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Abstract

Regeneration of mammalian cochlear hair cells (HCs) by modulating molecular pathways or

transcription factors is a promising approach to hearing restoration; however, immaturity of

the regenerated HCs in vivo remains a major challenge. Here, we analyzed a single cell

RNA sequencing (scRNA-seq) dataset during Atoh1-induced supporting cell (SC) to hair

cell (HC) conversion in adult mouse cochleae (Yamashita et al. (2018)) using multiple high-

throughput sequencing analytical tools (WGCNA, SCENIC, ARACNE, and VIPER). Instead

of focusing on differentially expressed genes, we established independent expression mod-

ules and confirmed the existence of multiple conversion stages. Gene regulatory network

(GRN) analysis uncovered previously unidentified key regulators, including Nhlh1, Lhx3,

Barhl1 and Nfia, that guide converted HC differentiation. Comparison of the late-stage con-

verted HCs with the scRNA-seq data from neonatal mouse cochleae (Kolla et al. (2020))

revealed that they closely resemble postnatal day 1 wild-type OHCs, in contrast to other

developmental stages. Using ARACNE and VIPER, we discovered multiple key regulators

likely to promote conversion to a more mature OHC-like state, including Zbtb20, Nfia,

Zmiz1, Gm14418, Bhlhe40, Six2, Fosb and Klf9. Our findings provide insights into the regu-

lation of HC regeneration in adult mammalian cochleae in vivo and demonstrate an

approach for analyzing GRNs in large scRNA-seq datasets.

Introduction

The development of sensory hair cells (HCs) in the inner ear is regulated by complex gene reg-

ulatory networks (GRNs) involving transcription factors and their associated cofactors, or reg-

ulons. Understanding the temporal dynamics of these GRNs is crucial for the study of hearing

loss pathology and HC regeneration for hearing restoration [1]. While non-mammalian HCs

can regenerate through the trans-differentiation of supporting cells (SCs) to HCs, adult mam-

malian cochlear HCs do not have this capability [2, 3]. Efforts to regenerate HC-like cells in
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adult mouse cochleae in vivo have had limited success, with the newly converted HCs (cHCs)

from SCs remaining immature and non-functional [4, 5]. A key strategy for inducing regener-

ation of HCs in mammals is the induction of ectopic expression of the transcription factor

Atoh1 in SCs, leading to the formation of Atoh1-induced cHCs [6]. However, the extent to

which these cHCs resemble endogenous HCs is still debated. Some studies suggest that these

Atoh1-induced cHCs are similar to endogenous postnatal day 1–7 (P1-7) HCs based on early

HC marker expression and electrophysiological properties [7–8]. It also remains debated

whether Atoh1-induced regeneration in adult mouse cochleae follows the endogenous devel-

opmental path of HC differentiation and maturation [9, 10]. Addressing these questions will

provide guidance to future efforts to regenerate functional HCs in adult mammalian cochleae.

To gain a deeper understanding of the transcriptional regulation of Atoh1-induced HC

regeneration, we performed a comprehensive analysis of the regulatory network involved in

the SC-to-HC conversion process. We used a combination of different gene network modeling

analyses to identify and characterize the transcription factors and their target genes involved

in the conversion. In order to find more potential genes that can promote maturation, we inte-

grated expression data of pro-sensory cells and outer hair cells (OHCs) at postnatal day 1 and

7 from a scRNA-seq dataset of neonatal mice [1] with the dataset of Atoh1-induced cHCs in

adult mice [7]. We found that the most differentiated cHCs resemble postnatal day 1 wildtype

OHCs when compared with other OHC developmental stages. Moreover, we identified key

regulators, including Zbtb20, Nfia, Zmiz1, Gm14418, Bhlhe40, Six2, Fosb and Klf9, as candidate

regulators that may promote the regeneration of more functional HCs in adult mammals. Our

study serves as an example of how to perform in-depth analysis with large scRNA-seq datasets

and provides important insights into the regulatory dynamics of cochlear HC regeneration,

which could guide future experimental approaches to hearing restoration in vivo.

