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Abstract

In addition to housing the major energy producing pathways in cells, mitochondria are active
players in innate immune responses. One critical way mitochondria fulfill this role is by releasing
damage associated molecular patterns (mtDAMPS) that are recognized by innate sensors to
activate pathways including, but not limited to, cytokine expression, selective autophagy, and

cell death. Mitochondrial reactive oxygen species (mtROS) is a multifunctional mtDAMP linked
to pro- and anti-microbial immune outcomes. Formed as a byproduct of energy generation, mtROS
links mitochondrial metabolism with downstream innate immune responses. As a result, altered
cellular metabolism can change mtROS levels and impact downstream antimicrobial responses in
a variety of ways. MtROS has emerged as a particularly important mediator of pathogenesis during
infection with Mycobacterium tuberculosis, an intracellular bacterial pathogen that continues to
pose a significant threat to global public health. Here, we will summarize how Mtb modulates
mtROS levels in infected macrophages and how mtROS dictates Mtb infection outcomes by
controlling inflammation, lipid peroxidation, and cell death. We propose that mtROS may serve as
a biomarker to predict tuberculosis patient outcomes and/or a target for host-directed therapeutics.

MtROS in cellular metabolism and homeostasis

Generation of mtROS is a natural consequence of the electron transport chain (ETC). The
ETC operates as a series of complexes spanning the inner mitochondrial membrane that
shuttle high energy electrons sourced from NADH or FADH,, produced by glycolysis

or the Krebs cycle, to generate an electrochemical proton gradient. As this gradient is
generated, some electrons escape the normal ETC. The cell typically manages these reactive
electrons, most of which are in the form of ROS, through a series of enzymatic reactions
and antioxidant pathways. For example, superoxide species can be dismutated to hydrogen
peroxide by superoxide dismutase 2 (SOD2), then converted into water with catalase. Lipid
peroxides, created when ROS interacts with membrane phospholipids, can be reduced at the
expense of glutathione using enzymes such as glutathione peroxidase 4 (GPX4), which is
active in the mitochondria (Amaral et al., 2022). However, when there is a dramatic shift in

“corresponding author: robert.watson@tamu.edu.
Declaration of Interests: The authors declare no competing interests.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ellzey et al. Page 2

metabolism, such as during infection, the balance between ETC usage and the ability to deal
with high energy electrons can be disrupted and high levels of mtROS can accumulate.

MtROS in infection and immunity

Generation of cellular ROS is traditionally thought of as an antimicrobial strategy.

Work from the O’Riordan lab and others show that endoplasmic reticulum (ER) stress
stimulates mitochondria via IRE1a to produce vesicles containing SOD2. SOD2-containing
vesicles are delivered to bacteria-containing phagosomes where SOD2 catalyzes peroxide
production, which can control bacterial burdens in the case of methicillin-resistant
Staphylococcus aureus infections (Abuaita et al., 2018). In Mycobacterium avium infection,
pyruvate-driven reverse electron transport (RET, a process whereby high energy electrons
from ubiquinol are transferred back to Complex I, reducing NAD+ to NADH (Scialo et

al., 2017)), generates mtROS to control intracellular bacterial burdens (Rast et al., 2022).
Several antimicrobials, including moxifloxacin (Shee et al., 2022) have been shown to

act by increasing levels of mtROS (Leferman et al., 2023, Zhao et al., 2022) and current
antimycobacterials can promote ROS formation, which may contribute to their antibacterial
activity (Howell Wescott et al., 2017, Yano et al., 2011). Indeed, the antidiabetic drug
metformin, which can act as an adjunctive against Mtb, works by increasing mtROS
(Singhal et al., 2014).

