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Abstract Analysis of neuronal activity in the hippocampus of behaving animals has revealed 
cells acting as ‘Time Cells’, which exhibit selective spiking patterns at specific time intervals since 
a triggering event, and ‘Distance Cells’, which encode the traversal of specific distances. Other 
neurons exhibit a combination of these features, alongside place selectivity. This study aims to 
investigate how the task performed by animals during recording sessions influences the formation 
of these representations. We analyzed data from a treadmill running study conducted by Kraus et 
al., 2013, in which rats were trained to run at different velocities. The rats were recorded in two trial 
contexts: a ‘fixed time’ condition, where the animal ran on the treadmill for a predetermined dura-
tion before proceeding, and a ‘fixed distance’ condition, where the animal ran a specific distance 
on the treadmill. Our findings indicate that the type of experimental condition significantly influ-
enced the encoding of hippocampal cells. Specifically, distance-encoding cells dominated in fixed-
distance experiments, whereas time-encoding cells dominated in fixed-time experiments. These 
results underscore the flexible coding capabilities of the hippocampus, which are shaped by over-
representation of salient variables associated with reward conditions.

Editor's evaluation
The manuscript is a new analysis of previously published data from experiments in which rats ran 
on a treadmill in either fixed-time or fixed-distance trials. The valuable results provide convincing 
evidence to demonstrate that time and distance cells are more common in fixed-time and fixed-
distance trials, respectively. These findings suggest that the hippocampus flexibly shifts between 
representing variables depending on their relevance.

Introduction
The hippocampus plays an important role in spatial processing and episodic memory (Andersen 
et  al., 2006; Tulving, 2002). Spatial processing and navigation are supported by spatially tuned 
cells throughout the hippocampal formation, such as place cells in the hippocampus, which sparsely 
encode location within an environment (O’Keefe and Dostrovsky, 1971; Muller and Kubie, 1987). 
Subsequent discovery of time cells in the hippocampus (Kraus et al., 2013; Pastalkova et al., 2008; 
MacDonald et al., 2011; Tsao et al., 2018; Rueckemann et al., 2021), which encode time within an 
episode, suggests that the latter may contribute to the building blocks of episodic memory forma-
tion. Time cells and place cells share many physiological properties, pointing to a unifying concept 
of the role of the hippocampus in encoding features required to organize relevant information. We 
asked whether the encoding of hippocampal neurons is flexible, capable of changing according to 
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behavioral context and task demand. We used previously published data by Kraus et  al., 2013, 
from an experiment which sought to resolve an inherent ambiguity in the interpretation of time cells. 
Time cells were initially reported in animals running on a running wheel without control of velocity 
(Pastalkova et al., 2008, although time cells were also reported for immobile rats MacDonald et al., 
2011). This led to a potential ambiguity between encoding of time and of distance, due to the fact 
that, in fixed velocities, distance may be encoded by integration of time. Kraus et al., 2013 varied the 
velocity of rats running in place on a treadmill, and found subpopulations of hippocampal cells that 
encoded time, other cells that encoded path-integrated distance and additional cells that encoded 
both time and distance. These experiments were composed of two types of recording sessions. In 
one type of session, in all the trials the running duration remained constant at different velocities, 
whereas in the second type, the treadmill runs accumulated up to a constant distance, at different 
velocities. We hypothesized that in this experiment, the task demand (i.e. constant time vs. constant 
distance) determined the type of activity exhibited in the corresponding session. We re-analyzed the 
data according to the type of behavioral session and found a direct relation between the class of most 
active cells and the type of session in which they were recorded. In sessions in which the rats ran for a 
fixed time, the cells’ population was dominated by time-encoding cells, while in sessions where they 
ran for a fixed distance, the population was dominated by distance-encoding cells.

Results
To examine the dependence of hippocampal coding on task demand, we analyzed data based on 
experiments by Kraus et al., 2013, which aimed to differentiate between cells encoding time and 
cells encoding distance in the hippocampus. In these experiments, six rats were trained to run on a 
treadmill in the central stem of a figure-8 maze (Figure 1a). The rats were provided with a small water 
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Figure 1. Experimental setup. (a) The figure-eight maze with treadmill (gray belt) located in the central stem. Water ports are located near the treadmill 
and at the two lower corners of the maze. Blue line indicates right-to-left alternation; yellow line indicates left-to-right alternation. (b, c) Distribution of 
the fixed-time sessions treadmill travel times (b) and the fixed-distance sessions treadmill travel distances (c).

