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BACKGROUND: Air pollution is a major risk factor for planetary health and has long been suspected of predisposing humans to respiratory diseases
induced by pathogens like influenza viruses. However, epidemiological evidence remains elusive due to lack of longitudinal data from large cohorts.
OBJECTIVE: Our aim is to quantify the short-term association of influenza incidence with exposure to ambient air pollutants in Chinese cities.

METHODS: Based on air pollutant data and influenza surveillance data from 82 cities in China over a period of 5 years, we applied a two-stage time
series analysis to assess the association of daily incidence of reported influenza cases with six common air pollutants [particulate matter with aerody-
namic diameter ≤2:5 lm (PM2:5), particulate matter with aerodynamic diameter ≤10 lm (PM10), NO2, SO2, CO, and O3], while adjusting for poten-
tial confounders including temperature, relative humidity, seasonality, and holiday effects. We built a distributed lag Poisson model for one or
multiple pollutants in each individual city in the first stage and conducted a meta-analysis to pool city-specific estimates in the second stage.
RESULTS: A total of 3,735,934 influenza cases were reported in 82 cities from 2015 to 2019, accounting for 72.71% of the overall case number
reported in the mainland of China. The time series models for each pollutant alone showed that the daily incidence of reported influenza cases was
positively associated with almost all air pollutants except for ozone. The most prominent short-term associations were found for SO2 and NO2 with
cumulative risk ratios of 1.094 [95% confidence interval (CI): 1.054, 1.136] and 1.093 (95% CI: 1.067, 1.119), respectively, for each 10 lg=m3

increase in the concentration at each of the lags of 1–7 d. Only NO2 showed a significant association with the daily incidence of influenza cases in
the multipollutant model that adjusts all six air pollutants together. The impact of air pollutants on influenza was generally found to be greater in chil-
dren, in subtropical cities, and during cold months.
DISCUSSION: Increased exposure to ambient air pollutants, particularly NO2, is associated with a higher risk of influenza-associated illness. Policies
on reducing air pollution levels may help alleviate the disease burden due to influenza infection. https://doi.org/10.1289/EHP12146

Introduction
Rapid economic development and urbanization are often achieved
at the expense of air quality. A growing body of evidence indicates
significant associations between exposure to air pollutants and
adverse health effects, such as chronic cardiovascular and respira-
tory diseases.1–4 In recent years, numerous epidemiological studies
have also suggested an association between ambient air pollution
exposure and acute respiratory morbidity and mortality.5–7 For
example, an ecological study conducted in Brisbane, Australia

correlated pediatric influenza cases with increasing ozone (O3) and
particulate matter with aerodynamic diameter ≤10 lm (PM10).6

Similarly, high concentrations of O3 and sulfur dioxide (SO2) were
linked to more frequent emergency room visits due to pneumonia
and influenza in São Paulo, Brazil.8 In addition, reduced popula-
tion exposure to air pollution as a result of the COVID-19-related
lockdown was found to possibly explain the decline in premature
mortality from respiratory and cardiovascular diseases.9 In con-
trast, a study in the United States found no significant impact of air
pollution or other environmental exposures on the incidence of
influenza-associated hospitalization.10

China has undergone rapid industrialization and urbanization
over the past three decades, a process that has been accompanied by
a notable increase in air pollution. This trend has inspired research in
the potential associations between infectious diseases and air-
pollution, with influenza viruses being the most extensively studied
pathogen in recent years. A multicity study in China found that
10.7% of incident influenza cases could be attributed to exposure to
ambient particulate matter with aerodynamic diameter ≤2:5 lm
(PM2:5).11 Effects of air pollutants including PM2:5, SO2, carbon
monoxide (CO), O3, and nitrogen dioxide (NO2) on the incidence of
influenza or influenza-like illness were also extensively explored in
single cities of China,mainly among densely populatedmetropolitan
areas such as Beijing, Wuhan, and Hefei.5,12 Associations between
ambient levels of NO2 and daily numbers of influenza cases were
found in some cities (e.g., Nanjing, Wuhan, and Chongqing)13–15