Because mtROS can be antimicrobial, many pathogens, including Mtb, have evolved
specific measures to mitigate its effects. For example, the major Mtb antigen and ESX-1
type VII secretion system substrate ESAT-6 can decrease mtROS levels in cells (Yabaji

et al, 2020). ESAT-6 plays a well-known role in Mtb virulence by destabilizing the Mth
phagosomal membrane to promote release of Mth secreted proteins into the cytosol and
allow cytosolic sensors access to the endosomal lumen (Bell et al., 2021, Conrad et al.,
2017, Osman et al., 2022). When ESAT-6 is expressed in Mycobacterium bovis BCG
(BCG), it can upregulate macrophage SodZto catalyze the dismutation of superoxide into
hydrogen peroxide (Yabaji et al., 2020). The authors of this study link loss of SOD2 with
increased acidification of the BCG phagosome and decreased BCG intracellular survival,
although the dysregulated nature of ESAT-6 secretion in this system (which is directed via
addition of the FHpB sec-dependent signal peptide and not ESX-1, as BCG lacks a type VII
secretion system) presents a caveat for interpretation. Mth may also encode its own ROS
detoxification molecules, such as MTS1338, a small RNA induced by oxidative stress that
is associated with increased catalase activity (Singh et al., 2021). Thus, while ROS may
limit survival of avirulent mycobacterial species in in vitro models, virulent Mth has evolved
strategies to survive and replicate in a high ROS environment and/or directly modulate
cellular ROS levels.

There is also evidence that Mth controls mtROS generation by manipulating cellular
energy production. Mtb infection of macrophages depresses the rate of mitochondrial
respiration, which limits production of mtROS at ETC complexes | and 11 (Cumming et
al., 2018) (Fig. 1A). Whether this decrease is accompanied by a compensatory increase
in glycolysis (commonly known as the Warburg shift) remains a topic of debate. There
is some transcriptional evidence for the Warburg shift in animal models of tuberculosis
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(Shi et al., 2015), but metabolic profiling of infected human macrophages ex vivo argues
instead for Mtbh promoting a quiescent state characterized by a low glycolytic proton efflux
rate (Cumming et al., 2018). It is likely that Mtb dynamically reprograms macrophages in
different ways, depending on factors like multiplicity of infection, macrophage cell type, and
time after infection. Whether this reprogramming primarily serves to metabolically switch
macrophages from oxidative phosphorylation to fatty acid metabolism (Huang et al., 2018),
manipulate mtROS levels, or both remains an important outstanding question.

Mtb also dampens mitochondrial respiration by downregulating the TCA cycle via IDH2
and succinate dehydrogenase (Smulan et al., 2021) (Fig. 1A). Because IDH2 is responsible
for the regeneration of the antioxidant glutathione, its downregulation limits the pool

of glutathione available for antioxidant function (Smulan et al., 2021). Regulation of
glutathione by IDH2 is dependent on Sirtuin 3 (SIRT3), a NAD+ dependent mitochondrial
protein, that is downregulated in host macrophages during infection with Mtb. Consequently,
murine BMDMs deficient in SIRT3 have increased necrosis and increased mtROS compared
to wild type BMDMs and Sirtuin 3-deficient mice suffer higher bacterial burdens (Smulan
et al., 2021). These data begin to suggest that mtROS is associated with increased Mtb
pathogenesis, despite its antibacterial capacity.

MtROS in cell death

One way that mtROS promotes mycobacterial pathogenesis is by acting as a DAMP to
activate cell death pathways that help Mtb spread to neighboring cells and/or create a
pro-bacterial inflammatory milieu. Early studies linked mtROS to a form of inflammatory
cell death known as pyroptosis (Zhou et al., 2010). During pyroptosis, assembly of the
inflammasome activates caspase-1, which cleaves IL-1 o and gasdermin D (GSDMD), the
latter of which forms pores in the plasma membrane and promotes membrane rupture

with the help of the protein NINJ1 (Bjanes et al., 2021). Subsequent studies have shown
that mtROS is not required for NLRP3 activation (Billingham et al., 2022). Instead,