© 2013, Elsevier. Figure 1A is reproduced from Figure 1A from Kraus et al., 2013, with permission from Elsevier. It is not covered by the CC-BY 4.0 
licence and further reproduction of this panel would need permission from the copyright holder.
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reward prior to the initiation of the treadmill session and upon its cessation, thereby conditioning 
them to maintain their snouts positioned at the water port throughout the duration of the treadmill 
run, and "clamping" their behavior and spatial position. In each session, consisting of 31–57 runs, the 
treadmill was operated either for a fixed time or for a fixed distance, where in each run the velocity 
was set to a randomly chosen speed in the range of 35–49 cm/s (Figure 1b and c). The rats were 
forced to alternate their post-treadmill turns between right and left. Three of the six rats were trained 
and recorded exclusively in fixed-distance or fixed-time sessions, while the remaining three rats were 
trained and recorded in sessions of both types.

Kraus et al. reported that some cells preferentially encoded the distance the rat had run on the 
treadmill, while other cells preferentially encoded the time from the start of the treadmill movement. 
We hypothesized that the type of task employed in each session (i.e. fixed-time vs. fixed-distance) 
would determine the encoding of the neurons (i.e. time-based vs. distance-based). We therefore 
analyzed the cells on a run-by-run basis, as follows: For each neuron, we defined its response in each 
run according to the onset of peak firing (see Materials and methods), and examined its relation to 
the treadmill’s velocity. We classified time-encoding cells as those, in which the response did not 
systematically depend on the treadmill velocity but instead fired at a fixed time after the initiation of 
treadmill running. We classified distance-encoding cells as those, in which the onset time was propor-
tional to the treadmill velocity. To examine this classification, we determined the firing onset of each 
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Figure 2. Distance and time cells coding. (a–h) Examples of two time-coding cells (columns 1–2) and two distance-coding cells (columns 3–4). Row a 
depicts neural firing as a function of the distance the animal traveled, sorted by the runs’ velocities. The colors represent three velocity groups for which 
the tuning curves, by time or distance, are presented in rows b and c, respectively. Row d shows the onsets of each run (red dots) and their linear fit 
(black curve) to the relation ‍S = m ∗ v + n‍ for the time cells and ‍T = k ∗ 1

V + q‍ for the distance cells. The dashed curve represents the end-of-run time, 
and the dotted curve represents the end of the analyzed period (treadmill stop time, plus 5 seconds). The blue curves are equi-distance points in time. 
A black curve (the linear fit) which is parallel to the equi-distance curves demonstrates a cell with strong distance coding. (i–l) Examples of the analysis 
of time (i, j) and distance (k, l) encoding cells. Top row plots depict distance vs. velocity and bottom row plots depict onset vs. 1/velocity. Red line 
represents an ideal Distance Cell, based on the average distance traveled until the onset time. Blue line represents an ideal Time Cell, based on the 
average time of the onset and the black line is the linear fit. The closer the slope of the black line is to that of the red line, relative to slope of the blue 
line, the more the cell encodes distance-encoding, while if the slope is closer to the slope of the blue line, the is more it is time-encoding.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Additional examples of cells showing time coding (a–d) and distance encoding (e–h).

https://doi.org/10.7554/eLife.83930
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cell in each run and determined the cell’s properties according to three metrics (see Materials and 
methods section).

We defined a metric, 
‍
CellType = Var

(
distance

)
−Var

(
time

)
Var

(
distance

)
+Var

(
Time

)
‍
 , based on the distance and time variances 

(see Analysis Methods). We classified cells with positive CellType, where the distance variance is 

greater than the time variance as time cells, and negative CellType, where the time variance is greater 
than the distance variance, as distance cells. For an ideal time cell, CellType = 1 and for an ideal 
distance cell, CellType=-1.

