise

about 5% of cells (Yin et al, 2013; Banales et al, 2019). Additionally,

immune cells are a critical component in MASLD development, and

in our HLO system we do not detect Kupffer cells previously

reported (Ouchi et al, 2019), which is potentially a result of hetero-

geneity in cell type annotation strategies of rare populations. Sec-

ond, our analysis still revealed proportions of premature cell stages,

particularly in the hepatocyte-like fraction. Third, inter-batch vari-

ability is present in HLO culture, which is why in this and future

studies the differentiation of appropriate controls along with treat-

ment samples in each generation of HLOs is strictly required. We do

observe a larger fraction of cholangiocyte-like cells compared to

previous reports (Ouchi et al, 2019), but this is likely to reflect dis-

crepancies in different cell type annotation strategies more than

inter-sample variability. Fourth, replicates were limited (n = 2 tech-

nical scRNA-seq replicates), which may have reduced the power to

detect small changes between groups. Additionally, our initial obser-

vations of size shifts in Matrigel-cultured HLOs (Fig 3B) may poten-

tially be associated with changes in transcriptomic phenotypes,

which we did not investigate due to our initial focus on expression

of collagen and TNFA as markers of fibrosis and inflammation in

MASLD. Together, further studies will be necessary to (i) develop

HLO models of greater cell type variety and maturity, (ii) reduced

inter-batch variability, and (iii) continuously evaluate their capacity

to model human pathologies.

In summary, we herein provide a systematic approach to bench-

mark MASLD-HLOs, including single-cell analysis, which will serve

as a reference atlas for future studies. The interplay between

inflamed, steatotic hepatocytes, cholangiocytes, and HSCs provided

in the HLOs demonstrate the antifibrotic effects of OA observed in

vivo, and suggest they are driven at least in part by a reduction of

HSCs. This may be an underexplored mechanism by which OA

exerts beneficial effects in animal models and MASLD patients. Our
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results also provide evidence for the rationale to favor PA over OA

to model steatohepatitis in HLOs and to use TGF-β1 to study the

combination of inflammation and fibrosis observed in later-stage

disease. In the future, such model systems could be used to predict

the differential outcomes on MASH and fibrosis of drug candidates

prior to clinical trials.

Materials and Methods

hPSC and HLO culture

H1 hPSC cells (WA01) were obtained from WiCell. ESCRO approval

was received from Massachusetts General Hospital (MGH). The

iPSC4 line was generated in collaboration with the Harvard Stem

Cell Institute from nucleated blood cells from a male donor in their

forties. Blood was collected after informed consent and in accor-

dance with the MGH Institutional Review Board Approval (Proto-

col: 2009P002847). The iPSC4 line was generated through

approaches as previously described (Park et al, 2008; Muratore

et al, 2014) using cDNAs for Oct4, Sox2, Klf4, and Myc delivered

with Sendai Virus. Karyotyping and fingerprinting analysis were

performed for iPSC4. hPSCs and hiPSCs were maintained in mTeSR

medium (StemCell Technologies) on Matrigel (Corning, 354230) as

previously described (Daneshvar et al, 2016) and split with Accu-

tase (Thermo Fisher Scientific) upon 80–90% confluence. For pas-

sage and thawing, Rho-associated kinase (ROCK)-Inhibitor

(StemCell Technologies, Y-27632) was added to mTeSR at 10 μM.

For the differentiation of human liver organoids (HLOs), cells were

split at a ratio of 1:10 and cultured until � 85% confluent before

HLOs were differentiated as previously described (Ouchi

et al, 2019; Thompson & Takebe, 2020). On day 21, HLOs were

either kept in Matrigel domes or isolated. To perform isolation,

HLOs were incubated in DPBS(�/�) on ice for 15 min followed by

repeated manual dissociation with a P1000 at 4°C followed by cen-

trifugation at 290 g for 3 min, removal of supernatant, and resus-

pension in 10 μl final medium per receiving well of a 24-well plate.

