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ABSTRACT. Purpose: We describe a method to identify repeatable liver computed tomography
(CT) radiomic features, suitable for detection of steatosis, in nonhuman primates.
Criteria used for feature selection exclude nonrepeatable features and may be
useful to improve the performance and robustness of radiomics-based predictive
models.

Approach: Six crab-eating macaques were equally assigned to two experimental
groups, fed regular chow or an atherogenic diet. High-resolution CT images were
acquired over several days for each macaque. First-order and second-order radio-
mic features were extracted from six regions in the liver parenchyma, either with
or without liver-to-spleen intensity normalization from images reconstructed using
either a standard (B-filter) or a bone-enhanced (D-filter) kernel. Intrasubject repeat-
ability of each feature was assessed using a paired t -test for all scans and the mini-
mum p-value was identified for each macaque. Repeatable features were defined as
having a minimum p-value among all macaques above the significance level after
Bonferroni’s correction. Features showing a significant difference with respect to diet
group were identified using a two-sample t -test.

Results: A list of repeatable features was generated for each type of image. The
largest number of repeatable features was achieved from spleen-normalized
D-filtered images, which also produced the largest number of second-order radiomic
features that were repeatable and different between diet groups.

Conclusions: Repeatability depends on reconstruction kernel and normalization.
Features were quantified and ranked based on their repeatability. Features to be
excluded for more robust models were identified. Features that were repeatable
but different between diet groups were also identified.
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1 Introduction
Radiomics extracts large amounts of features from medical images and converts them into min-
able numerical data. Radiomics analyses are gaining increasing interest as quantitative readouts
for unbiased image-classification tasks, toward the improved discrimination of disease pheno-
types and evaluation of novel therapeutic regimens. For the liver, radiomics has been used to
characterize a variety of conditions, from hepatic malignancies to diffuse liver diseases encom-
passing a range of pathological manifestations.1–5 Central tendency first-order radiomic features
derived from unenhanced computed tomography (CT) images, such as region mean or median,
have been used to discriminate moderate from severe liver steatosis,6–11 defined as intrahepatic
accumulation of fats equivalent to at least 5% of the whole organ weight or within hepatocytes.12

Second-order features were found to be useful in characterizing milder liver disease, an important
step to allow for earlier intervention.13 However, there are still several challenges to the wide-
spread application of radiomics for characterizing liver (or other organ) diseases in the clinical
setting and preclinical laboratory. First and foremost, the repeatability and reproducibility of
radiomic features need to be rigorously assessed to identify potential sources of uncertainty, and
therefore misclassification, in radiomics-based analyses.14

Repeatability is defined as feature stability when imaging the same subject multiple times on
the same imaging scanner using the same image acquisition method and downstream image
reconstruction and analysis workflows. Repeatability is usually considered to be dependent
on day-to-day experimental changes or fluctuating individual physiological variability over time.
In contrast, reproducibility is a term applied to describe feature stability when images are
acquired using different equipment, operator, or image acquisition protocols; reconstructed with
different kernels;14 or analyzed with different software.15

Although high feature stability is desirable for the application of radiomics into clinical
decision-making,16 it is challenging to acquire multiple replicate measurements to evaluate fea-
ture repeatability and reproducibility in humans,17 especially when trying to acquire comparable
images from healthy and diseased individuals.

In this work, we examined the repeatability of first-order and second-order liver radiomic
features derived from sequential CT imaging in six crab-eating macaques. Three were fed regular
nonatherogenic chow, whereas three were fed an atherogenic diet for ≈ 21 months. An athero-
genic diet, enriched in fats, is typically used to promote the development of atherosclerotic vas-
cular disease,18 and, in our study, also resulted in liver steatosis (data not shown). Repeatable
radiomic features were identified in the entire dataset and also separately in the two groups (non-
atherogenic control and atherogenic). This analysis provided information on CT radiomic feature
stability in general and also when the liver is affected by a specific pathological process, as
exemplified in this diet-induced model of liver steatosis. Preliminary results have been previously
published in a SPIE Medical Imaging conference paper.19