Results

Identification of inner hair cells (IHCs), outer hair cells (OHCs) and

converted hair cells (cHCs) in adult mouse cochleae through scRNA-seq

analysis using Scanpy

The field of scRNA-seq data analysis is dominated by two popular tools, Scanpy [11] and Seu-

rat [12]. Scanpy, a python implementation of scRNA-seq analysis package, was inspired by

Seurat [11]. In this study, we employed Scanpy to re-analyze our previous scRNA-seq data

from dissociated adult mouse organs of Corti [7]. The data was obtained from the Fgfr3-iC-

reER; Atoh1-HA; Chrna9-EGFP; tdTomato mouse model. The re-analysis revealed 3734

cochlear cells, comprising of 161 Atoh1-HA+ cHCs, 24 IHCs and 43 OHCs (Fig 1A and 1B).

We identified cHCs based on their co-expression of Atoh1 and HA genes, driven by SC-spe-

cific CreER (Fgfr3). As shown in Fig 1B and 1C, using Scanpy, we were able to resolve inner

and outer HC populations (IHCs and OHCs) that were previously grouped together in Seurat

analysis. Distinct molecular signatures of Atoh1-HA+ cHCs, DCs/PCs, IHCs and OHCs were

also confirmed by studying the highly differential genes of these cell types (Fig 1C and 1D).

Our analysis demonstrates the effectiveness of using Scanpy to identify unique cell type popu-

lation with low cell counts in intricate scRNA-seq datasets.
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Identifying cell type-specific gene regulatory networks in single-cell

RNAseq data using SCENIC and WGCNA: Validation and comparison of

results

In our previous publication, we identified three progressive stages of cHC maturation: cHC1,

cHC2 and cHC3, and demonstrated continuous gene expression change during the conversion

from SC to cHC using DEGs [7]. We also identified transcription factors that promote

Fig 1. Single-cell gene expression profiling of adult mouse cochleae during ectopic Atoh1-induced conversion. (A) tSNE plot of the

SCANPY clusters. Cell types were annotated based on previous cell annotations [7]. (B) tSNE mapping of normalised count expression

levels of specific markers. Slc17a8 and Ocm were highly expressed in mature IHCs and OHCs, respectively, but not in cHCs (annotated

as Atoh1+ in the figure) or SCs (annotated as DC/PCs, IPs/IB+ in the figure). HA (Atoh1-HA) and Fgfr3 were highly expressed in cHCs

clusters. (C) Top 25 differential genes when comparing IHCs with OHCs. (D) Ranking for highly differentially expressed genes in the

Atoh1-HA+ cHC, DC/PC, IHC and OHC clusters, respectively. RM: Reisner membrane; DCs: Deiters’ cells; PCs: pillar cells; HCs: hair

cells; Iphs: inner phalangeal cells; IBs: inner border cells; SGs: spiral ganglia.

https://doi.org/10.1371/journal.pone.0284685.g001
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conversion [7]. However, we did not perform co-expression network analysis or more specific

GRN analysis. In this study, we aimed to identify cell type specific GRNs for the cells involved

in the conversion process (Fig 2A). These GRNs could provide insights into the mechanisms

related to a more efficient conversion.

WGCNA analysis. Despite its design for bulk RNAseq data, WGCNA can be utilized to

identify functional gene clusters and key regulators in single-cell transcriptome data by con-

structing co-expression networks from gene expression profiles [13–16]. These clusters, called

modules, comprise genes that interact and perform similar functions.

We applied WGCNA to the top 4000 variable genes in the SC-cHCs consortium (single cell

clusters of SC at P12 and P33, cHC1, cHC2, cHC3), which is a standard selection for single-

cell highly variable gene analysis (S1A Fig). The resulting six modules included genes that are

co-expressed and associated with changes in expression pattern during conversion. The mod-

ule size varied significantly, with the turquoise module being the largest (1049 genes) and the

red module being the smallest (33 genes) (S1 Table). By relating module expression to conver-

sion stages, we found that the turquoise module was highly co-expressed with cHC3, the blue

module with SCs; the yellow module with cHC1, and the red module with both cHC1 and

cHC2 (Fig 2A). Moreover, we observed a negative correlation between the blue and turquoise

modules, indicating distinctive expression profiles of SCs and cHC3 (Fig 2B). The grey mod-

ules, containing genes that did not belong to any modules, were excluded from further

analysis.