Isolated HLOs in media were either plated to (i) 1% agarose-coated

plates, (ii) plates on an orbital shaker at 80 revolutions per minute,

or iii) hydrogel plastics ultra low attachment surface 24-well plates

(Corning, 3473).

Liver injury induction

Injury media solutions based on Hepatocyte Culture Medium

(HCM, Lonza, CC-3198) were prepared to obtain solutions of

TGF-β1 (R&D Systems 240-B-002), palmitic acid (PA, Sigma Aldrich

P0500), and oleic acid (OA, Sigma Aldrich O1383). HLO media was

changed to injury media on day 21. Isolated HLOs were resus-

pended in the final injury media at the final step of the isolation

process (see above) and kept in solution for 4 days and harvested

on day 25. Controls for TGF-β1 were cultured in HCM. PA was

dissolved into HCM with 10% BSA and 1% ethanol before dilution

to final concentration in HCM. OA was dissolved into DPBS(�/�)

with 12.5 mM NaOH and 1.67% BSA at 8 mM before dilution to

final concentration in HCM. PA and OA controls were prepared

accordingly, omitting the initial step of dissolving the active agent

in the carrier solutions.

Contraction assay

Day 20–21 HLOs in 50 μl Matrigel domes cultured in HCM were

exposed to TGF-β1 at 10 and 25 ng/ml. Images of plates with scale

bars were taken prior to treatments and on day 5. Measurements

were performed with ImageJ (version 1.53a) by manually selecting

the HLO/matrix drop areas. All distances in mm2 were normalized

to the mean of the control areas in mm2, and two-tailed Kruskal–
Wallis-statistics were performed on all groups with a Conover post

hoc test.

qRT-PCR

Total RNA was isolated from HLOs to perform qPCR. Briefly, 1 ml

medium was removed from 6 well plates. Matrigel domes

containing HLOs were carefully detached from the wells with a cell

scraper and transferred to a 1.5 ml tube including medium. If iso-

lated HLOs served as starting material, the detachment step was not

needed. Matrigel-embedded HLOs were left at 4°C for 15 min to dis-

solve the Matrigel. Then, HLOs were centrifuged for 3 min at 290 g

at 4°C (Matrigel-embedded HLOs) or at RT (non-matrigel HLOs or

2D cell layers). Supernatant was discarded, and the pellet was resus-

pended in 300 μl Trizol (Invitrogen, 15596026), rigorously vortexed

or mechanically processed until fully dissociated, and finally incu-

bated for 10 min at room temperature and then stored at �80°C.
RNA was prepared via phenol-chloroform extraction. For cDNA syn-

thesis, 200 or 500 ng RNA were reverse-transcribed using the iScript

gDNA Clear cDNA Synthesis Kit (Biorad, 1725034), and no-RT-

controls and mastermix controls were prepared. qPCR reactions

were prepared from cDNA at 1:5 dilution with SYBR Green iTaq

Universal SYBR Green Supermix (Biorad, 1725120) and qPCR

primers at 10 μM in a total volume of 10 μl in a ≥ 40-cycle and melt

curve reaction cycler (Biorad, Base #CT009383, Optical Head

#786BR2648). All biological samples were measured in technical

triplicates.

qRT-PCR data analysis

All gene Ct means were calculated from three technical replicates.

Only samples with housekeeping Ct values below 35 were consid-

ered for analysis. Mean Ct values for housekeeping genes β-Actin
(ACTB) or glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

were subtracted from target gene means to generate the ΔCt value.
The control ΔCt value average was calculated from three biological

replicates and subtracted from all experimental ΔCts to render ΔΔCt

values. The log2 fold-change was calculated as 2�ΔΔCt .