2 Methodology

2.1 Animal Preparation
Six crab-eating macaques (Macaca fascicularis Raffles, 1821) of either Cambodian or Mauritian
origin were retrospectively selected from a group of 21 macaques (reference cohort) used in
studies that investigated viral infection severity under different dietary regimens. Inclusion cri-
teria for the six macaques included in this analysis were: (1) not having been exposed to any virus
and (2) not having had extrahepatic (specifically lung) abnormalities on any CT scans. Macaques
of both sexes were divided into two experimental groups (control group: n ¼ 3, fed regular non-
atherogenic chow, age 4.3� 0.4 years, weight 3.39 to 3.68 kg; atherogenic group: n ¼ 3, fed
an atherogenic diet, age 6.5� 0.3 years, weight 5.40 to 5.85 kg).20,21 Macaques in the athero-
genic group were on the diet for a minimum of 21 months before the first scan. Typically, it takes
a minimum of 18 months to develop significant atherosclerosis in this model.22 At intake, all
macaques were in general good health based on physical examination and review of laboratory
screenings by a board-certified veterinarian. Macaques in the control group were imaged nine
times within 2 months. Macaques from the atherogenic group were imaged six times within
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3 weeks (Fig. 1). Therefore, a total of 45 imaging sessions were performed. All imaging sessions
were performed with the same CT acquisition protocol and on the same imaging scanner.
Macaques were anesthetized in accordance with standard procedures prior to all manipulations,
including medical imaging.23

All experiments were performed in the maximum [biosafety level 4 (BSL-4)] contain-
ment laboratory at the Integrated Research Facility at Fort Detrick (IRF-Frederick), a facility
accredited by the Association for Assessment and Accreditation of Laboratory Animal Care
International. The IRF-Frederick is part of the National Institutes of Health, the National Institute
of Allergy and Infectious Diseases (NIAID), Division of Clinical Research (DCR). Experimental
procedures were approved by the NIAID DCR Animal Care and Use Committee and conducted
in compliance with the Animal Welfare Act regulations, Public Health Service policy, and the
Guide for the Care and Use of Laboratory Animals (eighth edition).

2.2 CT Image Acquisition
Prior to each imaging session, macaques were administered 0.06 mg∕kg glycopyrrolate and
anesthetized with 15 mg∕kg ketamine via the intramuscular route. Anesthesia was maintained
using a constant rate intravenous infusion of propofol at 0.3 mg∕kg∕min. Macaques were
placed on the scanner bed in a supine head-out/feet-in position and connected to a ventilator
to facilitate 15- to 20-s breath holds during acquisition. The pressure for the breath-hold was
maintained at 150 mm H2O. Vital signs were monitored throughout the procedure.23 High-
resolution chest CT scans were performed using the 16-slice CT component of a Gemini
TF 16 PET/CT (Philips Healthcare, Cleveland, Ohio, United States). Images were acquired
in helical scan mode with the following parameter settings: ultrahigh resolution, 140 kVp,
300 mAs∕slice, 1-mm slice thickness, 0.5-mm increment, 0.688-mm pitch, 16 × 0.75 collima-
tion, and 0.75-s rotation. CT images were reconstructed using a 512 × 512 matrix size for a
180-mm transverse field-of-view, resulting in a pixel size of 0.35 × 0.35 mm. Two types of
CT images were produced: one with a standard B reconstruction kernel for smoother images
and the other with a bone-enhanced D reconstruction kernel for sharper images.24 No contrast
agent was administered.

2.3 Radiomic Feature Extraction
This study used 45 chest CT scans from six macaques (control group: n ¼ 3, fed regular non-
atherogenic chow; atherogenic group: n ¼ 3, fed an atherogenic diet) (Fig. 2). Radiomic features
were extracted from six spherical regions of interest (ROIs) with a diameter of 10 mm (Fig. 3).
Regions were labeled as right-superior, right-mid-center, right-mid-lateral, right-inferior, left-
lateral, and left-mid and manually defined in the parenchymal regions, where fat deposition
occurs (Fig. 3). ROI locations were kept consistent among different macaques and longitudinally
within the same animal. For each macaque, liver ROIs were defined by a single rater (with >5

years of experience in preclinical CT image analysis, including ROI generation) on the first im-
aging session and then registered to following sessions using a rigid registration pipeline in MIM
Software version 7.1.6 (MIM Software, Cleveland, Ohio, United States). Minor manual adjust-
ment of ROI locations was performed when, after careful inspection by the experienced rater,
alignment was deemed suboptimal. Given the known limited accuracy of intersubject rigid liver
registration, for each animal, ROI locations on the first imaging session were evaluated and