but not in others (e.g., Jinan or Hefei).16,17 There could be a vari-
ety of reasons for these inconsistent findings, such as different
methodologies used or failure to consider confounding variables
or autocorrelations in disease incidence. For a given air pollutant
under investigation, potential confounders include other air pol-
lutants and meteorological conditions. These confounders may
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affect both the target pollutant and the incidence of the disease of
interest. In addition, how target pollutants and confounders are
associated with a disease may vary across regions. Finally, due to
the transmission nature of infectious diseases, the intrinsic auto-
correlation of disease incidence over time needs to be taken into
account to minimize bias in the findings.

In the current study, applying a two-stage time series model
to the national surveillance data of influenza, we aim to examine
potential associations between influenza incidence and ambient
air pollutant levels in China.

Methods
We linked daily numbers of reported influenza cases from all cities
across the mainland of China to the concentration data of six ambi-
ent air pollutants (PM2:5, PM10, SO2, NO2, CO, and O3) collected
between 1 January 2015 and 31 December 2019. A two-stage time
series approach was employed to systematically examine the asso-
ciation between ambient air pollutant levels and the daily inci-
dence of reported influenza cases at the city level. Here, daily
incidence is defined as the number of new cases per 100,000 peo-
ple per day.

Data Collection and Management
We extracted the daily reported number of influenza cases from
2015 to 2019 at city level from the Chinese Information System for
Disease Control and Prevention (CISDCP), an internet-based real-
time reporting system of notifiable infectious diseases in China.18

Influenza is classified as a class C notifiable disease by theNational
Health Commission of the People’s Republic of China (NHCC).
According to the “Diagnostic Criteria for Influenza (WS285-
2008)” issued by the NHCC (http://www.nhc.gov.cn/wjw/s9491/
200802/38820.shtml), a laboratory-confirmed influenza case is
defined as a person with influenza-like symptoms (fever and cough
or sore throat) and laboratory-confirmed infection with seasonal
influenza A or B virus using one or more of the following labora-
tory tests: reverse-transcriptase polymerase chain reaction, real-
time reverse-transcriptase polymerase chain reaction, viral culture,
detection for specific antigen of influenza A or B virus from respi-
ratory epithelial cells, or seroconversion or a ≥4-fold increase in
specific antibody to seasonal influenza A or B virus between acute
and convalescent serum samples. A clinically diagnosed influenza
case is defined as a person visiting a hospital during the season of
high flu activity or when hospital visits due to upper respiratory
tract infection significantly increase or when a local outbreak of
upper respiratory tract infection occurs along with one or more of
the following clinical manifestations: a) body temperature ≥38�C,
with some of clinical symptoms such as cough, sore throat, chills,
headache, dizziness, muscular pain, fatigue, etc.; b) gastrointesti-
nal symptoms such as anorexia, abdominal pain, abdominal disten-
sion, vomiting, and diarrhea for a few patients; c) complications
with sinusitis, otitis media, laryngitis, bronchitis, pneumonia, and
even respiratory and circulatory failure and death for a few
patients; d) lowered respiratory sound, pulmonary moist rales, and
pulmonary wheezing sound but without the signs of pulmonary
parenchymal lesions for a few children less than 2 years old or
some patients with chronic medical conditions; e) unilateral or
bilateral pulmonary parenchymal lesions by chest X-ray exami-
nation for severe patients and somewith pleural effusion; or f) rel-
atively low or no high peripheral white blood cell count and
relative increase of peripheral blood lymphocytes for common
patients and both decreased peripheral white blood cell count and
peripheral blood lymphocytes for the most severe patients. In this
study, both laboratory and clinically confirmed influenza cases

were aggregated according to their symptom onset dates to form
city-specific daily numbers of influenza cases.