as several steps in pyroptosis can be pushed forward by oxidation (e.g., oxidation of
GSDMD promotes its oligomerization and pore formation (Devant et al., 2023, Kang et

al., 2018)), mtROS likely contributes to pyroptotic cell death downstream of inflammasome
activation. Accordingly, during Mtb infection, mitochondrial damage and depolarization is
observed with inflammasome activation—not prior to it (Beckwith et al, 2020). Studies of
Mtb strains that hyperactivate the inflammasome (i.e., ApknF) also argue against a role

for mtROS in activating NLRP3, suggesting instead that modulation of xanthine oxidase
activity is important in the context of Mtb infection (Rastogi et al., 2021). Consistent with
Mtb infection introducing many PAMPS/DAMPs capable of priming/stimulating pyroptosis
(Bronner et al., 2015), it seems unlikely that mtROS is a major driver of inflammasome
activation during Mtb infection.

Despite debate surrounding mtROS’s ability to directly activate the inflammasome, there is
strong evidence linking mtROS to activation of RIPK1 and necroptosis (Zhang et al., 2017).
Necroptosis is a regulated form of cell death characterized by cell swelling and rupture
induced by MLKL plasma membrane pores. Necroptosis has been repeatedly associated
with poor Mtb disease outcomes in mouse models of disease and in human patients (Roca
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& Ramakrishnan, 2013, Srinivasan et al., 2016, Weindel et al., 2022). Curiously, the only
toxin characterized to date in Mtb has been linked to mtROS and necroptosis. Tuberculosis
necrotizing toxin (TNT), the C-terminal domain of Mtb outer membrane channel protein
CpnT, has NAD+ glycohydrolase activity (Pajuelo et al., 2018 and 2020) (Fig. 1A).
Deleting the CpnT gene from Mtb decreases ROS levels and limits cell death during
infection, although some ROS made during Mtb infection is TNT-independent (Pajuelo

et al., 2020). Treatment with cyclosporin A, a selective inhibitor of the mitochondrial
permeability transition pore (MPTP) reduces TNT-dependent ROS production, strongly
linking NAD+ depletion and formation of the MPTP to ROS production and cell death. In
reductionist experiments, NAD+ depletion was sufficient to trigger macrophage necroptosis
in a RIPK1/RIPK3-dependent fashion, but ROS generated by addition of the redox cycling
agent menadione was not (Pajuelo et al, 2020), suggesting that additional NAD+ functions
(e.g., regulating mitochondrial metabolism or fatty acid oxidation) are important for TNT-
mediated necroptosis. Additional Mtb virulence factors have also been associated with
mitochondrial damage and necrosis. For example, loss of the Mtb protein Rv3167c, a
transcriptional repressor of the cell wall lipid PDIM (Quigley et al., 2017) has been linked
to mitochondrial ROS-dependent cell death (Srinivasan et al., 2016). Furthermore, infection
of human monocytes with the H37Rv strain of Mtb induces loss of mitochondrial inner
membrane potential leading to necrosis but infection with the avirulent strain H37Ra (which
carries mutations in a variety of virulence-associated factors including PE/PPE genes and
PhoP (Zheng et al., 2008)) does not (Chen et al., 2006). These data suggest that Mtb has
evolved multiple strategies to manipulate the mitochondrial network and push cells towards
necrotic forms of cell death.

Host genetics also play a role in regulating the mtROS-necroptosis axis during Mtb
infection. Recent work out of our labs showed that macrophages harboring a common
human SNP in the leucine rich repeat kinase 2 (LRRK2) gene are prone to undergo
inflammatory cell death in response to canonical inflammasome activation and Mtb infection
(Weindel et al, 2022). Curiously, despite being triggered by inflammasome stimuli via
either NLRP3 or AIM2, this death has hallmarks of necroptosis as opposed to pyroptosis
(i.e. IL-1p release is limited and death is RIPK1/RIPK3/MLKL-dependent). In dissecting
this pathway, we found that mitochondrial dysfunction associated with the L7rk2620195
mutation, including overreliance on the electron transport chain following innate stimuli,
generates high levels of mtROS. This mtROS renders the mitochondria susceptible to
permeabilization by GSDMD (cleaved/activated downstream of inflammasome activation),
which promotes mtROS release, and pushes cells to die from necroptosis downstream