Fig. 1 Time interval of each scan with respect to the first imaging session of each macaque.
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adjusted for consistency across subjects on a case-by-case basis. ROIs from images reconstructed
using both B and D reconstruction kernels were used for analysis. Since normalization of liver-
to-spleen HU is often used as a criterion to diagnose liver diseases, such as steatosis,25 radiomic
features were also computed from B-kernel and D-kernel reconstructed images after liver HU
normalization by mean spleen attenuation, leading to four types of images being analyzed
[B-filter (ORIG), B-filter (NORM), D-filter (ORIG), and D-filter (NORM)]. Therefore, a total
of 180 images (1080 ROIs) were included in this study.

To calculate spleen mean attenuation, this organ was segmented from each CT image using
an automated method relying on convolutional neural networks, adapted from an algorithm that
we have previously described for liver segmentation.26 Briefly, this method uses a feature pyra-
mids network (FPN) to produce a multiscale feature representation in which all levels are seman-
tically strong, including the high-resolution levels. The FPN was trained using input patches of
size 64 × 64 × 64 voxels, which were randomly extracted from both organ and nonorgan areas
with equal numbers. The output of the FPN was a probability map that was resampled to the
original image size and smoothed using a Gaussian filter and then thresholded to form a binary
mask, from which mean spleen attenuation was computed to normalize each image. After this

Fig. 2 Representative single time point axial unenhanced CT images for (a)–(f) macaques 1 to 6
are shown in the liver window (width, 160 HU; level, 40 HU). A, anterior; P, posterior; R, right; L, left;
CT, computed tomography; and HU, Hounsfield units.

Fig. 3 Placement of ROIs in the liver (orange contour) is illustrated on the maximum intensity
projection of the CT image shown in the bone window (W/L = 1300/500 HU). Six spherical
ROIs with a diameter of 10 mm were manually placed within the liver parenchyma (with four in
the right lobes (magenta: right-superior, light tan: right-mid-center, yellow: right-mid-lateral, red:
right-inferior) and two in the left lobes (green: left-mid, blue-gray: left-lateral). ROIs, regions of inter-
est; CT, computed tomography; and HU, Hounsfield units.
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procedure, liver-to-spleen attenuation normalization was computed using a custom-built work-
flow in MIM Software version 7.1.6 (MIM Software, Cleveland, Ohio, United States) that
divides all intensities in the CT image by the mean attenuation computed from the segmented
spleen.

Radiomic feature extraction was performed using PyRadiomics 2.2.0 (Ref. 27) and MIM
Software version 7.1.6 (MIM Software, Cleveland, Ohio, United States). For each image,
93 features were extracted, comprising 18 first-order and 75 second-order features (Table 1).
The second-order features were derived from five different matrices as follows:

• 24 features from the gray-level co-occurrence matrix (GLCM);
• 14 features from the gray-level dependence matrix (GLDM);
• 16 features from the gray-level run length matrix (GLRLM);
• 16 features from the gray-level size zone matrix (GLSZM);
• 5 features from the neighboring gray tone difference matrix (NGTDM).

For radiomic feature extraction, images were discretized using a 2-HU bin width, resulting
in ≈30 to 40 bins for B-filter (ORIG) images, depending on each case. For D-filter (ORIG)
images, the number of bins approximately doubled for the same bin width given their higher
intensity range caused by the higher image sharpness. For the normalized images, the bin
width was adjusted for normalized intensities, keeping the same bin width of 0.02 for all
normalized images. The radius of the spherical ROIs was 10 mm; therefore, their volume
was roughly 524 mm3, which is ≈12;212 voxels. Considering the image resolution, for a uni-
form distribution of intensities, this would result in ≈300 (B-filter) to 150 (D-filter) voxels per bin
in the original images and ≈600 (B-filter) to 300 (D-filter) voxels per bin in the normalized
images.

To compute second-order features, for each voxel, the two closest neighbors were consid-
ered for each of the 13 possible three-dimensional directions. Each direction equally contributed
to the texture matrices.

