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Global detection of human variants and 
isoforms by deep proteome sequencing

Pavel Sinitcyn1,2,11, Alicia L. Richards3,4,11, Robert J. Weatheritt5,6, 
Dain R. Brademan2,7, Harald Marx3,7,8, Evgenia Shishkova3,7, Jesse G. Meyer    3,7, 
Alexander S. Hebert3, Michael S. Westphall3,7, Benjamin J. Blencowe    9,10, 
Jürgen Cox    1  & Joshua J. Coon    2,3,4,7 

An average shotgun proteomics experiment detects approximately 10,000 
human proteins from a single sample. However, individual proteins are 
typically identified by peptide sequences representing a small fraction 
of their total amino acids. Hence, an average shotgun experiment fails 
to distinguish different protein variants and isoforms. Deeper proteome 
sequencing is therefore required for the global discovery of protein isoforms. 
Using six different human cell lines, six proteases, deep fractionation and 
three tandem mass spectrometry fragmentation methods, we identify a 
million unique peptides from 17,717 protein groups, with a median sequence 
coverage of approximately 80%. Direct comparison with RNA expression 
data provides evidence for the translation of most nonsynonymous 
variants. We have also hypothesized that undetected variants likely 
arise from mutation-induced protein instability. We further observe 
comparable detection rates for exon–exon junction peptides representing 
constitutive and alternative splicing events. Our dataset represents a 
resource for proteoform discovery and provides direct evidence that most 
frame-preserving alternatively spliced isoforms are translated.

Near-complete proteomes of simple organisms can be detected by 
mass spectrometry (MS) following only 1 h of analysis1,2. For more 
complex organisms, it is possible to monitor over 10,000 proteins 
within a day (refs. 3–7). Community-based maps of the human pro-
teome, assembled using extensive data from various tissues and cell 
types from laboratories across the world, have provided evidence for 
the translation of >90% of annotated protein-coding genes7,8. How-
ever, although the human genome contains approximately 20,000 
protein-coding genes9,10, it is estimated that alternative splicing 
events, whereby precursor messenger RNA sequences are combined 

in different arrangements, have the potential to notably increase 
proteome diversity. Specifically, from RNA sequencing (RNA-seq) 
analysis of human organs, reports have estimated that transcripts 
from more than 95% of multi-exon genes undergo alternative splic-
ing11,12. Furthermore, recent single-cell transcriptome sequencing 
has revealed that true splice isoform complexity is likely greater than 
previously appreciated13,14. Other sources of proteome variation, 
such as single-amino acid polymorphisms (SAPs), alternative splic-
ing and posttranslational modifications, further increase proteomic  
complexity15–20.
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Results
Deep human proteome sequencing
In silico tryptic digestion of the ~21,030 reviewed canonical protein 
sequences of the human proteome (UniProtKB/Swiss-Prot) predicts 
2.3 million tryptic peptides of suitable size for MS detection (7–35 
amino acids, up to two missed cleavages). These peptides comprise 
9.9 million amino acid residues of the 11.5 million total—that is, only 
86% of the proteome. If we consider digestion of the same proteins 
using the six enzymes in our study (LysC, LysN, AspN, chymotrypsin, 
GluC and trypsin), 7.4 million peptides suitable for shotgun proteomics 
are generated. These peptides cover 99% of the amino acids contained 
in the human proteome.

To test the hypothesis that we can in such manner increase cover-
age of the human proteome, we selected six diverse human cell lines: 
hES1, an embryonic stem cell line; HeLa S3, from cervical carcinoma; 
HepG2, from liver carcinoma; GM12878, a blood lymphoblastoid line; 
K562, from chronic myeloid leukemia; and HUVEC, from umbilical vein 
epithelial cells (Fig. 1). Having been included in the Encyclopedia of 
DNA Elements (ENCODE) project, these cell lines have a large amount 
of publicly available genomic and transcriptomic data49. Proteins from 
each cell line were separately digested with the six proteases listed 
above. To maximize depth, the resultant peptides were heavily fraction-
ated (24–80 fractions) and analyzed using nano flow LC coupled with 
quadrupole-Orbitrap–linear ion trap hybrid MS systems. Dissociation 
for MS/MS was achieved using HCD, CAD and ETD. The resulting 2,491 
raw files were simultaneously analyzed by database search to identify 
proteins and peptides using the Andromeda search engine50 inside 
MaxQuant51,52, and results were sequentially filtered to 1% peptide 
spectrum matches (PSMs) and protein-level false discovery rate (FDR) 
over the whole dataset.