Daily measurements of six ambient air pollutants (PM2:5, PM10,
NO2, SO2, O3, and CO) and two meteorological variables (tempera-
ture and relative humidity) at the city level were collected from the
China National Environmental Monitoring Center (http://www.
cnemc.cn/sssj) and the China Meteorological Data Service Center
(http://data.cma.cn), respectively. We based the daily measurements
on the 24-h averages of PM2:5, PM10, NO2, SO2, and CO, and the
maximum value of 8-h moving averages of O3, according to the
“Technical Regulation onAmbient Air Quality Index” (HJ633-2012)
issued by the Ministry of Ecology and Environment of China.19 The
daily average temperature (°C) and relative humidity (%) were calcu-
lated as the average of the four readings at 0200 hours, 0800 hours,
1400 hours, and 2000 hours every day.20,21 A summary of city-
specific air pollutant levels and meteorological factors is given in
Tables S1–S4. City-specific demographic data including age struc-
ture, population size, and population weighted geometric mean den-
sity (PWD-G) were collected from the seventh national census of the
National Bureau of Statistics (http://www.stats.gov.cn/sj/pcsj/rkpc/
7rp/indexch.htm) and the Asia continental population dataset of
WorldPop (https://www.worldpop.org/methods/pwd; https://www.
worldpop.org/doi/10.5258/SOTON/WP00013) (Table S5).

For the primary analysis, we selected a total of 82 cities each
with at least 500 influenza cases reported per year during the study
period (2015–2019) to avoid unreliable estimation caused by sparse
data (Figure 1A). Less than 5% of the daily air pollutant measure-
ments weremissing, which were imputed using Kalman smoothing.
All 82 cities are located in China’s temperate and subtropical cli-
mate zones. We grouped the calendar months into cold season with
relatively high flu activity (November to April) and warm season
with relatively low flu activity (May to October), based on the time
series of influenza incidence (Figure S1; Excel Table S1).

Statistical Analysis
The Pearson correlations between the daily incidence of influenza
cases and the moving average of six air pollutant concentrations
over the previous 7 days was evaluated for each of the 82 cities and
was mapped. We used a two-stage time series modeling strategy to
assess the short-term associations between air pollutants and the
daily incidence of influenza cases.We consider two age groups, 0–
14 years old and ≥15 years old and refer to them as children and
adults, respectively, although the adult group also includes some
adolescents. This grouping is because city-specific population size
data are available only as 5-year age groups (0–4, 5–9, etc.).

First-Stage Models
In the first stage, a distributed lag model was used to explore the
relationship between a given air pollutant at lags of 1–7 d and the
daily incidence of influenza for each selected city,22 assuming
that the association of air pollutants with acute health outcomes
is mainly short-term.23,24 The model takes an additive form:

log ½EðYitÞ�= ai + log ðpopiÞ+
X7
l=1

Pt− l � nsðl, 3dfÞ

+ nsðtime, 7df=yearÞ+ nsðtem, 3dfÞ+ nsðrhu, 3dfÞ

+dowt +holidayt + log
X3
l=1

Yit,t− l

 !
,

where Yit is the number of symptom onsets of reported influenza
cases of city i on day t. Quasi-Poisson distribution with a log link
was used to account for overdispersion in the time series of daily
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Figure 1. Spatial distribution of average concentration levels of six air pollutants and Pearson correlations between daily influenza incidence and 1-week
moving-average of air pollutant concentrations in selected Chinese cities during 2015–2019. (A) The locations of the 82 cities selected for the primary anal-
ysis. (B) The spatial distributions of average concentration levels of six pollutants (background) and their Pearson correlations with daily influenza inci-
dence (points) at the city level. Points are colored red for positive correlation and blue for negative correlations. Points are shaped as triangles when the
correlation is not statistically significant (p>0:05). The map outline in this figure was obtained from the Ministry of Civil Affairs of the People’s Republic
of China (http://xzqh.mca.gov.cn/map). This figure was generated by using ArcGIS (version 10.7), QGIS (version 3.12) and R software (version 4.1.2).
Numeric data for air pollution can be found in Tables S2–S4; Pearson correlation and p-value data can be found in Table S7. Note: CO, carbon monoxide;
NO2, nitrogen dioxide; O3, ozone; PM, particulate matter; SO2, sulfur dioxide.
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number of cases, as indicated by the heavily skewed distribution of
city-level daily incidence and the larger variance of the daily count of
influenza cases than its mean in the majority of the cities (Figure S2;
Table S6). log ðpopiÞ is the logarithm of city-specific population size
serving as the offset. As the model can be equivalently written as
log ½EðYit=popiÞ�=ai+