2.4 Statistical Analysis

2.4.1 Repeatability of radiomic features

The first step was to investigate intrasubject feature variability regardless of the intersubject
(within-group) variations and intergroup variations. For each macaque, first-order and sec-
ond-order radiomic features extracted from each ROI were compared to the same features
extracted from the same ROI on all other scans of the same macaque using multiple paired
t-tests across different time points. Each time point was not characterized by a single value but
by a set of six values that are not independent and reflect spatial variations in addition to the
temporal variations; for example, due to changes in physiological conditions or minor errors in
image registration across time points. For each feature, a total of 153 t-tests were performed using
three significance levels to investigate the dependence of the results on the sensitivity of the tests.
More stringent p-values are expected to detect minor differences between scans to deem a feature
nonrepeatable. 28 Significance levels α of 0.05, 0.01, and 0.005 resulted, after Bonferroni cor-
rection, with a αB of 3.3 × 10−4, 6.5 × 10−5, and 3.3 × 10−5, respectively [SB of 11.57, 13.91, and
14.89, respectively, where SB ¼ − lnðαBÞ∕ lnð2Þ]. The analysis was performed on images re-
constructed using both a standard (B) kernel and a bone-enhanced (D) kernel, with and without
liver-to-spleen normalization.

Features for which p-values were all greater or equal to the established corrected signifi-
cance levels αB for all comparisons were defined as repeatable. The percentage of repeatable
features within each feature class was computed for each type of image.

To investigate how liver attenuation changes may affect the repeatability of second-order
features, we computed the number of nonrepeatable second-order features as a function of the
S-value of the mean (first-order feature) when scans from two different days were compared for
the same macaque. The analysis was performed for a significance level α of 0.01 in the paired
t-tests.
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2.4.2 Radiomic feature difference between diet groups

The second step was to evaluate intergroup (nonatherogenic control versus atherogenic)
differences of radiomic features. Radiomic features were compared between the two groups
using a two-sample t-test with a significance level α of 0.01. Given that nonimaging information
(such as, histopathology or blood biomarkers) was not included in the analysis, the aim of this
section was to identify features that were sensitive to the diet as a proxy for liver steatosis.

Features that were simultaneously sensitive to the diet and repeatable (as defined in the
previous section) were identified.

2.4.3 Heterogeneity of radiomic feature values

We investigated the heterogeneity of radiomic feature values across ROIs to identify features with
high spatial variation across the liver parenchyma. We performed this analysis in both the control
and atherogenic groups independently. Large spatial variations of radiomic features across ROIs
in the control group may indicate that those features are sensitive to the intrinsic normal liver
texture. To detect heterogeneously distributed radiomic features, we computed the coefficient of
variation (CV) of each feature at every scan and then calculated the average coefficient in both
the control and atherogenic groups, identifying features with variations >20% and >50%.

3 Results

3.1 Repeatability of Radiomic Features

3.1.1 Repeatability of second-order radiomic features

We found that features extracted from second-order D-filter images showed greater repeatability
than those of the B-filter, with features from normalized images providing greater repeatability
than original images. The largest number of repeatable second-order radiomic features out of
75 features was achieved from normalized images: 41 (54.7%) for B-filter and 43 (57.3%) for
D-filter reconstructions, while, without normalization, 26 features (34.7%) were repeatable for
B-filter and 38 (50.7%) for D-filter reconstructions, for a significance level α of 0.01 (Table 2).
The repeatability of each radiomic feature class with significance levels α of 0.05, 0.01, and
0.005 is shown in Fig. 4. The percentage of repeatable radiomic features differed among radiomic
feature classes and tended to increase with more stringent p-values. However, each type of image
exhibited different patterns. For D-filter (NORM) images, the highest repeatability (above 50%)
was achieved by NGTDM, GLRLM, and GLDM, whereas the lowest (below 50%) was achieved
by GLSZM and GLCM, for a significance level α of 0.01.

The maximum S-value for each second-order radiomic feature and for each image is shown
in Fig. 5 for different significance levels. This figure provides detailed information about which
features met the repeatability criterion: maximum S-value < 14.9, 13.9, and 11.6 for significance
levels α of 0.05, 0.01, and 0.005, respectively.

3.1.2 Repeatability of first-order radiomic features

Most first-order features were not repeatable according to the method used in this work, includ-
ing central tendency features with multiple tests for which the null hypothesis was rejected.

Table 2 Counts of repeatable second-order radiomic features for each type of image.