Figure 2 summarizes these data, showcasing the depth of coverage 
and gains achieved by the multi-enzyme approach. For each cell line, 
an average of 539,325 unique peptides, corresponding to ~16,000 pro-
teins, were identified (Fig. 2a). The highest number of identified pro-
teins was from the hES1 cell line (17,121), followed by HeLa S3 (16,399), 
GM12878 (16,344), HepG2 (16,328), HUVEC (16,158) and K562 (16,054). 
The trypsin dataset contributed the largest number of unique peptides 
(396,782), followed by LysN (194,506), LysC (193,956), GluC (162,784), 
AspN (152,259) and chymotrypsin (114,152). Properties of detected 
peptides, such as a number of missed cleavages, length distribution 
and cleavage motif, are in high agreement with previous proteomics 
multi-enzyme studies (Supplementary Fig. 1)26,27,37. Notably, within 
each cell line, data from each enzyme digestion alone identified over 
10,000 protein groups. Data from tryptic peptides contributed the 
largest number of identifications and unique sequences, totaling 17,631 
proteins with 56.5% median sequence coverage. However, using all data 
comprising all proteases afforded a modest increase in the number 
of identified proteins (17,717) but considerably boosted the median 
sequence coverage to 79.2%. In total, we identified 12,151,708 PSMs 
and 1,119,510 unique peptides at FDR of 1%. Of those, 790 proteins were 
identified with complete sequence coverage. The average number of 
unique peptides per protein was 97 (median 65). However, 54 proteins 
were identified by only one unique peptide; only 1,122 proteins, or 6.3% 
of the total proteins, were identified by ten or fewer unique peptides. 
Median sequence coverage for the combined dataset and the contribu-
tion from subsets is shown in Fig. 2b, and ranges from 49.7% (HUVEC; 
16,158 proteins) to 63.9% (HeLa S3; 16,399 proteins). Remarkably, nearly 
half of all identified proteins were observed with 80–100% sequence 
coverage (Supplementary Fig. 2a,b). Only 936 proteins, or 5.3% of the 
total data, have sequence coverage below 25%.

The addition of enzymes other than trypsin provided a slight 
increase in the total number of proteins identified but induced a 
large increase in the nonredundant amino acids detected. The 17,717 
detected human proteins comprise 12,006,700 amino acid residues, 
including those that arise from noncanonical proteins, that is, isoforms. 

Limitations in proteomic technology have not permitted the 
global-scale detection of protein diversity. Typically, for shotgun 
proteomic methods, the presence of an entire protein is determined 
using a small number of peptide proxies—as few as two or three. Thus, 
sequence coverage in a proteomics experiment is generally insufficient 
to fully characterize all protein states present within a sample21,22. Yet 
the ability to precisely monitor protein isoforms is essential to under-
standing biological systems. Even the current deepest proteomic 
datasets23,24 do not contain enough sequence data to globally identify 
proteoforms. One approach to achieving proteoform-level detection 
is top-down MS, a strategy that measures intact protein mass before 
dissociation for sequence determination using tandem mass spectrom-
etry (MS/MS). Ensuring no loss in resolution, the top-down strategy is 
appealing. Practical issues with high-mass proteins, sequence coverage 
and detection of low-abundance species, however, limit its impact25.

Given the technical hurdles with top-down proteomics, we revis-
ited the shotgun strategy. Shotgun proteomics preferentially relies on 
trypsin to catalyze hydrolysis of proteins. Trypsin cleaves C-terminal 
to lysine and arginine residues and produces peptides of length and 
charge distributions most amenable to MS/MS. However, even with the 
assistance of extensive chromatographic separation, not all portions 
of the proteome are accessible from tryptic peptides26,27; many of the 
peptides produced are either too short or too long to be detected using 
current liquid chromatography–mass spectrometry (LC–MS) tech-
nology. As proteoforms can differ by a small number of amino acids, 
extensive sequence coverage is crucial for distinguishing near-identical 
variants. The use of alternative enzymes in addition to trypsin during 
digestion can increase the amino acid coverage of individual proteins, 
phosphorylation sites and whole proteomes28–44. However, given the 
considerably increased effort involved, this strategy is not amenable 
to routine use and to our knowledge has not been previously employed 
for the global-scale detection of proteoforms.