Of 930 cells recorded we analyzed 679 cells with at least 10 runs showing firing peaks greater than 
0.5 Hz. Only cells with peak firing rates occurring during the treadmill run were included in the analysis. 
As previously reported in Kraus et al., 2013, we observed both distance cells, showing a response 
at constant distances the animal traveled on the treadmill, and time cells, showing a response at 
constant times from the treadmill start (Figure 2). In line with our hypothesis, there was a clear relation 
between the types of experiment and the distribution of time coding and distance coding neurons. 
In fixed-distance sessions, the neurons exhibited a significant majority (67%) of distance cells. By 
contrast, in fixed-time sessions time encoding cells dominated (68%). Of the 444 neurons recorded in 
fixed-distance sessions, the CellType index classified 298 cells as distance cells and 146 as time cells 
(Figure 3a). Conversely, in the fixed-time sessions 76 of 235 neurons were classified by this index as 
distance cells and 159 of 235 were classified as time cells. The relation between the cell type and the 
experiment type is significant (χ2(1)=75.1, p>>0.001 for the total cell population). These proportions 
were maintained when classifying by other metrics and when using the peak of firing instead of the 
onset of the response (see supplementary Methods and Figure 3—figure supplement 1). In 5 out 
of 6 animals, the cells’ encoding depended on the session type (Figure 3—figure supplement 2). 
(χ2(1)>12, p<<0.001 for 4 animals, χ2(1)=5.7, p<0.02 for one animal), except in one animal (χ2(1)=2.38, 
p=0.12).

We then checked the Receiver Operating Characteristics (ROC) graph of the CellType metric 
(Figure 2d), using discriminating thresholds in the range of [–1,+1]. The ROC plots the True Positive 
Rate (TPR) defined as the percentage of cell classified as distance cells in the fixed-distance session, 
against the False Positive Rate (FPR) defined as the percentage of cells classified as distance cells in 
the fixed-timed sessions. We found that the optimal threshold (maximum Youden index) for classifi-
cation of a session based on the CellType metric, was 0. This threshold classifies 67% of the cells as 
Distance in the Distance sessions and only 32% on the Time sessions. Accordingly, we classified a cell 
as a time-cell if CellType >0 and as a distance-cell if CellType <0.

To assess the power of the statistics, we compared the results to a distribution generated from 
shuffled session types (Figure 3c). In order to mitigate any potential biases in this distribution, we 
truncated all data to a common duration of 16 s, which represents the shortest duration of a treadmill 
run across all sessions. These results indicate that the dimension the cells encode (Time vs. Distance) 
is related to the session type (fixed time vs. fixed distance).

Discussion
Classifying neuronal activity according to either time or distance revealed that the hippocampal 
population encoding strongly registered with the features of the experimental task. In experiments 
where the treadmill running-time was fixed, the majority of cells encoded a given time from treadmill 
onset. In contrast, in experiments where the treadmill running-distance was fixed, the majority of cells 
encoded a specific accumulated distance from treadmill onset. It is worth noting that accumulated 
time in fixed-time experiments and accumulated distance in fixed-distance experiments may be used 
as predictors for the progress of the rat towards anticipated reward, which is given at the end of the 
treadmill run (Whittington et al., 2020; Stachenfeld et al., 2017). As noted previously in Kraus et al., 
2013 the same cells, which showed distance-encoding and time-encoding properties in the treadmill, 
were often selective to places outside of the treadmill as well. To summarize, CA1 pyramidal cells can 
encode location, distance, or time, depending on the conditions of the experiment or task demand.

Consistency with task demands has been repeatedly demonstrated in hippocampal recording for 
diverse parameter spaces, such as auditory linear frequency (Aronov et al., 2017), social mapping 
(Omer et al., 2018; Schafer and Schiller, 2018) or more abstract spaces (Constantinescu et al., 2016; 
Retailleau and Morris, 2018). How is task-relevant encoding achieved? The activity of place cells 