Significance
level (α)

B-filter
(NORM)

B-filter
(ORIG)

D-filter
(NORM)

D-filter
(ORIG)

0.05 38 (50.7%) 17 (22.7%) 32 (42.7%) 28 (37.3%)

0.01 41 (54.7%) 26 (34.7%) 43 (57.3%) 38 (50.7%)

0.005 45 (60.0%) 29 (38.7%) 48 (64.0%) 43 (57.3%)

NORM: CT image for which the attenuation was normalized to the mean spleen attenuation. ORIG: original
CT image.
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The differences were driven by the change in the mean attenuation among scan days. The most
significant difference was found between two different days for macaque #3 (p ¼ 1.7 × 10−9),
with mean attenuations of 84.0� 2.3 and 73.4� 1.2 HU in the B-filter (ORIG) for two con-
secutive scans a few days apart. In this case, the low standard deviations among ROIs (2.3 and
1.2 HU) compared to the relatively high difference between mean attenuations at different days
(10.6 HU) indicates that the placement of the ROIs does not affect the estimation of the liver
attenuation or an intraparenchymal attenuation heterogeneity. Instead, it may be caused by
physiological variations between two imaging days, e.g., body weight fluctuation or hydration
status, resulting in a homogeneous change in liver attenuation. Particularly, this macaque had
exhibited a weight loss of 5% on the day when the higher attenuation was observed. All outliers
corresponded to higher attenuations; therefore, the variation in mean attenuation should not be
considered a confounding factor because fat accumulation in liver tissue causes a reduction in
the liver attenuation observed in CT images.

3.1.3 Impact of first-order mean feature repeatability on second-order
features

The number of nonrepeatable second-order features as a function of the S-value of the mean
(first-order feature) when scans from two different days were compared for the same macaque
is shown in Figs. 6 and 7, for the control group and the atherogenic group, respectively. Tests
with S-value < SB ¼ 13.9 (p-value > pB ¼ 6.5 × 10−5) correspond to group I (null hypothesis
is accepted). Group II corresponds to S-value ≥ SB (p-value < pB), in which the null hypoth-
esis was rejected, which means that the first-order mean feature has significantly different
values at two different days when it is expected to be the same. Each marker in the figures
represents one of the 153 comparisons between two scans on different days, indicating how
many of the 75 tests resulted in a rejection of the null hypothesis of the paired t-test of a given

Fig. 4 Percentage of repeatable radiomic features for significance levels α of 0.05, 0.01, and 0.005
for each of the images: (a) B-filter (NORM), (b) B-filter (ORIG), (c) D-filter (NORM), and (d) D-filter
(ORIG). GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRMLM,
gray-level run length matrix; GLSZM, gray-level size zone matrix; and NGTDM, neighboring gray
tone difference matrix.
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feature for that particular comparison. There were 108 comparisons in the control group and
45 in the atherogenic group, which resulted in 8100 and 3375 features tested in each group,
respectively.

Only a limited number of tests of second-order features resulted in a rejection of the null
hypothesis. The worst case is B-filter (ORIG) in group II, with 2.914% of the tests. In all cases
except B-filter (ORIG), there were fewer tests for which the null hypothesis was rejected in group
II compared with group I (Table 3). In the normalized images, the percentage of tests for which
the null hypothesis was rejected was smaller in the control group (average 0.04%) compared to
the original images (average 0.86%) (Table 3). In contrast, the original images’ percentages were
0.92 and 0.52 for the control and atherogenic groups, respectively. Overall, normalized images
produced a small number of nonrepeatable second-order features [Figs. 6(a) and 6(c)]. On the
other hand, B-filter (ORIG) produced the highest number of nonrepeatable second-order features
[Fig. 6(d)]. Normalized images in the atherogenic group produced more nonrepeatable second-
order features [Figs. 7(a) and 7(c)] than in their control group counterparts [Figs. 6(a) and 6(c)].
Particularly, the lowest percentage of tests that rejected the null hypothesis was achieved with
D-filter (NORM) in group II, with a slight increase in group I (Table 3).

3.2 Feature Sensitivity to Diet
All first-order features were significantly different between both diet groups in all four images,
with the exception of:

• D-filter (NORM): energy, kurtosis, skewness, and total energy;
• D-filter (ORIG): kurtosis and skewness;

Fig. 5 Maximum intrasubject SB-value compared between B-filter (NORM), B-filter (ORIG), D-filter
(NORM), and D-filter (ORIG) images and significance levels α of (a) 0.05, (b) 0.01, and (c) 0.005.
In blue, SB-values < 14.9 (α ¼ 0.05), 13.9 (α ¼ 0.01), and 11.6 (α ¼ 0.005) are associated
with repeatable features. GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence
matrix; GLRMLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; and NGTDM,
neighboring gray tone difference matrix.
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• B-filter (NORM): energy, kurtosis, total energy;
• B-filter (ORIG): entropy and kurtosis.