In this study, we investigate whether the separate digestion of 
human proteomes expressed in six different cell lines with six differ-
ent proteases, coupled with extensive liquid chromatography (LC) 
fractionation and state-of-the-art MS, produces sufficient sequence 
depth to afford a global assessment of how genomic variants and 
alternative splicing are incorporated into the proteome. Generated 
peptides were extensively fractionated before analysis on an Orbit-
rap Tribrid mass spectrometer, where they were dissociated using 
various fragmentation methods, including higher-energy collisional 
dissociation (HCD)45, collisionally activated dissociation (CAD)46 and 
electron transfer dissociation (ETD)47,48. We collected ~20 million 
high-resolution mass spectra and ~164 million MS/MS spectra from 
~2,500 nano-scale liquid chromatography-tandem mass spectrometry 
(nLC–MS/MS) experiments. The combined data enabled identification 
of 17,717 unique proteins with an overall median sequence coverage 
of 79.2%. Using these data, we provide a global view of genomic and 
transcriptomic sequence variant expression at the protein level. From 
a direct comparison with quantitative RNA-seq data, we detect ~80% 
of SAPs and ~20% of exon–exon junctions, representing both inclu-
sion and skipping of frame-preserving alternative splicing events. 
However, for proteins with the highest proteomics sequence coverage, 
represented by genes with relatively high expression (that is, log2 of 
reads per kilobase per million (RPKM) of ≥7) at the transcript level, 
~64% of frame-preserving alternatively splicing events are detected 
and the rates of detection of constitutively spliced and alternatively 
spliced junctions are similar. And finally, using the extensive, over-
lapping peptide sequence information provided by this resource, we 
demonstrate the feasibility of de novo protein assembly. Data gener-
ated from the present study represent the deepest proteomics map 
collected to date and have been compiled into an online resource at 
deep-sequencing.app. These methods and resources lay the founda-
tion for comprehensive mapping of protein diversity and are expected 
to catalyze future research efforts.

http://www.nature.com/naturebiotechnology
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In total, the unique peptides identified in the combined tryptic datasets 
from all cell lines detected approximately half of these amino acids 
(6,113,639). The number of covered amino acids rises to 8,291,681 when 
all protease data are used (Fig. 2c). Figure 2d illustrates the impact of 
these additional amino acids on protein sequence coverage. Next, we 
determined the most optimal multi-protease combinations (Fig. 2e), 
noting that all top combinations included trypsin. Our total human 
proteome coverage is, to our knowledge, the largest to date, with 
2.12 million more residues (a 34.4% increase) over the 6.17 million 
identified using exclusively tryptic peptides from the entire MassIVE 
data repository (Supplementary Fig. 2d)8. Finally, we compared the 
proteins identified in this study with the curated neXtProt database7, 
which categorizes proteins across five groups based on the strength 
of the evidence for their existence. As shown in Supplementary Fig. 3,  
most of our protein identifications (13,603 proteins) fall into the 
highest-confidence category (PE1), and 79 proteins now can be pro-
moted to PE1 status from lower categories (Supplementary Table 1).

Alternative proteases have previously been utilized to uncover 
novel portions of the proteome, including membrane proteins53,54. 
These proteins—essential to many biological processes and represent-
ing important drug discovery targets55—remain under-represented 
in proteomics datasets due to their hydrophobic nature. This is also 
true of our dataset. Gene ontology cellular component pathway 
enrichment analysis of the proteins with sequence coverage below 
25% revealed that these low-coverage proteins were primarily mem-
brane proteins (Supplementary Fig. 2e). Indeed, we also observe a 
coverage reduction for transmembrane proteins across all studied 
proteases (Fig. 2f). To further explore the behavior of peptides gener-
ated from transmembrane-spanning sequences, we calculated the 
enzyme-specific coverage of aligned membrane-spanning regions 
to either the N or C terminus (Fig. 2g). These data demonstrate that 
because transmembrane regions are depleted for typical protease 
cleavage sites, peptides suitable for detection by shotgun proteom-
ics are less likely to be observed. This conclusion is further supported 
by the strong relative performance of chymotrypsin, which is atypi-
cal in cleaving at hydrophobic residues, as compared with the other 
proteases.