Primer design and validation

Primers were designed using PrimerBlast. Briefly, transcripts of

interest were selected by NCBI Reference Sequence ID and the ‘pick

primers’ hyperlink function was used to import the cDNA sequence

into the PrimerBlast mask. The following settings varied from the

defaults: Exon junction span → primer must span an exon-exon

junction, PCR-product size → 50–200, allowing primers to bind to

variant transcripts of the same gene. Blast was performed against

both, RefSeq mRNA (Homo sapiens) and RefSeq representative

genomes (Homo sapiens) in order to obtain primers specific to
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transcript sequence and mRNA rather than gDNA. Primers with (i)

no additional match in RefSeq mRNA or at least > 4 mismatches

and (ii) no additional genomic hits or hits with at least > 800 bp

product size, were selected for further validation. Next, primers

were tested on human liver tissue RNA at a final concentration of

10 μM as described above, and 2% agarose gels of the primer prod-

uct were prepared with a 100 bp ladder. Primers were selected for

further experiments if they showed a single band in the expected

size range. The band was cut, cDNA was extracted from agarose

and sent for Sanger sequencing, and the product identity was

assured by re-blasting. A primer was selected for experiments when

the sequence matched the selected sequence of the initially selected

transcripts (NCBI BLAST). Primer sequences are provided in

Dataset EV9.

Triglyceride assay

HLOs treated with OA/PA/TGF-ꞵ1 or control solutions were col-

lected, washed twice with DPBS(�/�), and homogenized in glycerol

lysis buffer. Triglyceride quantification was performed using the

enzymatic assay Triglyceride-GloTM Assay (J3160, Promega) fol-

lowing the manufacturer’s instructions.

Bodipy staining

After being cultured with OA/PA/TGF-ꞵ1 or control solutions, HLOs

were collected and washed with DPBS(�/�). Lipid droplets and

nuclei were stained with Bodipy 493/503 (0.5 μg/ml, D3922, Ther-

moFisher) and Hoechst (5 μg/ml, H1399, Invitrogen) for 40 min at

37°C. The stained HLOs were visualized and imaged with the Leica

DMi8 automated Microscope (Leica Systems) using the 10× objec-

tive. All image analysis was performed using the ImageJ-Fiji

software.

Histology and immunohistochemistry

Medium was removed from day 16, day 21, or day 25–26 HLOs

treated for 4 days with pro-fibrotic substances, washed twice with

warm DPBS(�/�), and fixed overnight at 4°C with 4% PFA in

DPBS(�/�). PFA was removed and the HLOs were washed 2× with

DPBS(�/�) before being transferred to 70% ethanol for storage and

paraffin embedding. H&E and Sirius red staining was performed on

cut and deparaffinized HLOs in line with standard protocols. Anti-

human-CEBPα (Sigma Aldrich, HPA052734) and the secondary anti-

body (HPR anti-mouse) were used at a dilution of 1:200.

Organoid Sirius red quantification pipeline

The pipeline for HLO-specific Sirius red staining analysis is written

in python (≥ version 3), ImageJ (version 1.53a) macro, and bash

and is publicly available at https://github.com/anjahess/organoid-

sirius-red. First, full slides were cleared from black artifacts. Then,

for whole slide quantification, all image areas containing tissue were

selected and saved for quantification. The Sirius red quantification

module was adopted from the NIH-Image J macro “Quantifying

Stained Liver Tissue” (available at https://imagej.nih.gov/ij/docs/

examples/stained-sections/index.html, requested 2020-11-14).

Briefly, RGB stacks were generated from images, and the tissue

containing area was defined and measured by the setAutoThreshold

(“Default stack”) function. The Sirius red staining threshold reached

from minimum to maximum as retrieved from the setAutoThreshold

and getThreshold(min, max) functions measured in the green chan-

nel of the RGB stack, and divided by an experiment-specific bright-

ness factor (0.95 or 1.3, similar across all control and treatment

conditions). For single HLO analysis, 200 × 200 μm selection

squares were placed around HLOs in the interactive, user-

supervised mode and resulting images were processed as described

for whole slide scans. Finally, csv-formatted result tables were

called from python (version 3.7) and the Sirius red stained area was

calculated either per total area or per tissue (measures as the auto-

thresholded area in the blue channel). For vacuole quantification,

the fraction of stain-free tissue was compared. If normalization was

performed, values were calculated as the percentage of mean of all

control samples of the respective experiment.