The intergroup S-value for each second-order radiomic feature and each image is shown in
Fig. 8(a). This figure provides detailed information about which features met the criterion to be
significantly different between groups (minimum S-value > 6.64). The number of second-order
radiomic features sensitive to diets out of 75 second-order features for a threshold of S-value =
6.65 (p-value ¼ 0.01) is shown in Table 4. D-filter (NORM) produced the largest number of
features that were significantly different between groups. Therefore, 84 out of 93 (90.3%)
first-order and second-order radiomic features were significantly different between groups in
D-filter (NORM). The percentage of radiomic features sensitive to diet in each feature class for
each type of images is shown in Fig. 9. The number of second-order radiomic features simul-
taneously sensitive to diets and nearly repeatable out of 75 second-order features is shown in
Table 4 and Fig. 8(b). D-filter (NORM) produced the largest number of features that were
simultaneously significantly different between diet groups and nearly repeatable. However, for
a given image, the percentage of sensitive radiomic features was comparable among different
radiomic feature classes (Fig. 9). When the 14 first-order features were included, 66 first-order
and second-order features met both criteria, representing 71.0% of all 93 features. However,

Fig. 6 Number of nonreproducible second-order features as a function of the first-order mean
feature t -test S-value for all the intrasubject t -test in the control group: (a) D-filter (NORM),
(b) D-filter (ORIG), (c) B-filter (NORM), and (d) B-filter (ORIG).
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Fig. 7 Number of nonreproducible second-order features as a function of the first-order mean
feature t -test S-value for all the intrasubject t -test in the atherogenic group: (a) D-filter (NORM);
(b) D-filter (ORIG); (c) B-filter (NORM); and (d) B-filter (ORIG).

Table 3 Counts of tests in group I and group II where the null hypothesis that compares feature
distributions from two different days was rejected. Group I: null hypothesis of the mean first-order
feature was accepted (p-value ≥ pB). Group II: null hypothesis of the mean first-order feature was
rejected (p-value < pB).

Control group Atherogenic group

B
(NORM)

B
(ORIG)

D
(NORM)

D
(ORIG)

B
(NORM)

B
(ORIG)

D
(NORM)

D
(ORIG)

Group I
p-value ≥ pB

2
(0.025%)

30
(0.370%)

10
(0.123%)

27
(0.333%)

46
(1.363%)

17
(0.504%)

41
(1.215%)

17
(0.504%)

Group II
p-value < pB

0
(0.000%)

236
(2.914%)

1
(0.012%)

8
(0.099%)

26
(0.770%)

27
(0.800%)

3
(0.089%)

9
(0.267%)

pB ¼ 0.000065. NORM: CT image for which the attenuation was normalized to the mean spleen attenuation.
ORIG: original CT image.
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this result needs further evaluation because, in this analysis, diet is being used as a proxy for
liver disease.

3.3 Radiomic Feature Spatial Heterogeneity
To detect heterogeneously distributed radiomic features, we computed the CVof each feature at
every scan and then calculated the average coefficient in both the control and atherogenic groups.
Radiomic features with high spatial variation were identified: >20% (Fig. 10, left) and >50%

Fig. 8 (a) Maximum intergroup S-value of second-order radiomic features compared between
B-filter (NORM), B-filter (ORIG), D-filter (NORM, and D-filter (ORIG) images. Dark blue represents
S-values equal or >30. S-values >6.6 (blue) are associated with features that are significantly
different in both groups; (b) second-order features from B-filter (NORM), B-filter (ORIG), D-filter
(NORM, and D-filter (ORIG) images that are simultaneously repeatable and significantly different
between groups (white) and those that do not simultaneously meet both criteria (black). GLCM:
gray-level co-occurrence matrix; GLDM: gray-level dependence matrix; GLRMLM, gray-level run
length matrix; GLSZM, gray-level size zone matrix; and NGTDM, neighboring gray tone difference
matrix.
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(Fig. 10, right). Heterogeneous features in B-filtered images tended to be more homogeneous in
D-filtered images and vice versa. Most features that were heterogeneous in the atherogenic group
were also heterogeneous in the control group. In D-filter NORM images, 14 (CV > 20%) and
5 (CV > 50%) heterogeneous features were found in the control group. For the latter, features
were first-order minimum, first-order skewness, GLCM cluster prominence, GLCM cluster
shade, and GLCM correlation. Given the large spatial variation at each scan, these features
were not significantly different among scans (Fig. 11). The variation of longitudinally nearly
repeatable features, such as GLCM correlation and GLCM cluster shade, was large so that
no individual ROI was representative of the distribution (Fig. 11).