De novo protein assembly
Protein inference is conceptually akin to reference transcriptome 
assembly in short-read sequencing, where a previously assembled 
proteome or genome database is required to map peptide sequences 
or nucleic acid reads, respectively. In proteomics, however, genome 

assemblies for proteome database generation are either unavail-
able or low-quality for many organisms. Several tools are available to 
assemble short sequencing reads without a reference genome, such 
as SOAPdenovo-Trans56. However, de novo assembly of nucleic acid 
sequences relies on the presence of randomly overlapping sequences, 
which is not a common property of proteomic datasets, which typically 
use only a single enzyme (for example, trypsin).

With the data from six different proteases and deep coverage pre-
sented above, we produce many peptides with partial overlap, which 
we hypothesized may enable de novo protein assembly. An excellent 
example for the de novo assembly is the proteasome subunit alpha 
type-6, which is represented by full sequence coverage (Supplementary 
Fig. 4a). Overall, the de novo assembly produced 35,480 scaffolds, of 
which 16,496 (~47%) correctly match to 9,695 protein groups. Median 
sequence coverage from the de novo assembly was 18% compared with 
79.2% for the reference assembly (Supplementary Fig. 4b,c). Assembled 
scaffolds have a range of 33–358 amino acids with a median length of 45 
(Supplementary Fig. 4d), and an average of two scaffolds were mapped 
to each protein (Supplementary Fig. 4e). These results demonstrate 
the feasibility of de novo proteome assembly using overlapping pep-
tides from multiple protease digestions of the proteome; application 
of proteomics-specific assembly methods may improve this result in 
the future57.

Majority of hypothetical SAPs are confirmed in the proteome
SAPs are variations in the protein sequence which often arise from 
single nucleotide polymorphisms (SNPs) that result in nonsynony-
mous codon changes in genomic sequence. The HeLa S3 cell line used 
in this study contains ~4.5 million SNPs when compared with the hg38 
reference human genome. Of these, ~30,000 occur in coding regions, 
and 4,740 result in nonsynonymous codon changes58. We assessed 
whether our deep proteomics data would afford the ability to determine 
whether these SNPs are translated into SAPs. To this end, we searched 
for SAPs with a MaxQuant module which is tailored for the identifi-
cation of peptide evidence for the translation of genomic variations 
(Supplementary Fig. 5)59. From this analysis, we observe protein-level 
evidence for up to 2,179 SAPs in individual cell lines, or a total of 5,060 
SAPs (Fig. 3a and Supplementary Table 2). To assess the quality of these 
SAP-containing peptide identifications, we performed a correlation 
analysis of all peptide spectral matches both with and without SAPs 
(mutated and reference peptides, respectively). Figure 3b demon-
strates the distribution of correlation coefficients between observed 
and predicted MS/MS spectra using the machine learning-based tool 

6 cell lines 6 protease digests 2,491 LC–MS/MS experiments

HCD/ETD/CAD

Proteomes Peptides
Fractions

LC–MS/MS

In
te

ns
ity

Time

K562 HUVEC

GM12878 HeLaS3

HepG2

hES1

Tryp LysC LysN

GluC AspN Chymo.

M C H F T E E D K A T I T S L W C K V N V E D A C C E T L C R L L V V Y P W T Q R F F D S F C N L S S A S A I M C N P K

V K A H G K K V L T S L G D A I K H L D D L K G T F A Q L S E L H C D K L H V D P E N F K L L G N V L V T V L A I H F G

K E F T P E V Q A S W Q K M V T A V A S A L S S R Y H

Hemoglobin subunit gamma-1 (UniProt P69891)
No. of unique peptides: 1–3 4–6 7–9 >9