Single-cell RNA sequencing

For day 21 ULA HLO single-cell RNA sequencing, HLOs underwent

a passage step at day 16 and remained in HCM medium with 10%

Matrigel on ultra-low attachment plates as previously described

(Thompson & Takebe, 2020). At day 21, one well of a six well plate

of free-floating HLOs was collected, washed 1× with warm DPBS

(�/�) and briefly dissociated by incubation with 300 μl 0.05–0.25%
Trypsin–EDTA for 10 min at 37°C (Corning, Ref. 25-052-CI RT). Day

25 orbital shaker-cultured HLOs underwent an additional DBPS

(�/�) wash and 10 min of trypsinization to allow complete HLO

digestion. For each replicate, full single-cell dissociation was con-

firmed manually by light microscopy. After a final DPBS(�/�)

wash, HLOs were resuspended in DPBS(�/�), counted after Trypan

blue staining with the TC20™ Automated Cell Counter according to

a previously determined optimal gating of 7–20 μm and transferred

on ice. Library preparation was performed on biological replicates

with the highest viability counts. Libraries were prepared according

to the 10× ChromiumSingle Cell 30Reagent Kits v3 instructions. The

library was sequenced by paired-end sequencing on an Illumina®

NextSeq 2000 P3 flow cell or the NovaSeq 6000 system according to

the manufacturer’s recommendations.

Single-cell RNA sequencing analysis

Alignment and quality controls (QCs)
Raw bcl files were converted to fastq by the command bcl2fastq --

use-bases-mask Y26,I8,Y98. Fastq quality was assessed with multiqc

(Ewels et al, 2016) (version 1.9). Fastq files were aligned to the

GRCh38 genome with cellranger count (=> version 3.0.2). Doublet

scores were calculated with Scrublet (version 0.2.3) (Wolock

et al, 2019) with default settings on the cellranger filtered count

matrices. Cells with doublet scores below 0.5 were accepted for

downstream analysis performed with scanpy (Wolf et al, 2018) (ver-

sion 1.7.2, functions abbreviated with sc from here on) in python

(version 3.7). All replicates were loaded and merged using the

sc.concatenate function.

Cell QC
Violin and scatter plots of QC parameter distributions were manu-

ally inspected for all samples and the following joint criteria were
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applied: (i) at least 500 genes per cell, (ii) a maximum mitochon-

drial gene fraction of 20%, (iii) a maximum ribosomal gene fraction

of 40%, and (iv) a minimum of 500 and a maximum of 30,000

counts. Transcripts were accepted if present in at least 10 cells. Prior

to QC, the dataset contained a total of 21,067 cells (ULA-HLOs), and

99,119 cells (OS-HLOs). After QC, the dataset contained 16,835 cells

(ULA-HLOs), and 82,467 cells (OS-HLOs, Dataset EV10). All repli-

cates were jointly total-count normalized excluding the top 10%

highly expressed genes, logarithmized (X = log(X + 1), natural log-

arithm). Highly variable genes were selected using the sc.pp.high-

ly_variable_genes function with the n_top_genes parameter set to

5,000. Each gene was transformed to unit variance by applying the

sc.pp.scale function with the max_value parameter set to 5.

Cell cycle scoring

Cell cycle scores (S-, G2M-Score) and cell cycle phase (S, G2M, G1)

were assigned based on a previously published cell cycle defining

gene list (Tirosh et al, 2016) with the sc.score_genes_cell_cycle

function.

Dimensionality reduction, embedding, clustering

Normalized, log-transformed, and scaled data were objected to cal-

culation of principal component analysis (PCA) coordinates, load-

ings, and variance via sc.tl.pca. The neighborhood graph was

calculated using the first 50 principal components and embedded

utilizing the Uniform Manifold Approximation and Projection

(UMAP) (McInnes et al, 2018) algorithm via sc.api.tl.umap. Clus-

ters were identified with the Leiden algorithm (Traag et al, 2019)