P7
l=1 Pt− l � nsðl, 3dfÞ+ � � �, we are effec-

tively modeling the daily incidence. nsðtime, 7df=yearÞ is a natural
cubic spline function of time with 7 degrees of freedom (df) per year
to capture both the long-term trend and seasonality. dowt indicates
the day of the week, and holidayt indicates holidays associated with
the spring Festival and the National Day. The summer school-
closure days were additionally adjusted in the subgroup analysis of

children). log
P3

l=1 Yit,t− l

� �
is the log-sum of case counts over the

previous 3 days, an autocorrelation to account for the fact that influ-
enza is a contagious disease with an incubation period of 1–3 d.25

nsðtem, 3dfÞ and nsðrhu, 3dfÞ are the natural cubic spline functions
with 3 df to account for the potential nonlinear effects of temperature
and relative humidity, respectively, both averaged over the 7 days
before day t.

P7
l=1 Pt− l � nsðl, 3dfÞ represents the linear effects of

air pollutants levels at 1 to 7 d before day t, where the linear effects
vary over the lags as natural cubic splines function with 3 df. Pt–l is
the single-day air pollutant level associated with lag l. The exponen-
tial of a linear effect at a given lag is interpreted as the risk ratio asso-
ciated with a 10lg=m3 increase in the concentration of the air
pollutant at that lag.

Second-Stage Model
In the second stage, the city-specific exposure-response associa-
tions between air pollutants and case numbers estimated from the
first stage were pooled using a random-effect meta-analysis with
restricted maximum likelihood (REML).26 Based on the pooled
estimates, the linear effects of air pollutant exposure at lags of 1–7 d
were then summed and exponentiated to obtain the final estimates to
which we refer as the cumulative risk ratio (CRR). CRR is inter-
preted as the corresponding multiplicative increase in influenza inci-
dence at each increase of 10lg=m3 in the average concentration of a
given air pollutant during the lag period of 1–7 d.

We first applied this two-stage procedure to each pollutant sep-
arately (single-pollutant models) and then adjusted all six pollu-
tants simultaneously in the same model (multipollutant model).
The single pollutant models were fitted separately for subgroups of
age (children vs. adults), climate zone (temperate vs. subtropical),
and flu activity (high vs. low).Meta regressionwas used to assess the
heterogeneity of the pollutant associations with influenza across
cities and their dependence on city-level characteristics, including
population density, annual median level of pollution, proportion of
children (<15 years old), longitude, and latitude. Cochran’s Q test
and I2 statistic were used to assess the heterogeneity of the associa-
tionswith andwithout controlling for these city-level characteristics.

Attributable Fraction
Based on the national-level pooled effect estimates from the sin-
gle and multipollutant models, we calculated the city-specific at-
tributable fractions of influenza cases associated with exposure to
ambient air pollutants using a forward approach27:

AFit =1− exp −
X7
l=1

Xi,t− lbl

 !
,

ANi =
XTi

t=1
Yit ×AFit,i=1, . . . ,M,

ANtotal =
XM

i=1
ANi,

AFtotal =ANtotal=
XM

i=1

XTi

t=1
Yit,

where AFit is the attributable fraction for day t of city i, l is the
lag days from 1 to 7, ANi is the attributable number for city i, and
ANtotal and AFtotal are the total attributable number and attribut-
able fraction. bl is the pooled linear effect estimate for lag l, Xi,t–l
is the concentration of the given air pollutant, and

P7
l=1 Xi,t− lbl

is the excessive risk imposed by the given pollutant levels at lags
of 1–7 d on day t of city i. Ti is the number of follow-up days for
city i, Yit is the number of symptom onsets of reported cases in
city i on day t, and M is the total number of cities. Note that AFit
is interpreted as the attributable or etiological fraction when
RRit >1 but the preventable fraction otherwise. As our target
AFtotal is the national average attributable fraction, we used the
pooled estimate of bl instead of the best linear unbiased predic-
tion (BLUP) estimate of the city-specific bl for calculating AFit.
In addition, AF estimates based on BLUP estimates will be more
variable and thus less generalizable to other cities or years.