We used the eigengene approach (See Methods) to derive representative expression profiles

for the four co-expression modules (blue, red, yellow and turquoise) and then computed

expression correlations between genes using the Algorithm for the Reconstruction of Accurate

Cellular Networks (ARACNE) [17] (S2A-S2C Fig). The ARACNE algorithm allows for the

identification of key regulators in each module that can regulate their downstream transcrip-

tion factors. We identified several key regulators in each module (summarized in Table 1),

including SC markers in the blue module and regulators of cHC regeneration in the turquoise

module. The red and yellow modules were found to represent cHC1-2 with fewer regulators.

Functional gene enrichment analysis of gene modules further confirms the correlation of each

modules with the corresponding conversion states (S3A-S3D Fig).

SCENIC analysis. The single cell regulatory network inference and clustering (SCENIC)

was developed to analyze GRNs and identify regulons, groups of co-regulated genes in single-

cell RNAseq data [18]. To identify and characterize the transcription factors and their target

genes involved in the conversion process, we included endogenous HCs from the same study.

The SCENIC analysis revealed prominent cell-type specific regulons for SCs, cHCs, OHCs and

IHCs, as shown in Fig 2C. Highlighted in the blue box, IHCs, SCs, and early cHCs (cHC1)

share the expression of specific regulons, such as Creb1, Gata3, Zfp467, Sox13, Sox2, Sox10,

Mxi1, Hes1, and Sox9, while intermediate (cHC2) and late (cHC3) stages of cHCs exhibit

decreased expression of these regulons. We know from the previous publication that overex-

pression of Atoh1 can promote the conversion of SCs to a HC-like state [6, 19, 20]. Based on

our findings, cHC1 have similar key regulons to SCs, while cHC3 shows a downregulation of

regulons and an upregulation of regulons highlighted in the orange box, which are also active

in OHCs. Furthermore, bulk RNA-seq profiles [7] supported the notion that cHCs resembled

OHCs at P7 more than the mature SCs and the mature OHCs/IHCs analyzed. Hence, we

focused on comparing the transcription profiles of the cHCs with those of the OHCs in subse-

quent analysis to identify regulators that can promote progression from cHC3 towards OHC-

like stages. Comparison of the results from SCENIC and WGCNA revealed shared regulons

that were predominantly active in the late stage of conversion, as shown in Fig 2D.
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Fig 2. Gene regulatory network (GRN) inference using WGCNA and SCENIC. (A) WGCNA analysis of cHCs and

endogenous HCs, showing the correlation of each cell type and the expression pattern of eigengenes in each module.

Each spike represents one cell of the cell types indicated below. (B) Correlation matrix depicting the correlation

coefficients of different modules, with all seven modules included and self-comparisons removed from the graph. The

size of the box and its color gradient indicate the correlation coefficient. (C) SCENIC identified cell-type-specific

GRNs during SC-to-cHC conversion. The binary regulon activity matrix shows correlated regulons (absolute

correlation> 0.3) active in at least 1% of cells. Cells are colored according to cluster identity, and genes are colored

based on expression level. Regulons exceeding a manually adjusted AUC threshold are shown in black, while inactive

regulons are white. Each stage of the conversion is shown at the top of the graph in different colours. (D) Venn

diagram displaying the five overlapping key regulators identified by both WGCNA turquoise module (cHC3) and

SCENIC in cHC2/3, compared to regulons in OHCs.

https://doi.org/10.1371/journal.pone.0284685.g002
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Expression pattern of converted HC cluster 3 (cHC3) resembles wild-type

P1 OHCs more than other naive OHC stages

In the past, we identified cHC3 as the most differentiated cHCs in P33 cochleae, which had a

similar resemblance to differentiating neonatal HCs. The bulk RNA-seq profiles of cHCs at