4 Discussion
Establishing radiomic feature repeatability and reproducibility is of paramount importance to
extract meaningful information from these analyses in either research or clinical settings.
However, investigating these aspects in healthy subjects and patients with disease is challenging.
Our study, using sequential CT imaging of crab-eating macaques on different dietary regimens
(regular nonatherogenic chow versus an atherogenic diet), offers important information about the
repeatability of liver CT radiomic features that would be difficult to acquire in humans. First,
repeated CT acquisitions in the same macaque enabled the identification of repeatable radiomic
features. Second, features that were repeatable regardless of liver pathophysiology could be iden-
tified. Fully repeatable features were identified in both B-kernel andD-kernel filtered CT images
with and without normalization relative to the mean spleen attenuation. Radiomic features that
were significantly different between the control and atherogenic groups were also identified.

In our study, we generated four types of CT images using different reconstruction and math-
ematical algorithms; therefore, we evaluated repeatable features in each set of images. In addition

Table 4 Counts of second-order radiomic features sensitive to diet for each type of image.

B-filter
(NORM)

B-filter
(ORIG)

D-filter
(NORM)

D-filter
(ORIG)

Sensitive to diet 54 (72.0%) 61 (81.3%) 70 (93.3%) 56 (74.7%)

Sensitive to diet and repeatable 29 (38.7%) 24 (32.0%) 52 (69.3%) 40 (53.3%)

NORM: CT image for which the attenuation was normalized to the mean spleen attenuation. ORIG: original
CT image.

Fig. 9 Percentage of radiomic features sensitive to diets in each feature class for each of the
images: B-filter (NORM), B-filter (ORIG), D-filter (NORM), and D-filter (ORIG). GLCM, gray-level
co-occurrence matrix; GLDM, gray-level dependence matrix; GLRMLM, gray-level run length
matrix; GLSZM, gray-level size zone matrix; and NGTDM, neighboring gray tone difference matrix.
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Fig. 10 Radiomic features with average CVs >20% (left) and >50% (right) in the control and
atherogenic groups for all four types of images: B-filter (ORIG), B-filter (NORM), D-filter (ORIG),
and D-filter (NORM). GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence
matrix; GLRMLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; and NGTDM,
neighboring gray tone difference matrix.
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to evaluating standard CT images, spleen-normalized liver images were used to transform all
images from their original grayscale into a standard grayscale, in which values <1.1 have been
typically associated with the presence of fat in the liver.29 We observed that spleen-normalized
CT liver images showed an increased number of repeatable radiomic features in both B-filter and
D-filter reconstructions with respect to their nonnormalized counterparts.

Fig. 11 Second-order features identified as nearly repeatable with a large spatial coefficient of
variance when all ROIs are considered. GLCM, gray-level co-occurrence matrix; GLDM, gray-level
dependence matrix; GLRMLM, gray-level run length matrix; GLSZM, gray-level size zone matrix;
and NGTDM, neighboring gray tone difference matrix.
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The percentage of repeatable radiomic features differed among radiomic feature classes and
increased with more stringent p-values. However, each type of image exhibited different patterns.
For D-filter (NORM) images, the highest repeatability was achieved by NGTDM, GLRLM, and
GLDM, whereas the lowest was achieved by GLSZM and GLCM for a significance level α
of 0.01.