Fig. 1 | Deep proteome sequencing workflow. Six human cell lines were grown 
in parallel, their proteomes were isolated and then one of the six proteases was 
used to digest separate aliquots of each proteome in parallel. Peptides resulting 
from each digestion were fractionated by high-pH RP chromatography and then 
analyzed separately with nLC–MS/MS using HCD, ETD and CAD. The resulting 

data were searched with MaxQuant51,52 against the human proteome database, 
and over 17,000 proteins were identified by peptides that produce a median 
coverage of over 80%. The high coverage achieved is illustrated on the sequence 
of hemoglobin subunit gamma-1, with color coding to illustrate the number of 
unique peptides that cover each amino acid position.
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Fig. 2 | Overview of results from deep proteomics analysis. a, Number of 
proteins detected for each of the six cell lines and cumulative as a function 
of peptides from the various protease digests. b, Median sequence coverage 
of various cell line proteomes achieved by digests with individual proteases 
and by combining all protease results. Supplementary Fig. 2c shows sequence 
coverage distributions separately for all combinations of cell lines, proteases 
and fragmentation methods. c, Venn diagram of all observed amino acids 
digested by trypsin versus all proteases combined excluding trypsin. d, Sequence 
coverage for each of the detected proteins for the tryptic peptide data (red) 

and combined protease digests, including trypsin (gray). e, Observed (dark 
gray) and theoretical (light gray) distributions of sequence coverage achieved 
for various combinations of proteases. The top three combinations of 2, 3, 4 or 
5 proteases are displayed. f, Protein coverage comparison of transmembrane 
and nonmembrane proteins. For e and f, the lower whisker/quartile and upper 
quartile/whisker show the 5th, 25th, 75th and 95th percentiles, accordingly. 
g, Relative protein coverage of N terminus (left) and C terminus (right) 
transmembrane segments. Chymo., chymotrypsin.
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DeepMass60 for mutated and reference peptides. The baseline is drawn 
for peptides with multiple fragmentation spectra, which are compared 
with each other. The distributions for reference and mutated peptides 
are similar, providing increased confidence that these peptide spectral 
matches are legitimate.

For all cell lines except HUVEC, we observed high overlap between 
the mutations detected by transcriptomics and by proteomics (Sup-
plementary Fig. 6a). Given HUVEC is the only primary cell line (that 
is, obtained directly from host tissue) in the study, this low overlap is 
expected as the transcriptomic and proteomic data were collected from 
cells originating from different donors. Therefore, we omitted HUVEC 
from further analysis. Figure 3a shows that most nonsynonymous SNPs 
that appear in the transcript also appear at the protein level (median 
73% over all studied cell lines). Further, the multi-enzyme data led on 
average to a doubling of identified SAPs compared with when only 
trypsin was used (Supplementary Fig. 6a).

Figure 3c shows the presence of variants as a function of cell line 
and whether they are detected at the protein level. We note that there 
are primarily two types of SAP—those that are cell line specific (high-
lighted within a blue rectangle) and those that are conserved across the 
cell lines (highlighted within a green rectangle). Enrichment analysis of 
the SAPs found only at the transcriptomic level (Fig. 3d) revealed several 
gene ontology terms associated with membrane protein families—sup-
porting our earlier conclusions that peptides for such proteins are less 
amenable to MS analysis.

To test whether some of the mutations that were undetected at the 
protein level, even though transcripts evidence was present, caused 
protein instability, we leveraged the SIFT61 and PolyPhen-2 (ref. 62) 
tools. These software tools predict how an amino acid mutation can 
alter protein structure and function by classifying mutations as either 
benign or deleterious. As depicted in Fig. 3e,f, both algorithms predict 
a significant shift (P values of 2 × 10−8 and 1.1 × 10−12, respectively from 
two-sided Wilcoxon rank sum test) in the fraction of deleterious muta-
tions for the undetected SAP group. These data confirm that at least a 
subset of undetected SAPs likely arise from cases where the mutation 
induces protein instability.

Protein-level evidence for alternative splicing
The high proteome sequence coverage of our dataset provides an 
opportunity to globally detect protein isoforms arising from alterna-
tive splicing and affords a direct assessment of the degree to which this 
process contributes to proteomic complexity. As mentioned above, 
RNA-seq analyses of diverse human organs and cell lines have provided 
evidence that more than 95% of multi-exon genes produce alternatively 
spliced transcripts11,12. However, the extent to which alternative tran-
scripts with the potential to encode different proteins are translated 
has been the subject of considerable debate63,64, in large part due to 
the lack of MS datasets with sufficiently deep coverage. Accordingly, 
using the high-coverage data generated here, we assessed the propor-
tion of alternatively spliced transcript variants that are detected in 
the proteome.