Sensitivity Analysis
We performed a variety of sensitivity analyses to validate the
robustness of the main findings, incorporating all cities with at
least 300 cases per year (130 cities) and at least 400 cases per
year (103 cities), modifying the degrees of freedom for meteoro-
logical variables (3 to 5 df), extending the lag days for averaging
meteorological variables (from 7 d to 10 d and 14 d), and using
the log-sum of case counts in the previous 3–5 d (mean serial
interval of influenza is about 3.6 d) for the autocorrelation term.28

In addition, to explore potential nonlinear relationships between
ambient air pollutants exposure and daily influenza incidence,
associations of air pollutants with influenza were also parameter-
ized using a cubic polynomial function, and paired Wilcoxon test
was used to compare the city-specific Bayesian information crite-
rion (BIC) values between the linear and nonlinear pollutant
effect models.

All statistical analyses were conducted using R software (ver-
sion 4.1.2; R Development Core Team). Statistical significance
was considered achieved for p-values≤0:05. Additionally, the
related thematic maps of influenza and air pollution in this study
were created utilizing QGIS (version 3.12) and R software (ver-
sion 4.1.2) based on the National Administrative Map (review
number GS2022-1873) derived from the Ministry of Civil Affairs
of the People’s Republic of China (http://xzqh.mca.gov.cn/map).

Results
From 2015 to 2019, a total of 5,207,795 clinically diagnosed and
laboratory-confirmed influenza cases were reported to the
CISDCP from all 372 cities of Mainland China. Annual incidence
exhibits a large spatial discrepancy between regions, and the vari-
ation patterns are similar between children and adults, although
children clearly had higher incidence than adults (Figure S3). A
total of 82 cities including 26 in the temperate zone and 56 in the
subtropical zone met the inclusion criterion of ≥500 cases per
year. A total of 3,735,934 cases were included in the study,
68.73% of whom were children. Patients were more likely to be
male among children (56.41%) and female among adults
(52.78%). In addition, more cases were reported in the subtropical
zone (71.41%) (Table 1). The annual median levels of ambient
air pollutants were different across cities, and most pollutants,
especially PM2:5 and PM10, had higher concentration levels in the
north, especially for PM2:5 and PM10 (Figure S4; Table S2–S4).
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Daily incidence of reported influenza cases was positively associated
with daily levels of PM2:5, PM10, and NO2 in most of the cities,
especially in the heavily polluted northern cities, and negatively
associated with O3; however, spatial heterogeneity in the associa-
tions was found for most pollutants, e.g., positive correlations tended
to occur in the north for PM2:5, PM10, SO2, and CO (Figure 1B;
Table S7). In addition, temporal associations were found between
the influenza incidence and all air pollutants, with their peaks (valley
of O3) overlapping in the cold months (Figure S1).