at resolution 0.1. Coarsenesses lower than the default parameters

were chosen to reproduce approximately five cell types experimen-

tally validated in HLOs (Ouchi et al, 2019) and based on optimal

performance in cluster robustness metrics, as evaluated through

calculation of Davies-Bouldin indices and Silhouette scores in

sklearn (Pedregosa et al, 2011) calling the sklearn.metrics.silhouet-

te_score and sklearn.metrics.davies_bouldin_score functions as pre-

viously described (Fast et al, 2021) (Appendix Fig S2g). Clusters

were required to represent all individual control replicates, and if

this criterion was not met the clusters were excluded from the

downstream analysis (led to the exclusion of 717 cells,

Dataset EV10). The force-directed graph was computed via

sc.tl.daw_graph implementing ForceAtlas2 (Jacomy et al, 2014, 2)

with default parameters.

Cluster marker gene identification and pathway enrichment
analysis

Cluster-characterizing genes were defined using scanpy’s implemen-

tation of the Wilcoxon rank-sum test (comparing each cluster

against all other clusters) followed by Benjamini–Hochberg correc-

tion (sc.tl.rank_genes_group).

Batch correction and force-directed graph drawing

Batch effects were corrected with the scanpy implementation of Har-

mony (Korsunsky et al, 2019) applying the sce.pp.harmony_inte-

grate function followed by recalculation of the neighborhood graph

and UMAP based on the Harmony representation. Convergence was

reached prior to the maximum of 10 iterations.

Cell cluster annotation

Automated cluster annotation based on literature markers
Literature research was performed to assemble a set of specific

marker genes for cell types potentially emerging in HLOs, including

mature liver cells and progenitors (Dataset EV1). The top 200

Wilcoxon rank sum test derived marker genes of each cluster, based

on control conditions, were forwarded to the gseapy.enrichr (Kule-

shov et al, 2016; Fang et al, 2022) function together with the litera-

ture reference list, the number of genes in the dataset was provided

as the background parameter. Results from enrichr with an adjusted

P-value below 0.05 were assigned as the new cluster identity based

on the number of significantly enriched marker genes. If P-value

criteria were not met, the label with the lowest adjusted P-value and

maximum number of matching genes was chosen as the identity.

Accepting the label “Embryonic stem cells “required expression of

either SOX2, NANOG, POU5F1 or KLF1.

Automated annotation based on curated databases
The ScType (Ianevski et al, 2022) marker gene set (accessed 2022-

Nov-25, https://sctype.app/database.php) was used as a reference

for the statistical enrichment described above. Cholangiocyte-like

cells were further sub-clustered and annotated as described. The

ductal cell-like cluster 2 was initially annotated as “Stromal cells”

(P > 0.05, not significant) and was manually merged into the ductal

cell-like cluster after inspection of marker gene expression and

euclidean distance dendrograms (Appendix Fig S4d). Hepatocyte-

like cells were sub-clustered and annotated to previously published

marker genes from a single-cell atlas of human liver development

(Wesley et al, 2022) (pairwise hepatocyte DGE from “Source Data

Fig. 1”, accessed 2022-Dec-10: https://static-content.springer.com/

esm/art%3A10.1038%2Fs41556-022-00989-7/MediaObjects/41556_

2022_989_MOESM4_ESM.xlsx, sheet “Hepatocyte_pairwise DEG”).

Genes with a negative log fold change in HB2 compared to HB1

were used as HB1 marker genes since no HB1-specific pairwise

genes with a positive log fold change were available, for all other

hepatocyte stages genes with a positive log fold change compared to

their respective precursor state were selected as marker genes, and

cells were annotated as described above.

Cell-type-specific pathway enrichment analysis
For each cell type the top 600–700 genes identified by the Wilcoxon

rank sum test were forwarded to EnrichR (Kuleshov et al, 2016)/

gseapy (Fang et al, 2022) (version 0.10.7, “WikiPathways_2021_

Human” gene set, organism “Human”).