P33, as well as OHCs at P7 or P22, found that P33 cHCs were similar to P7 OHCs [7]. To fur-

ther investigate this, we re-analyzed raw data from a recent scRNA-seq study covering wild-

type cochlear cells across E14, E16, P1 and P7 [1]. Trajectory inference (TI) using the PAGA

(Partition-based graph abstraction) method in the dynoverse package [21] was applied to Lat-

eral Pro-sensory Cells (LPsCs), OHCs, Deiters’ Cells (DCs), Inner Pillar Cells (IPCs), and

Outer Pillar Cells (OPCs) at the four aforementioned ages. Unlike Monocle analysis [1],

PAGA TI generated distinct branches from LPsCs (Fig 3A). LPsCs committed to HCs follow a

trajectory path from LPsCs to iHC_E14 and iOHC_E16, and finally into OHC at P1 and P7.

Meanwhile, other lineages of LPsCs give rise to supporting cells like IPC or OPC. Nevertheless,

we still observed some uncertainties in the trajectory, such as the backward arrow pointing

from OHC_P1 to iOHC_E16. PAGA assumes that the trajectory is a tree-like structure with

clear directionality, but some biological processes may not follow a strict linear progression.

This can lead to inaccuracies in the analysis of certain cell types or developmental stages.

We combined OHCs at different developmental stages (E14, E16, P1 and P7) [1] with cHCs

(cHC1-3) and mature OHC at P33 from the previous study [7]. The two datasets were then

anchored using the top variable genes of each cluster (Fig 3B). We tested the performance of

the tool SCTransform [22] for normalization and found that it generally performed better

than the standard log normalization included in Seurat and Scanpy (Fig 3C). OHC_P1 formed

two subsets as it was prepared in two batches in the original study [1]. The heatmap for the top

10 DEGs in each cluster revealed that cHC3 expressed cell markers of OHC_P1 alongside an

additional panel of genes (Fig 3D). Genes exhibiting high expression in cHC1-3 but limited

expression in wild-type OHC_P1 may be due to persistent ectopic Atoh1 expression, previous

SC fates, and/or the requirement for additional transcription factors. Correlation plot of cell

types revealed that cHC3 resembled OHC_P1 more (r = 0.32) compared to other naive OHC

stages (iHC_E14: r = 0.1; iOHC_E16: r = 0.2; OHC_P7:r = 0.03; OHC_P33: r = 0.03) (Fig 3E).

We concluded that the ectopic expression of Atoh1 in DCs and PCs of adult mouse cochleae

could convert them into P1-state OHC-like cHCs but failed to further convert them to fully

mature OHCs (such as OHCs at P7 and P33).

Table 1. Regulators in WGCNA-derived co-expression modules.

Module Representative

cells

Regulators

Blue SC Camta1, Crem, Emx2, Gata3, Glmp, Hes1, Hey1, Id1, Id2, Id3, Ikzf2, Irx3, Nfe2l3,

Rora, Rorb, Sall2, Sox10, Sox9, Zfp36l1, Zfp467
Red cHC1, cHC2 Zbtb20

Yellow cHC1 Hes5, Sox2, Hey1
Turquoise cHC3 Atoh1, Barhl1, Bcl11a, Carf, Casz1, Csde1, Dach1, Foxj1, Foxp1, Gfi1, Gm14418,

Hes6, Insm1, Insm2, Lhx3, Lrrfip1, Mycl, Myt1, Neurod6, Nfia, Nfic, Nhlh1, Pax2,

Pou4f3, Purb, Rxra, Sox4, Tcf15, Tcf4, Thrb, Tmf1, Tox, Ybx1, Zbtb18, Zbtb7a,

Zfp101, Zfp276, Zfp667, Zfp697, Zmiz1

Note: Highlighted transcription factors are also identified using SCENIC in Fig 2C.

https://doi.org/10.1371/journal.pone.0284685.t001
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Identification of key regulators between cHC3 and endogenous OHCs at P1

and P7

We utilized the ARACNE and VIPER algorithms [23, 24] to identify potential regulators that

may facilitate the progression of cHC3 towards endogenous P7 OHCs. In brief, the VIPER