After adjusting for temperature, relative humidity, seasonality
and long-term trend, significant positive short-term associations
were found for almost all air pollutants except ozone in the
single-pollutant models. The pooled estimates of cumulative risk
ratios per 10lg=m3 increase in daily concentration over the lags
of 1–7 d ranged from 1.003 to 1.094 for the six pollutants and
were statistically significant except for O3 (Table 2). NO2 and
SO2 had the greatest association with influenza incidence, with
CRRs of 1.093 [95% confidence interval (CI): 1.067, 1.119] and
1.094 (95% CI: 1.054, 1.136), respectively, followed by PM2:5
(CRR=1:024, 95% CI: 1.015, 1.033) and PM10 (CRR=1:017,
95% CI: 1.010, 1.023) (Table 2). The lag-specific associations
between air pollutants and influenza decayed along the lag days
in general, though the risk ratios bounced back slightly at the lon-
ger lags for NO2 and CO (Figure S5; Table S8). In the multipol-
lutant model including all of the six air pollutants, NO2 was the
only air pollutant showing significance, with a cumulative risk ra-
tio of 1.089 (95% CI: 1.057, 1.122), that dwarfed the associations
with other air pollutants. Based on the single-pollutant models,
all air pollutants except for O3, especially NO2 and CO, had con-
tributed substantial fractions (≥10%) to the influenza incidence
in many of the northern Chinese cities, and NO2 and CO contrib-
uted in most southern cities as well. Based on the multipollutant
model, only NO2 showed significant attributable risk in most
cities, while other pollutants showed nearly none (Figures S6 and
S7; Table S9 and S10).

We examined the association of influenza incidence with air
pollutants within subgroups using single-pollutant models. In gen-
eral, greater associations of the air pollutants on influenza, particu-
larly those of NO2 and SO2, were found in children than in adults,
in subtropical cities than in temperate cities, and in months with
high flu activity than in months with low flu activity (Figure 2). O3
showed a significant association (CRR=1:008, 95% CI: 0.999,
1.018) with influenza incidence during warm months with low
influenza activity and a marginal association (CRR=1:009, 95%
CI: 1.004, 1.012) in the subtropical zone. Using univariate meta-
regression, we further assessed heterogeneity of the short-term
associations of air pollutants with influenza across cities and
whether such variation can be explained by longitude, latitude,
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Table 2. Short-term association between six air pollutants and daily inci-
dence of influenza cases in terms of cumulative risk ratios (95% confidence
interval) per 10lg=m3 increase in the air pollutant concentration simultane-
ously at all of the lags of 1–7 days prior to symptom onset, estimated by the
single-pollutant and multipollutant models; n=3,735,934 cases reported
from 2015 to 2019 in 82 cities in China.

Air pollutant Single-pollutant model Multipollutant modela

PM2:5 1.024 (1.015–1.033) 1.004 (0.985–1.022)
PM10 1.017 (1.010–1.023) 0.997 (0.985–1.009)
SO2 1.094 (1.054–1.136) 1.000 (0.977–1.023)
NO2 1.093 (1.067–1.119) 1.089 (1.057–1.122)
O3 1.007 (0.9996–1.014) 1.000 (0.993–1.006)
CO 1.003 (1.002–1.004) 1.001 (0.9999–1.001)
Note: CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; PM, particulate matter;
SO2, sulfur dioxide.
aFor the multipollutant model, all six pollutants were adjusted together in the same
model.
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PWD-G, and median level of the air pollutant concentration. The
short-term associations of air pollutants with influenza varied sub-
stantially as indicated by the I2 values of the intercept-only meta-
regression models (Table S11). The largest heterogeneity was

shown for NO2 (I2 = 88:6%), followed by CO (I2 = 86:1%), and
O3 had the least variable effects (I2 = 63:9%). City-specific charac-
teristics accounted for only a small amount of variation in the
effects, but several were statistically significant. The median level
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Figure 2. Forest plots comparing the associations of six air pollutants with the daily incidence of influenza cases between subgroups defined by (A) age group,
(B) climate zone, and (C) season of flu activity based on single-pollutant distributed lag models. The associations are presented as the cumulative risk ratios
per 10lg=m3 increase in the air pollutant concentration simultaneously at all the lags of 1–7 d prior to symptom onset for 3,735,934 cases reported from 2015
to 2019 in 82 cities in China. Note: CI, confidence interval; CO, carbon monoxide; CRR, cumulative risk ratio; NO2, nitrogen dioxide; O3, ozone; PM, particu-
late matter; SO2, sulfur dioxide.
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of air pollutant affected the associations with influenza of all air
pollutants except for PM2:5, and latitude affected all but O3. The
proportion of children affected the associations with influenza for
PM2:5, PM10, and SO2 (Table S12).