Hepatocyte zonation score

Marker genes for six available adult human hepatocyte clusters

were retrieved from adult human liver scRNAseq data (Wesley

et al, 2022) (cluster DGE from “Source Data Fig. 1”, accessed 2022-

Dec-10, https://static-content.springer.com/esm/art%3A10.1038%

2Fs41556-022-00989-7/MediaObjects/41556_2022_989_MOESM4_

ESM.xlsx), reduced to the top 100 genes per cluster and

sub-clustered cells were annotated as described above. Next, each
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hepatocyte cluster was assigned an integer between 0 and 5

(Periportal-C5:0, Periportal-C14:1, Periportal-C6:2, Interzonal-C15:3,

Pericentral-C1:4, Pericentral-C3:5) reflecting the position of the clus-

ter on the periportal-to-pericentral spectrum defined by the authors

of the reference study (Wesley et al, 2022), and this value consti-

tuted the zonation score.

CellTypist annotation

Generation of a reference AnnData object
For comparing HLO cells to human liver cells, human 10× scRNA-

seq data were chosen as a reference (Wesley et al, 2022). H5ad files

for each cell type were downloaded from the online portal (https://

collections.cellatlas.io/liver-development) and concatenated in

scanpy to create a composite AnnData object and normalized to

10,000 cells to align with the CellTypist input requirements.

CellTypist classification of HLO-cell types based on human
reference data
Using CellTypist (version 1.5.0), the created AnnData object was

defined as the reference dataset. A classifier was trained with the

top 100 genes, the “cell” slot in the adata.obs slot as the reference

cluster identifier and feature selection enabled. Subsequently, the

HLO object was normalized to 10,000 cells to align with the CellTy-

pist input requirements and classified in the probability match mode

and a minimum probability of 0.1.

Inflammatory gene and fibrosis scoring

To render gene lists for biological processes related to fibrotic and

inflammatory injury scenarios, publicly available GO term (The

Gene Ontology Consortium, 2000) gene lists were browsed via

AmiGO2 (Carbon et al, 2009, 2) filtering for Homo sapiens genes

only and the “bioentity_label” column was exported. All GO terms

are listed in Dataset EV5. Duplicate values, and genes not present in

the adata.var slot were removed from the lists prior to scoring

Finally, sc.tl.score_genes with the number of control genes set to the

size of the input gene list was used for scoring cells.

DGE and pathway enrichment analysis

Differential gene expression (DGE)
DGE was performed on raw count data for each cluster separately in

pairwise comparisons between treatments and respective controls

(e.g. ControlTGF-β1 vs. TGF-β1) applying the Wilcoxon rank-sum test

after exclusion of mitochondrial and ribosomal genes.

Pathway enrichment analysis
For each cluster, a hypergeometric enrichment test was performed

on the top 200 differentially expressed genes using EnrichR (Kule-

shov et al, 2016)/gseapy (Fang et al, 2022) (version 0.10.7, “Wiki-

Pathways_2021_Human” gene set, organism “Human”).

CellPhoneDB cell–cell interactome

CellPhoneDB (Efremova et al, 2020) (version 2.1.7) with rpy2 (ver-

sion 3.0.5) was run on h5ad files containing log-transformed count

data to infer cell–cell interactions. Metadata from previously

harmony-integrated and cell-type-annotated AnnData objects served

as the input to the statistical_analysis function along with “gene_-

name” set as an identifier for genes in the counts data. To generate

the count network data and inputs for dotplots and heatmaps,

plot_heatmap_plot and plot_dotplot functions were applied, and

plots were created in python (version 3.7). The fraction of total inter-

actions was calculated by dividing each cell–cell interaction count

by the sum of all interactions in the respective condition group. The

delta value of interactions between treatment and control condition

was calculated by subtracting the fraction for each cell–cell interac-
tion in the treatment group by the corresponding fraction of the cell–
cell interaction in the control group. Clustered heat maps with

euclidean distance dendrograms were created using seaborn

(Waskom, 2021) based on either the delta of interactions or the total

interaction count. Chord diagrams were computed with the python

packages holoviews (version 1.15.3) and bokeh (version 3.0.3)

based on the delta of interactions and computed separately for inter-

actions with a positive delta value (labeled “enforced”) or a negative

delta value (labeled “reduced”) with respect to the control condition.