of inflammasome activation in a GSDMD-dependent fashion (dubbed GSDMD-mediated
necroptosis) (Fig. 1C). This form of cell death is novel and whether it occurs in contexts
outside of L k2620195 mutants, and what those contexts might be, remains to be seen.
Because GSDMD-mediated necroptosis is amplified via the addition of menadione, which
generates mtROS through redox cycling, and rescued by the redox scavenger Necrox-5,
our data position mtROS as the executioner of hyperinflammatory, necroptotic cell death
during Mtb infection. Notably, Lr7k2G20195 mice are extremely susceptible to Mtb infection:
they experience hyperinflammation in the lung and a dramatic influx of neutrophils. In this
way, enhanced activation of the necroptosome, here, via GSDMD-mediated mitochondrial
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damage and mtROS release, seems to promote Mth pathogenesis (Weindel et al. 2022).
These data, together with the TNT literature above strongly argue that disruption of
mitochondrial membranes (through either GSDMD pore formation or MPTP opening) is

a major contributor to inflammatory cell death during Mtb infection and a possible point for
therapeutic intervention.

Consistent with mtROS playing a preeminent role in dictating cell death and inflammatory
outcomes during Mtb infection, work out of the Ramakrishnan lab has repeatedly implicated
these same pathways in the zebrafish model of mycobacterial pathogenesis. Their work
shows that high levels of TNF render zebrafish susceptible to Mycobacterium marinum
infection via mtROS-enhanced necrosis (Roca and Ramakrishnan 2013; Roca et al., 2022).
Using zebrafish, but validating several key results in human macrophages, the lab has
worked out a model whereby high TNF stimulates mtROS by inducing reverse electron
transport at Complex | downstream of TNF-induced glutamine uptake and increased
glutaminolysis (Fig. 1B). This leads to an increased concentration of succinate, which

when oxidized by Complex I, drives reverse electron transport and mtROS superoxide

at Complex I. This TNF-glutamine-succinate pathway is pushed forward by RIPK3 and
PGAMS in a manner that is seemingly functionally analogous to RIPK3-dependent mtROS
formation described in mammalian cells, which occurs via phosphorylation of pyruvate
dehydrogenase by RIPK3 (YYang et al. 2019). In the zebrafish, the consequences of this

high TNF pathway are dramatic, with enhanced necrosis and extracellular bacilli replication
(cording) that is not observed in wild-type fish (Roca et al., 2022), reminiscent of the
hyperinflammatory phenotype observed in Lrrk2620195 mice during Mtb infection (Weindel
et al., 2022). Together, these data suggest that pre-existing conditions or co-infection, where
Mtb-infected macrophages could face high TNF and/or oxidative stress, may steer cells
towards necroptosis even when other cell death pathways (pyroptosis, apoptosis, etc.) are
engaged.

Further supporting the idea that mitochondrial dysfunction renders cells more sensitive to
cell death during Mtb infection, mTOR-deficient zebrafish and macrophages are susceptible
to cytotoxicity associated with mycobacterial ESAT-6 (Pagan et al., 2022). While cell

death in mTOR-deficient animals/macrophages was not associated with high mtROS, it
was proceeded by loss of mitochondrial membrane potential and ATP production (Fig.

1D). Because mTOR is a master regulator of many critical cellular functions, it will be
important to continue to investigate the mechanisms through which mTOR protects against
Mtb cytotoxicity. For example, translation of GPX4, the enzyme that catalyzes the reduction
of toxic lipid peroxides in the mitochondria, is mediated by mTORC1 in response to
cystine availability (Zhang et al., 2021), highlighting the complex roles mTOR may play in
regulating cellular redox during Mth infection.