We explored potential nonlinear concentration-incidence
relationships by assuming a polynomial function with 3 df for the
pollutant associations with influenza at each lag. Significant asso-
ciations were also found for all air pollutants but O3 (Figure 3;
Excel Table S2). The concentration-incidence curves are steeper
at lower concentration levels and become flatter as concentration
increases for most air pollutants except for NO2. Paired Wilcox
test of the quasi-BIC values showed no significant differences
between the linear models and nonlinear models (Table S8). Our

findings are generally robust to changes in the degrees of freedom
or length of lags for meteorological factors, the length of lags for
the autocorrelation term, or the number of cites included in the
analyses (Table S13).

Discussion
The potential health associations of air pollution with influenza on
congenital disabilities, cardiovascular diseases, and respiratory dis-
eases have raised serious concerns in recent years. However,
strong epidemiological evidence for an association between influ-
enza and air pollution is rare. In this retrospective multicity longi-
tudinal observational study, we examined the relationship between
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Figure 3. Nonlinear associations of six air pollutants with the daily incidence of influenza cases at different levels of concentration based on single-pollutant
distributed lag models. The associations are presented as the cumulative risk ratios per 10 lg=m3 increase in the air pollutant concentration simultaneously at
all the lags of 1–7 d prior to symptom onset for 3,735,934 cases reported from 2015 to 2019 in 82 cities in China. The shaded areas represent the 95% CIs.
Numeric data on CRR and CI for this figure can be found in Excel Table S2. Note: CI, confidence interval; CO, carbon monoxide; CRR, cumulative risk ratio;
NO2, nitrogen dioxide; O3, ozone; PM, particulate matter; SO2, sulfur dioxide.
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daily influenza incidence and six air pollutants in the mainland of
China using a two-stage time series modeling approach. The 82
cities covered in this study are representative of cities in China with
various characteristics, e.g., temperate vs. subtropical climate zones,
megacities (e.g., Beijing and Shanghai) vs. small cities (e.g.,
Yingtan and Ma’anshan), and heavily polluted (e.g., Liaocheng,
Xingtai) vs. lightly polluted (e.g., Kunming,Huangshan).

Our study demonstrated statistically significant associations
of reported influenza incidence with PM2:5, PM10, NO2, SO2, and
CO, in general agreement with previous studies.29,30 The associa-
tion of air pollutants with influenza incidence were generally
short-term and decay over longer lags (Figure S5), which is con-
sistent with previous findings and could be explained by the rela-
tively short incubation period (1–3 d) and serial interval of
influenza (mean of 3.6 d).16,28,29 NO2 was the sole significant
pollutant in the multipollutant model, indicating that the role of
NO2 as the major contributor among all common air pollutants to
the risk of influenza-related disease burden in China (Table 2).
Conversely, these results do not preclude potential contributions
of air pollutants other than NO2 to influenza incidence, which
could have been masked in the multipollutant model due to the
multicollinearity among the pollutants (Figure S8).

The mechanism behind the impact of air pollutants on influ-
enza infection is likely complex and multifaceted. Previous stud-
ies have shown that air pollutants can disrupt the immunological
barrier via oxidative stress and immune modulation, increase cell
susceptibility to RNA viruses, reduce pulmonary function, or act
as a transportation media of viruses.31–33 NO2 exposure has been
reportedly associated with respiratory symptoms by both directly
inducing inflammation of the airways and indirectly facilitating
inhalation of allergens,34,35 supporting our finding that NO2 is
the strongest predictor of influenza incidence among all common
air pollutants.