https://doi.org/10.7554/eLife.83930
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and grid cells is commonly modeled using continuous attractor networks (Morris and Derdikman, 
2023; Samsonovich and McNaughton, 1997; Burak and Fiete, 2009; Fuhs and Touretzky, 2006; 
Bush and Burgess, 2014; Hasselmo and Brandon, 2012; Tocker et  al., 2015; Gu et  al., 2018; 
Geiller et al., 2022; O’Keefe and Burgess, 1996). Such networks may serve as a natural substrate 
for amplification of encoding of certain task features, at the expense of others, resulting in an over 
representation of the salient variables. Such over-representation may help the brain prioritize survival 
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Figure 3. Distance and Time Cells classification. (a) Cells type classified by the CellType metric, averaged over all animals and trials, for fixed-distance 
and fixed-time experiments (n=18 experiments, mean ± SEM) p<<0.001 by Pearson's chi-squared test using two categories. Diagonal lines represent 
individual animals. (b) ROC curve (red) showing that the chosen discriminating threshold of 0 (black point) is optimal. The True Positive Rate (TPR) is 
the percentage of cells classified as distance cells on the fixed-distance session, while the False Positive Rate (FPR) is the percentage of cells classified 
as distance cells on the fixed-time sessions. (c) Shuffling distribution of the three metrics: CellType, FIT and P-Value. The type of experiment, either 
fixed-time or fixed-distance, was randomized 1000 times for each of the sessions. All experiments were truncated to 16 s in order to prevent biases. The 
vertical axis is the Time-Distance balance index (TDI), defined as (#DistanceCells-#TimeCells)/(#DistanceCells + TimeCells) and is between 0 and 1 if 
there are more distance cells than time cells and between –1 and 0 if there are more time cells than distance cells. The arrows are indicating the actual 
results which are significant compared to the shuffle distribution.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Additional metrics.

Figure supplement 2. The distribution of Time and Place cells, per animal, at various metrics, for Time and Distance sessions.

Figure supplement 3. Distribution of max and average firing rates for Time and Distance cells.

https://doi.org/10.7554/eLife.83930
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and decision making. By allocating more resources to the salient stimuli, the brain enhances the ability 
to process and retain the important information.

Another possible mechanism for acquiring representations that are consistent with task structure 
involves an associative learning process. Such learning would strengthen all connections between cells 
that were active in a particular trial and weaken others, but ultimately only the connections between 
cells that are consistently co-active will be strengthened, while others will average out. Thus, in time-
fixed experiments, the connections to cells that fire in a manner that is consistent with time would 
be strengthened, while in distance-fixed experiments connections to cells that are consistent with 
distance would gain strength. Consequently, those cells will gradually encode either distance or time, 
depending on the type of experiment.

Irrespective of the exact mechanism explaining the results of this study, the hippocampus is adap-
tive in its cells’ encoding and seems to be capable to tune them to the parameters best describing 
the task.

Materials and methods
We used the data provided by Kraus et al., 2013, containing the neurons firing times, the treadmill 
movement times and the treadmill velocity. The data was analyzed using custom Matlab scripts.

We divided the treadmill moving times into 100ms time bins (other bin resolutions between 50 ms 
and 500 ms were tested and provided similar results). Response onset for each neuron and run, was 
defined as the first bin, following at least 1 s of silence within a series of consecutive bins with firing 
activity which includes the peak of firing. The peak firing was defined as the bin with the highest value 
within a run, however only cells with an average peak firing of at least 0.5 Hz were included. This meth-
odology was applied consistently across all runs within a session. We chose this approach to mitigate 
potential biases that could arise from firing rate peaks occurring near the end of the treadmill, which 
might have been truncated. Basing our analysis on the peak values instead yielded comparable results 
and levels of statistical significance (Figure 3—figure supplement 1).

Our classification method is based on the premise that for ideal time cells, firing (and hence onset 
time) should be independent of running speed. Conversely, an ideal distance cell would display firing 
onsets at times depending on the speed. We therefore performed a linear regression between the 
onset times (‍Ti‍) and the reciprocal velocity (‍1/Vi‍) as well as the onset distance (‍Si‍) and the velocity (‍Vi‍), 
where i is an index to a specific run on the treadmill, and extracted the slopes (m and k) and offsets 
(n and q), as described in Equations 1 and 2. Consequently, in the case of a time-encoding cell, the 
velocity dependent term ‍k ∗

1
Vi ‍ would be small in comparison to the constant q, while for a distance 

encoding cell, the slope k would approximate the estimated encoded distance. Similarly, in accor-
dance with the relation stated in Equation 2, an ideal distance encoding cell would exhibit a small 
velocity dependent term ‍m ∗ Vi‍ compared to the constant n, while a time encoding cell would have an 
estimated encoded time equivalent to the slope m.