To assess the extent to which it is possible to detect splicing 
within our dataset, we first determined the relative proportions of 
peptides that fall entirely within exons versus those that span exon–
exon junctions. Approximately 30% of identified peptide sequences 
span junction sequences formed by splicing of protein-coding exons 
(Supplementary Fig. 7a). Notably, trypsin generates the lowest ratio of 
junction-spanning versus exon body peptides of all proteases used in 
this study (~25% versus 28–32%) (Supplementary Fig. 7a). This observa-
tion confirms in silico predictions of the limited utility of trypsin alone 
for detection of spliced junction sequences in shotgun proteomics 
data65. In particular, peptides from trypsin and LysC digestion that 
fully map within exons have a clear bias which coincides with the first or 
last amino acids encoded by exons (Supplementary Fig. 8b). Addition-
ally, exon-spanning LysN peptides tend to overlap by a single amino 

acid at their C termini (Supplementary Fig. 8c). These data are also 
consistent with a high frequency of lysine residues overlapping splice 
sites65 and illustrate the importance of utilizing additional proteases 
(chymotrypsin, AspN, GluC and so on) when attempting to detect 
splice isoforms.

Figure 4 illustrates our strategy for detection of translated alterna-
tive splicing events. In the example provided, alternative splicing of a 
cassette exon (exon 8) of the Amyloid precursor protein (APP) gene is 
detected by a combination of peptides spanning exons 7 and 9, the junc-
tion formed by skipping of the exon, and by peptides spanning exons 
7 and 8 or exons 8 and 9, which are formed by inclusion of the exon. In 
total, we detect 11 unique peptides spanning these three junctions, 
thus confirming translation of isoforms resulting from inclusion and 
skipping of the exon. Figure 5a depicts the major classes of alternative 
splicing events and the detection frequencies of these as they appear in 
RNA-seq data49 generated from all six cell lines analyzed in this study, 
and the numbers of these events detected at the proteomics level, when 
considering peptides mapping to one of both possible resulting iso-
forms (Supplementary Table 3). With a requirement for expression of at 
least one of two isoforms, we detect 4,608 of 13,450 (34.3%) alternative 
splicing events (Fig. 5a). Notably, of 6,145 alternative splicing events 
with RNA-seq expression evidence for both alternatives, we detect 
1,141 (18.6%) at the protein level, where junction-spanning peptides 
representing both alternative isoforms are identified.

Several factors inherently limit the detection of transcript iso-
forms at the protein level. These include (1) relatively low transcript 
abundance arising from reduced levels of gene expression; (2) tran-
script turnover due to nonsense-mediated mRNA decay (NMD), trig-
gered by premature termination codons introduced by frame-shifting 
alternative splicing events66 and other turnover processes; and (3) 
reduced levels of splicing, as measured using the metric PSI. Exempli-
fying these limitations, intron retention events, which often result in 
nuclear retention of transcripts or trigger NMD if the retained intron 
does not prevent transcript export67, are the most rarely detected 
at the protein level (that is, only 9 of 105). Furthermore, the rate of 
detection at the proteomics level gradually increases as the corre-
sponding transcript levels for cassette alternative exons increase  
(Fig. 5b). Moreover, most of the events detected at the proteomics level 
derive from frame-preserving (that is, in-frame) alternative isoforms  
(Fig. 5c). Considering only frame-preserving alternative splicing events 
in relatively abundant transcripts (that is, ≥7 log2 RPKM), we observe 
64% of alternative spliced events at the protein level (Fig. 5d).

To estimate the possible upper bound detection rates for alter-
native splicing events at the proteomics level, we compared relative 
detection rates for alternatively spliced and constitutively spliced 
junctions in the same RNA transcripts, where constitutively spliced 
exon–exon junctions are defined as those present in all isoforms of 
a gene. Importantly, detection rates for constitutive and alternative 
exon–exon junctions were comparable over a range of transcript lev-
els, in both cases plateauing at approximately 40% of total junctions 
detected at the highest levels of transcript abundance (Fig. 5e and 
Supplementary Fig. 9a–f). Consistent with these results, the maximum 
detection levels require combined data from all six proteases, since 
each enzyme alone resulted in substantially lower detection levels 
(Fig. 5f and Supplementary Fig. 9g–i). Additionally, the analysis of all 
protease combinations shows that nonarginine and nonlysine directed 
proteases (GluC, AspN and Chymotrypsin) are highly complementary 
to trypsin in terms of splice site coverage (Fig. 5g).