The association between ozone exposure and acute respiratory
infections, including influenza, has been controversial. Some
studies reported a positive or no association between ozone expo-
sure and influenza,36,37 while others found a negative associa-
tion.16,29 In our study, while the descriptive correlation analysis
indicates a negative association between ozone and influenza
incidence (Figure 1B), our model adjusting for other potential
confounders did not find a significant association in general. A
slight positive association between ozone and influenza incidence
was found in the warm months with low flu activity as well as in
the subtropical zone based on the single-pollutant model (Figure 2).
If this association is true, a potential reason is that, during the warm
season, influenza is still active in the subtropical zone though the
national average incidence is low. A higher temperature would
increase the ozone concentration38 (Figure S1) and meanwhile drive
people to cluster in air-conditioned indoor environments, creating a
positive association. In addition, a mouse study suggested a high-
level exposure to ozone may exacerbate the lung pathology due to
influenza infection.39

We found a greater association of air pollution with influenza
in children vs. adults, which is expected since children are more
vulnerable to many respiratory infections, including influenza,
than adults.13,40 Air pollutants were found to have a greater associ-
ation with influenza incidence in subtropical cities where air pollu-
tion is generally mild compared to those in the temperate zone. In
addition, the median annual pollution level was found to be an im-
portant modifier for the associations of air pollutants with influ-
enza. Furthermore, the nonlinear concentration-incidence curves
for most air pollutants imply that the risk increases at a higher rate
at lower concentrations (Figure 3). Such patterns are consistent
with a study on the impact of PM10 and PM2:5 on mortality at the
global scale.23 The underlying mechanism is unclear, but possible

reasons include the following: a) higher utilization of protective
measures such as antismogmasks against air pollution among resi-
dents in heavily polluted cities41 and b) more outdoor activities and
thus higher exposure to ambient air pollutants in warmer
areas.38,42,43 We also found an increased risk of influenza due to
exposure to NO2 and SO2 during the cold months with high flu ac-
tivity, in agreement with previous studies (Figure 2).5,44 Cold
weather and low humidity during cold months have been associ-
ated with extended survivability of virus and bacteria in the envi-
ronment,45 and the survivability might be related to the increased
concentration of air pollutants in that season. Our results on attrib-
utable fractions are generally consistent with previous studies as
well. For example, we estimated that 7.66% of the influenza inci-
dent cases in Guangzhou city were attributable to PM2:5 exposure,
close to the 8.10% reported by Zhang et al.46 In general, the attrib-
utable fraction is higher in northern China where air pollution is
heavier. For example, NO2 was found to contribute to 8.83% of
influenza cases in Shanwei in the South but 41.11% in Xi’an in the
Northwest.

This study has several limitations. First, due to the nature of ec-
ological studies, these findings do not imply a causal link between
exposure to air pollution and influenza transmission. Second, we
were not able to study the impact of air pollution by type or subtype
of influenza virus, as such information was not provided in the
CISDCP dataset. Third, while we collected both clinically diag-
nosed and laboratory-confirmed influenza cases fromCISDCP, the
proportion of laboratory-confirmed cases among all reported cases
was low in China (24.97% for the 82 cities during the study period),
so misclassification and underreporting are possible.47 Fourth, we
did not consider vaccination in the analyses, but the coverage rate
of influenza vaccinationwas low (<10%) in China.48 Additionally,
some air quality indicators such as PM0:1, ammonia, and oxidative
potential of air pollutants became popular in recent years, but these
data are rarely available and were not available for this study.49,50
Finally, our data is limited to Chinese cities. Given that not all con-
founders are measured, our results may not be directly generaliz-
able to other countries.

After witnessing its own environmental price paid for eco-
nomic development and urbanization, China unveiled its landmark
Atmospheric Pollution Prevention Action Plan in 2013 and began
releasing real-time air pollution data. In recent years, air pollution
has been successfully controlled in developed coastal areas, yet it
remains a serious problem in some inland and northern provinces
where emission-intensive industries are located or relocated.51
While challenges are expected given the substantial disparities in
economic development, environment, and culture across these
regions, more stringent air pollution control policies will not only
reduce the burdens of chronic and acute diseases but also improve
crop yields, climate, and the quality of ecological systems.52,53
Extending our approach, future studies may focus on the impact or
cost-effectiveness of reducing air pollutants on a variety of notifi-
able diseases and advise policymakers on how to prioritize cities or
regions for air pollution control and prevention.
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