(Virtual Inference of Protein-activity by Enriched Regulon analysis) algorithm performs an

enrichment statistical analysis on every regulon, using the regulatory network provided by

Fig 3. Comparison of expression patterns of converted HC clusters to P1 wild-type OHCs and other naive OHC

stages. (A) PAGA trajectory analysis of wild-type cochlear cells across different developmental stages. L.PsCs, Lateral

pro-sensory cells; IPC: Inner pillar cells; DC/OPCs: Deiters’ cells/Outer pillar cells. (B) UMAP analysis of eight

different cell types, including cHC1-3 and OHC_P33 from Yamashita et al. [7], and OHC at different stages of natural

hair cell development [1]. iHC_E14: immature hair cell at E14; iOHC_E16: immature outer hair cell at E16. (C) The

SCT-normalization method effectively reduced the influence of technical factors in the combined dataset. (D)

Heatmap showing the top 10 (or all, if less than 10) markers for each cluster. (E) Correlation plot of cell types revealed

that cHC3 is more similar to OHC_P1 (r = 0.32) than to other naive OHC stages (iHC_E14:r = 0.1; iOHC_E16: r = 0.2;

OHC_P7: r = 0.032; OHC_P33: r = 0.031).

https://doi.org/10.1371/journal.pone.0284685.g003
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ARACNE and the expression matrix, to identify the most significant transcription factors asso-

ciated with the regulatory models derived from the comparison of different cell types.

Fig 4 displays the top 10 regulators identified by VIPER in the cHC3: OHC_P7 [1, 7] com-

parative analysis. Atoh1 was identified as the most significant candidate, which was expected

given the ectopic Atoh1 expression in cHCs. The right-side color panels show the expression

value and estimated protein activity of each transcription factor in the dataset. These parame-

ters indicate the significance of these genes in shaping the characteristics of either cHC3 or

OHC_P7. Compared with OHC at P7, cHC3 exhibited significantly higher activity of regulons

regulated by Atoh1, Zbtb20, Nfia, Zmiz1, Gm14418 and Prox1. Among these six gene up-regu-

lators, only Prox1 was deemed to be insignificant when using 100 bootstraps in the analysis,

while the four down-regulators (Bhlhe40, Six2, Fosb and Klf9) were found to be significant in

both single and 100 bootstraps (S4 Fig). Atoh1 has the largest regulon with 272 genes, followed

by Zbtb20 with 179 genes and Nfia with 121 genes. Among the down-regulators, Bhlhe40 and

Six2 had the largest number of associated genes with 58 and 42, respectively.

Discussion

In this study, we overcame the challenges of analyzing scRNA-seq GRNs by integrating multiple

scRNA-seq datasets and utilizing multiple recently developed analytical tools. Our new analysis

approach focuses on the connections among co-expressed genes to establish independent

expression modules, which is superior to previous analyses that only focused on differentially

expressed genes. Integrating scRNA-seq data from multiple platforms can be challenging due to

differences in library preparation, sequencing depth, and experimental conditions, leading to

batch effects that can obscure biological signal and confound downstream analysis. We found

SCTransform can provide improved expression correlation results. We then applied multiple

GRN analysis tools and revealed continuous regulatory program dynamics for Atoh1-induced

SC-to-HC conversion with multiple GRNs and regulons. These findings provide insights into

the process of SC-to-HC conversion and will guide future experimental approaches to achieving

more efficient conversion both in cochlear explants and in vivo [7, 25, 26].

Through comparison of the transcriptome profiles in our SC-to-cHC regeneration in adult

mouse cochleae and the LPsC-to-OHC transcriptomic changes in neonatal mouse cochleae

[1], we found that the most differentiated cHC stage in adult mouse cochleae resemble P1

OHCs more closely than other naive OHC stages such as P7 (Fig 3E). This finding can be

explained by the constitutive ectopic expression of Atoh1 in SCs during the conversion, which

is crucially regulated during natural HC development. Normally, Atoh1 expression increases

from E13-14 to P0-1 and then drastically decreases between P1 and P7 [20]. However, in the

cHCs of our study, Atoh1 overexpression is driven by Cre-mediated constitutive CAG pro-

moter, which continuously drives Atoh1 ectopic expression in adult SCs and cHCs at a persis-

tent and high level without decreasing. Therefore, our data suggest that the proper duration of

Atoh1 ectopic expression in SCs is required for further differentiation and maturation of

cHCs. A recent study has shown that transient ectopic expression of Atoh1 can drive SC-to-

HC conversion more effectively than constitutive ectopic expression of Atoh1 [27].