	﻿‍
Ti = k ∗ 1

Vi
+ q

‍�
(1)

	﻿‍ Si = m ∗ Vi + n‍� (2)

The CellType metric utilizes the variances of the onset times ‍
(
Ti − T̄

)2
‍, where the average onset 

time is computed across all runs within the session, and the onset distances ‍
(
Si − S̄

)2
‍, where the 

average onset distance is calculated across all runs within the session.

	﻿‍
CellType

(
Vi, Si, Ti

)
=

∑
i Vi ∗

(
Si − S̄

)2 −
∑

i
(
Ti − T̄

)2

∑
i Vi ∗

(
Si − S̄

)2 +
∑

i
(
Ti − T̄

)2
‍�

(3)

CellType is in the range of –1 to +1. For an ideal time-encoding cell, the onset variance  

‍
∑

i
(
Ti − T̄

)2 = 0‍, and hence CellType = 1. For an ideal distance encoding cell, the distance variance 
(multiplied by the respective velocity in order to match units) ‍Vi ∗

(
Si − S̄

)2 = 0‍, and hence CellType=-1.
Additional metrics defined and used for classifying the cells encoding:
The “FIT” metric is defined as follows:

https://doi.org/10.7554/eLife.83930
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	﻿‍

Fit
(
m, k, T̄, S̄

)
=





−1 0.5 < m
T̄

1 0.5 < k
S̄

0 otherwise ‍�

(4)

Where m and k are the linear fit slope coefficients (from Equations 1 and 2), ‍̄T ‍ is the average firing 
onset time and ‍̄S‍ is the average distance the animal traveled until the onset. Fit is –1 for a distance 
cell and 1 for a time cell.

The ‘p-value’ metric is defined as follows:

	﻿‍

PValue
(
Vi, Si, Ti

)
=





−1 p(no linear relation between the distance and velocity) < 0.05

1 p(no linear relation between the onset time and the reciprocal velocity) < 0.05

0 otherwise ‍�

A stricter metric, utilized the statistical significance of the linearity in Equations 1 and 2, through 
F-statistics. We classified a cell as distance encoding if the null hypothesis that there is no linear rela-
tion between the distance and velocity was rejected with p<0.05. We classified a cell as time encoding 
if the null hypothesis that there is no linear relation between the onset and the reciprocal velocity was 
rejected with p<0.05.

Results using these metrics are shown in Figure 3—figure supplement 1.
To ensure the activity peak is not missed, we extended the analysis to 5 s past the treadmill stop 

time. Otherwise, if a cell activity is concentrated towards the treadmill stop, the calculated onset may 
be influenced by the truncated activity time and show a false relation of the cell type activity to the 
time or distance. Moreover, since the truncated data time relates to the experiment type, whether 
time-fixed or distance-fixed, this could create a false bias of such a relation.

The relation between the type of cell classified in the above metrics and the session type was 
then tested by Pearson’s chi-square using two categories. The expected distribution of the cells was 
calculated based on the total number of cells, of each type, out of total cells number, in all sessions. 
The null hypothesis was defined as no dependency of the cells type distribution on the session type 
(either fixed-time or fixed-distance). On the per-animal analysis, for animals that were recorded only 
at a single type of session, we used the distribution of the cell types according to their distribution in 
all animals’ cells population.

We conducted additional analysis to explore potential relationships between the firing rates and 
the encoding properties of the cells. Our findings revealed that the distributions of peak firing rates 
and average firing rates, for time cells and distance cells, were similar (see Figure 3—figure supple-
ment 3).
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Author(s) Year Dataset title Dataset URL Database and Identifier

Abramson S, Kraus 
BJ, White JA, 
Hasselmo ME, Morris 
G, Derdikman D

2023 Data for Time or distance: 
predictive coding of 
hippocampal cells

https://​doi.​org/​
10.​5061/​dryad.​
ngf1vhhxp

Dryad Digital Repository, 
10.5061/dryad.ngf1vhhxp
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