Concluding remarks

As studies continue to link mitochondrial dysfunction and oxidative stress with poor
tuberculosis disease outcomes, the mycobacterium field is experiencing a paradigm shift
regarding the role of antimicrobial mediators like mtROS in Mtb pathogenesis. Outstanding
questions of key importance include how mtROS impacts the biology of both host and
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bacterial lipids. We know that fatty acids, rather than carbohydrates, are the major energy
source for Mtb inside macrophages (Pandey & Sassetti, 2008; Ehrt et al., 2018). Are these
lipids modified in the face of high mtROS? Does this change their availability as an energy
source for Mth? MtROS might also impact the structural integrity of the Mtb phagosome
phospholipid bilayer, thus impacting Mtb cytosolic access. Likewise, mtROS could modify
Mtb-derived PAMPs/DAMPs such that they have altered affinity for pattern recognition
receptors (e.g., oxidation of dsSDNA from Mtb or the mitochondria could alter its ability to
engage cytosolic DNA sensors). Careful mechanistic experiments will be needed to assess
the degree to which each of these potential roles for mtROS impacts macrophage biology
and innate immune outcomes in response to Mtb.

The role of redox reactions that might mitigate the effects of mtROS in the context of Mtb
infection also demands further investigation. We know that GPX4 limits Mtb pathogenesis
in large part by preventing cell death via the inflammatory cell death modality ferroptosis
(Amaral et al., 2019, Amaral et al., 2022). However, we do not fully understand how GPX4
might regulate cellular redox pathways through mechanisms independent of iron/ferroptosis
(Amaral et al., 2019, Amaral et al., 2022). Mtb produces effectors known to traffic to

the nucleus and downregulate Gpx4 expression during infection of host macrophages,
suggesting a role for GPX4-dependent pathways in controlling infection (Qiang et al.,
2023). In situations where GPX4 is not able to keep up with oxidative stress (e.g.,

in cells harboring mitochondrial mutations or subject to mitochondrial stress), oxidized
phospholipids may accumulate, which could alter cell death modalities that rely on pore
formation in phospholipid membranes via MLKL and GSDMD/NINJ1. Coalescing these
studies highlights the myriad host- and pathogen-dependent variables that dictate whether
mtROS promotes Mtb clearance or aids in its survival and dissemination. Unravelling how
signals generated by mtROS are integrated into a balanced immune response to control
Mtb will be key to identifying regulatory tipping points that we can target for therapeutic
intervention.
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Figure 1: Altered mitochondrial function and mtROS ar
infection outcomes.

eintimately linked with mycobacterial

A. Smulan et al. show that Mtb infection increases isocitrate, reduces complex I and 11

activity in the electron transport chain, and results in |

oss of the mitochondrial membrane

potential. Pajuelo et al. demonstrate NAD+ hydrolysis mediated by the Mtb secreted protein
Tuberculosis necrotizing toxin (TNT) promotes mtROS generation and necrotic cell death.

B. Roca et al. show that mycobacterial infection in the presence of high TNF levels leads to
increased glutamine uptake, glutaminolysis, and accumulation of succinate, which promotes
succinate oxidation and reverse electron transport to produce large amount of mtROS. They

link this mtROS to mycobacterial replication/cording

and necroptotic cell death.

C. Weindel et al. report that in the presence of the Lrrk2G2019S mutation or in the presence
of excess ROS, canonical inflammasome activation promotes GSDMD pore formation in

mitochondrial membranes, which is associated with h
and hyperinflammation during Mtb infection in vivo.

igher mtROS, necroptotic cell death,

D. Pagan et al. demonstrate that mycobacterial infection in mTOR deficient cells leads to

reduced electron transport and mtROS, which they lin
mediated mitochondrial damage.

k to increased sensitivity to ESAT-6-
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