A few intrasubject t-tests exhibited lower p-values in a limited number of first-order fea-
tures, potentially indicating poor repeatability. However, intrasubject differences in liver attenu-
ations (such as, measures of central tendency) were deemed too small to be associated with real
pathophysiological fluctuations. The highest observed difference was an increase of <11 HU

between two scans of the same macaque (73 to 84 HU). Particularly, this macaque exhibited
a weight loss of 5% on the day when the highest attenuation was observed. One possible explan-
ation is that the reduced water content in less-hydrated tissue might have been responsible for this
increased attenuation. Normal liver attenuation in humans is defined as >57 HU,30 varying indi-
vidually 55 to 65 HU,31 whereas steatosis is associated with lower attenuations. Therefore, the
apparent lack of repeatability in the set of evaluated first-order features is well within this range.
CT images filtered with a D kernel provided features with superior discrimination between the
control and atherosclerotic groups. Features showing a significant group difference were iden-
tified. We also identified second-order features that were temporally repeatable but with a high
spatial variance. Most features that were heterogeneously distributed in space in the atherogenic
group were also heterogenous in the control group. High spatial variance in a healthy liver is not
expected, and therefore, these features should be excluded from further radiomics analysis.

The number of features significantly different between diet groups were compared and was
relatively high (69 to 84 out of 93 features), with the maximum number achieved from D-filter
(NORM) images, with low variability among feature classes: 83% for first-order features and a
maximum of 100% for GLRLM and GLSZM second-order features. The lowest performance
was achieved by NGTDM, with 80% of features sensitive to diets. Second-order radiomic fea-
tures that met both repeatability and sensitivity to diets were also identified. Regarding first-order
features, most were sensitive to diets while many were found to be nonrepeatable. This indicates
that the stringency of the p-value may play an important role in the detection of repeatable first-
order features.28 Although identifying features sensitive to diet may not necessarily be directly
clinically translatable since they were solely based on administration of different diets (without
confirmed histopathological or clinical markers), our analysis implies that liver CT radiomic
features may be sensitive to the histopathological status of organs.

This study has some limitations. First, the number of macaques used in our analysis was too
low to investigate feature dependence on age and sex in more detail; consequently, we do not
have data to estimate what fraction of the observed variation may arise from differences in the
selection criterion of the macaques. However, the described intrasubject repeatability analysis is
expected to be hardly affected by these parameters. Second, nonimaging information (such as
histopathology or blood biomarkers) would have helped to better identify features that were
sensitive to the disease process rather than diet. However, this factor does not impact the repeat-
ability analysis. Third, from the feature extraction perspective, it is known that some parameters
(such as, bin width) affect feature values. However, it was shown that bin width had only a
marginal effect on the total number of stable features. Other parameters (e.g., different scanners,
slice thickness, or tube currents) were more critical in this context.32 Since we included images
acquired with the same parameters on a single scanner, no resampling or adjustment of bin
widths was needed. However, our study used fixed bin widths, which may have resulted in
a different number of bins in similar regions if their ranges were different. Furthermore, the
average intensity range of ROIs in D-filter images was (as much as twofold) higher than the
corresponding B-filter images. Therefore, for a fixed bin width, the number of bins in D-filter
images was higher than in their B-filter counterparts. We observed a greater performance of D-
filter (NORM) images in terms of repeatability and discrimination. However, eventually, not only
the image sharpness and normalization but also the higher number of bins, or a combination of all
of these factors, may have been responsible for the higher performance. Fourth, we computed the
coefficients of variance of intensity ranges of all ROIs for each macaque, reconstruction kernel,
and image normalization. We observed that those variations were low (and slightly lower when
computed from D-filtered images). On the other hand, image normalization most likely did not
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affect those variations. Although changes in the intensity range were not statistically significant
in our study, they may still affect some radiomic features. The sources of those variations may
require additional data and further investigation. Finally, other statistical approaches are typically
accepted to assess repeatability, including Pearson or Spearman correlation coefficient, Bland–
Altman plots, CV, and the intraclass correlation coefficient.33,34 All of these methods provide
several advantages or disadvantages and can be appropriate for different use cases. In our study,
we decided to use paired t-tests because we specifically wanted to assess absolute agreement of
quantitative radiomic features estimated from a distribution of feature values within the liver
parenchyma in the same animals on different imaging days and establish a binary threshold
to recommend features as “repeatable” or “nonrepeatable.”35

In conclusion, our findings suggest that in this macaque model of diet-induced liver stea-
tosis, both first-order and second-order features should be considered to improve quantification
and scoring of hepatic disease. The potential clinical relevance of nonrepeatable features needs to
be further evaluated in established disease models and in data from a health-care setting.
Repeatable features were identified to be included in additional radiomics analyses, which may
also further elucidate disease predictors, assisting diagnostics in the clinic.
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