Moreover, our analysis revealed cHCs have induction of additional genes that are not

expressed during natural HC development, likely due to persistent Atoh1 ectopic expression,

previous SC fates, and/or the need for additional transcription factors. These findings suggest

the necessity of manipulating additional transcription factors or regulons concurrently or con-

secutively to ensure appropriate and efficient conversion.

In this regard, multiple key regulators, including Atoh1, Barhl1, Lhx3, Nfia, Nhlh1, were

identified independently by both WGCNA and SCENIC as potential key players in guiding
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cHC1-3 differentiation. Barhl1 and Lhx3 are known to be essential for HC development and

differentiation, with Atoh1 maintaining expression of Barhl1 [20, 28, 29]. In the developing

inner ear, Barhl1 expression appears after Atoh1 initial expression and formation of hair cells

Fig 4. Transcription factors identified using VIPER in the comparison of the expression profiles of cHC3 versus naive OHCs at P1. VIPER plot shows the

top 10 up-regulated (red) and down-regulated (blue) transcription factors. The strength of protein activity (Act) and RNA expression (Exp) are represented by

color intensity, with darker color indicating higher values. Prox1 is shown to be insignificant when using 100 bootstraps. The lines in the middle of the plot are

the individual gene expression values for each cell in the dataset and provide additional information about the variability in gene expression within each cell

type.

https://doi.org/10.1371/journal.pone.0284685.g004
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from otic progenitors [30]. Nhlh1 has also been considered a “pro-hair cell gene” that is neces-

sary for the formation and maintenance of hair cells [31].

In addition to these regulators, our analyses using ARACNE and VIPER algorithm identi-

fied additional key regulators, including Bhlhe40, Klf9, Fosb, Nfia, Six2, Zbtb20 and Zmiz1,

which are likely to promote cHCs-to-OHC_P7 conversion. Most of these regulators have not

been previously studied for SC-to-HC conversion.

Together, our re-analyses of the two datasets [1, 7] have provided additional insights into

the regulators that could promote SC-to-HC conversion in adult mouse cochleae, offering

guidance for further studies on OHC maturation. Experimental validation of our bioinfor-

matic results is beyond the scope of this study. However, integrating scRNA-seq datasets

obtained from non-mammalian vertebrates, such as zebrafish and chicken HC regeneration,

could provide further insights into the gene regulatory network underlying the progression of

supporting cells to differentiated hair cells.

Methods

10x genomics single-cell RNA-seq data processing

FASTQ files from the Gene Expression Omnibus data repository under GSE173217 were pro-

cessed by the function “cellranger count” of CellRanger (10× Genomics, Version 6.0.2) to gen-

erate feature counts of every single cell. The reference genome was the mouse genome

GRCm38 (10× Genomics, Version 5.0.0). To remove the cells with low quality, cells with gene

number over 200, and the ratio of mitochondria lower than 15 were maintained, and genes

with at least one feature count in more than three cells were used for the following analysis.

The bam file from GSE137299 was processed and converted to FASTQ and the same CellRan-

ger analysis was applied to process the data.

Single-cell RNA-seq analysis

The obtained gene-barcode matrices were further analyzed using Scanpy [11] or Seurat 4.0.1

[12] in R. Cells with relatively small and large library size in individual datasets were individu-

ally removed as potential doublets and low-quality cells. Cell cycle classification was performed

using the Cell-Cycle Scoring and Regression method published in Seurat, and cells that were

classified as being in G1 phase were chosen. Differentially expressed genes were identified

using the FindAllMarkers function in the packages with a default condition and PCA followed

by tSNE and UMAP analysis were further performed using the differentially expressed genes.