Mean expression indicated by dot size in all dot plots refers to Cell-

PhoneDB output “means”, and is the mean of the respective two

individual partners’ average expression. Venn diagrams displaying

overlapping and distinct receptor-ligand interactions, the CellPho-

neDB output file “pvalues” served as an input. The list was filtered

for significant interactions (P-value < 0.05), and each interaction

received an identifier for its cell–cell-pair and receptor-ligand pair

(e.g. “NRP1_VEGFA_Cholangiocytes|Hepatic stellate cells”). Next,

the overlapping and distinct fractions were calculated based on lists

of identifiers found in each treatment condition (Dataset EV7), and

UpSet plots were generated (Lex et al, 2014). For representing

induced receptor-ligand pairs the set was filtered to receptor-ligand

pairs with an increase of at least two significant cell–cell pairs in the

treatment condition compared to the control.

Palantir trajectory inference

ForceAtlas2-generated matrices served as distances for Palantir

(Setty et al, 2019) trajectory analysis. For lineage subsetting, the

whole AnnData object was reduced to hepatocyte-, cholangiocyte-,

and DC-like cells for the hepatic progenitor lineage. The HSC lineage

included all HSC-, SMC-, and fibroblast-like cells. Early cells for the

hepatic progenitor lineage were automatically defined by searching

for the cell with the highest AFP expression among all cells expres-

sing CEBPA. For the HSC lineage, the cell with the highest IGFBP2

expression among all cells expressing DDIT4 was chosen, based on

reference data of fetal HSCs (Wesley et al, 2022). No terminal or

start cells were predefined. Palantir analysis was performed with 30

nearest neighbors, 30 components, and 9,000 numerical waypoints.

Retrieval of human MASLD signatures in injured HLOs

Previously published 26 and 98 gene signatures predicting fibrosis

in MASLD/MASLD (Pantano et al, 2021) were transferred to lists,

and each cell from the integrated dataset of all orbital-shaker cul-

tured HLOs (n = 8 controls, n = 2 OA, n = 2 PA, n = 2 TGF-β1,
totaling 82,467 cells, quality control and processing as described

above) obtained a score for the respective gene lists as described for

other inflammatory and fibrosis-associated scores. Dot plots were
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generated with scanpy based on scaled count data for the entire

dataset or for each cell type individually splitting into the treatment

groups. For statistical analysis, lists of numerical score values of all

cells from each group (control, OA, PA, TGF-β1), either in the full

dataset or per cell cluster and were forwarded to statistical testing

described below.

Statistics and reproducibility

All statistical tests were performed in python (version 3.6) with

scipy.stats (Virtanen et al, 2020) (version 1.8.0) and scikit-posthocs

(Terpilowski, 2019) (version 0.6.7). Two groups were compared

using the two-tailed Mann–Whitney U test followed by a Bonferroni

correction. For three or more groups, the two-tailed Kruskal–Wallis

non-parametric test followed by a post hoc Conover’s test with

Bonferroni correction was applied. A difference in mean between

groups was considered significant at a P-value below 0.05. N num-

bers for individual HLO samples in qPCR and immunohistochemis-

try experiments indicate individual experiments (individual

differentiation cycles starting from day 0 hPSCs). For scRNA-seq, n

of samples refer to individual HLO single-cell suspensions that arose

from the same differentiation experiment if performed in replicate,

e.g. for day 21 HLOs 3 replicates (n = 3) were sequenced, which in

this case means from one HLO experiment, single-cell suspensions

from three different wells from the same treatment and time point

were harvested and underwent individual library preps.

Data availability

Raw data for single-cell RNA sequencing are available at Gene

Expression Omnibus (GEO) under the accession GSE207889. Previ-

ously published scRNA-seq data that were re-analyzed can be found

at GSE115469 and E-MTAB-8210. Scripts are available under the fol-

lowing links: https://github.com/anjahess/hlo-scrnaseq, https://

github.com/anjahess/organoid-sirius-red.

Expanded View for this article is available online.
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