The two datasets were then anchored using the top variable genes of each cluster to minimize

the batch effect. SCTransform was then utilized to normalize and integrate the datasets. Top10

markers were used to plot the heatmap and the correlation plot. Corrplot package (v0.88) was

used for the correlation plot (https://github.com/taiyun/corrplot).

Pseudotime analysis

Trajectory inference was conducted using the dynoverse R packages (https://github.com/

dynverse/dyno) [21]. Raw count and expression matrices were extracted from the different cell

clusters and wrapped into a dynwrap object using dynwrap::wrap_expression. Grouping and

dimensionality reduction information were added to the dynwrap object using add_grouping

and add_diregulatored, respectively. We selected TI methods using the guidelines_shiny tool

for our specific dataset, and the methods retained for analysis were slingshot, PAGA-tree and

multiple spanning tree (MST). While every method provided specific insight into the data

structure, PAGA-tree best recapitulated the structure of other methods combined in our data.
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We obtained pseudotime visualization using calculate_pseudotime on the PAGA-tree model

object. Branches in the cell trajectory represent cells that have alternative gene expression

patterns.

WGCNA analysis

The WGCNA (v1.70) package [32] was used in R to identify co-expression gene modules in

the cell types involved in the ectopic Atoh1-induced HC conversion. After filtering genes, gene

expression values were imported into WGCNA to construct co-expression modules using the

automatic network construction with default settings. To identify any obvious outliers and

visualize how the samples are clustered, we then constructed the sample dendrogram to visual-

ize how the samples are clustered and to identify any obvious outliers (S1A Fig). All samples

were included in the clusters and passed the cut-off thresholds.

The power value is a critical parameter that can affect the independence and average con-

nectivity degree of the co-expression modules. Therefore, network topology using different

soft thresholding powers was screened, and β = 4 (scale free R2 = 0.9) was selected for further

analysis (S1B Fig). We then constructed a matrix of adjacencies by calculating Pearson corre-

lations between all pairs of genes across all selected samples. The matrix was then computed

into a Topological Overlap Matrix (TOM) using the function TOMsimilarity [33]. The TOM,

referred to the interconnection between two genes, was used as input for hierarchical cluster-

ing analysis, and a cluster of genes with high topological overlap was defined as a module.

Finally, we identified modules and constructed the GO analysis of the four modules corre-

lated with them. The results were plotted using the R package clusterprofile [34] (S3A-S3D

Fig), and significant enrichment was considered at p < 0.05.

ARACNE analysis using eigengenes from WGCNA modules

We next sought to derive the eigengenes and their GRNs from WGCNA modules. Eigengenes

were calculated using the moduleEigengenes function to identify the first principal component

of each gene module as a representative. We used the Algorithm for the Reconstruction of

Accurate Cellular Networks (ARACNE) [17] to compute expression correlations between

genes in the four co-expression modules (blue, red, yellow and turquoise).

To account for the highly variable and noisy single-cell gene expression profiles and the

dropout effect of mRNA, we used the PISCES package (https://github.com/califano-lab/

PISCES). The ARACNE algorithm [17] was then employed to compute the regulatory interac-

tions, avoiding many indirect interactions that are generally found through those co-expres-

sion methods that are less accurate. We filtered the MI values to select only those

corresponding to the regulatory events between transcription factors (considered regulators),

and their linked genes (i.e., the targeted genes, considered as regulons).

The networks of the transcription factor module with motif information were visualized by

Cytoscape [35].

SCENIC analysis

To compare with the GRNs derived from WGCNA analysis, we used SCENIC [18] to investi-

gate GRNs for the SCs, cHCs and HCs in the scRNA-seq data published by Yamashita et al.
[7]. To filter out genes that were most likely noise, we used the geneFiltering function in the

SCENIC package and retained genes that were detected in at least 1% of the cells. Additionally,

only the genes available in the RcisTarget databases were kept. SCENIC identifies potential

GRNs through the following steps: (1) identifying transcription factors and candidate target

genes based on co-expression using GENIE3, (2) constructing regulons by filtering modules
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for candidate genes enriched in their transcription factor binding motifs utilizing RcisTarget,

with mm10 transcription factors used as the reference, (3) determining the activity of each reg-

ulon in each cell, and (4) constructing a regulon activity matrix to cluster cells based on shared

regulatory networks. Through this approach, we identified cell states based on shared activity

of a regulatory subnetwork. Finally, we used the default “AUCCellThreshholds” for each regu-

lon as the threshold to binarize the regulon activity scores and created the “Binary regulon

activity matrix”.

VIPER analysis

To identify key regulators that promote regeneration, we compared the transcriptomes of

cHC3 and OHCs at P1 and P7 using the algorithm called VIPER (Virtual Inference of Protein-

activity by Enriched Regulon analysis) (v1.22) [24]. First, we used the ARACNE algorithm to

reverse-engineer context-specific regulatory networks by leveraging a large collection of gene

expression profiles. Then, we inferred the activity of each regulator by computing the enrich-

ment of the genes in its regulon (from ARACNE) in each cell type. Positive or negative enrich-

ment indicates up- or down-regulation of the regulator, respectively, and its activity is

represented by the normalized enrichment score.

We used PISCES to build metacell matrices, and included bootstrapping in the VIPER anal-

ysis, testing 100 times subsets of the cells to identify the most stable regulators. We selected the

most significant transcription factors with a p-value < 0.05.

We found five significantly overexpressed transcription factors and four significantly

repressed transcription factors when comparing cHC3 and P7OHC. To test whether the differ-

ence between P1OHC and cHC3 affected the results, we also compared P1OHC+cHC3 with

P7OHC. These comparisons indicated the most significant difference of the transcriptomic

regulator related to the different HC or HC-like groups (cHC3-P7OHC, P1OHC-P7OHC).

Supporting information

S1 Fig. WGCNA analysis in cHCs and endogenous HCs. (A) Sample clustering was con-

ducted to detect outliers. This analysis was based on the expression data of top 4000 variable

genes in the total 251 cells with 161 Atoh1-HA+ cHCs and 90 SCs available in Yamashita et al
[7] (S2 Table). Genes were clustered based on a dissimilarity measure. The branches corre-

spond to modules of highly interconnected groups of genes. Colors in the horizontal bar repre-

sent the five cell types assigned by scRNA-seq analysis. (B) Selection of the soft-thresholding

powers for scale-free co-expression network. The left panel showed the scale-free fit index ver-

sus soft-thresholding power. The right panel displayed the mean connectivity versus soft-

thresholding power. Power 4 was used.

(ZIP)

S2 Fig. Gene co-regulation network for the four co-expression modules. (A-D) The network

was derived using the ARACNE program and constructed using Cytoscape. The key regulators

(in red) are connected with their targets (in purple).

(ZIP)

S3 Fig. Functional analysis of gene modules associated with hair cell conversion. (A) Gene

ontology (GO) analysis of genes in the blue module (SC—cHC1) showed enrichment of bio-

logical processes related to early-stage hair cell development, such as Notch signaling pathway,

regulation of mechanoreceptor differentiation, and epithelial proliferation (B) GO analysis of

the red module (cHC1—cHC2) revealed pathways related to organ growth and morphogene-

sis, cell and tissue migration, indicating the dynamic regulation of conversion-associated
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genes in this middle stage. (C) GO analysis of the yellow module (cHC1—cHC2) showed

enrichment of genes associated with similar processes as the red module, supporting their

potential role in the middle stage of hair cell conversion. (D) GO analysis of the turquoise

module (cHC2 –cHC3) suggested pathways such as synapse organization and neuroepithelial

cell differentiation, indicating their potential role in the later stages of hair cell conversion.

(ZIP)

S4 Fig. VIPER analysis identified the TFs active in OHC_P7 and cHCs. Table showing the

top 10 up- and down-regulated transcription factors found by VIPER with corresponding

parameters (normalized enrichment score (NES), p-value, false discovery rate (FDR), and

bootstraps).

(TIF)

S1 Table.

(CSV)

S2 Table.

(XLSX)
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