Finally, to further evaluate factors contributing to the detection 
of spliced isoforms at the proteomics level, we trained a machine 
learning binary classifier68. Specifically, we classified cassette exon 
skipping events detected in both proteomics and transcriptomics 
data versus those events detected solely in the transcriptome. After 
training on the following properties—transcript abundance, PSI value, 
exon length, protein coding sequence length, frame-preserving status 
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and a minimum theoretical peptide coverage between isoforms for 
each studied protease—we evaluated performance using sevenfold 
cross-validation. This classifier results in 0.83 area under the receiver 
operating characteristic (ROC) curve (Fig. 5h), which is better than 
random performance. We next used the permutation importance69 
to evaluate the importance of each property and to establish the most 
important ones for influencing proteomic detection of alternative 
splicing events. The top three most important parameters are tran-
script abundance, PSI and frame status (Fig. 5i), consistent with the 
results in Fig. 5b–d.

The PSI ratio reflects the percentage of the total transcript 
abundance that results in exon inclusion. Since the exon-included 
isoform contains two junctions for proteomic detection, while the 
excluded-exon form only contains one, in the case of equally abun-
dant isoforms, exon-inclusion events have double the probability of 

detection. This situation would result in an optimal PSI for proteomic 
detection of 33%. This is confirmed in Fig. 5j, where the highest prot-
eomics detection rate for exon exclusion is close to 30%. Note that for 
extreme PSI values, for example, >0.9, the abundance of the spliced-in 
isoform is tenfold higher than the splice-out version. This phenomenon 
likely reduces the overall protein abundance of one isoform, adding to 
the challenge of its detection.

Discussion
Here we used six human cell lines, six parallel protease digestions 
and three MS/MS fragmentation methods to generate over 164 mil-
lion tandem mass spectra from nearly 2,500 nLC–MS/MS analyses  
(Fig. 1). Our analysis of the combined data identified over 1 million 
unique peptides from 17,717 genes encoding protein sequences (Fig. 2).  
The median protein sequence coverage was 79.2%, representing 
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8.29 million unique amino acids. The use of proteases that produce 
sequences complementary to trypsin was particularly important for 
detecting 2.18 million unique amino acids, increasing the average 
protein’s sequence coverage by 19%. We conclude that while the use 
of multiple enzymes only modestly increases protein identification 
rates, this strategy substantially increases proteomic coverage. A key 
result from this work is that proteomic coverage gains often come from 

protein regions with suboptimal trypsin cleavage sites, for example, 
membrane-spanning domains and splice junctions. Additionally, with 
the coverage achieved here, we provide evidence that de novo assembly 
can be accomplished directly from proteomic data, although currently 
for a limited subset of highly expressed proteins.

We developed informatics tools to allow global detection of non-
synonymous mutations and alternative splicing. Our analysis provides 
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evidence that approximately 73% of nonsynonymous SNPs (that is, 
SAPs) are translated and present in the proteome. To our knowledge, 
this is the first proteogenomic study of SAP variants with such depth. 
This resource now provides a framework to directly study allele-specific 
expression and address fundamental questions of how mutations 
impact protein expression and stability70. Furthermore, our catalog of 
expressed SAPs, and the appropriate enzymes and dissociation meth-
ods needed to detect them, offers the ability to globally monitor SAPs 
in both basic and clinical contexts. We note that the ability to detect 
SAPs in clinical samples could raise privacy concerns71,72.

Alternative splicing, which is pervasive at the transcript level, was 
previously largely undetected at the proteomics level due to the low 
degree of peptide coverage in most shotgun MS experiments73. The 
failure of proteomics to detect and monitor these events is generally 
accepted; indeed, it is common practice to report protein isoforms as 
groups74. This shortcoming has limited not only our ability to differenti-
ate protein isoforms but also our knowledge of how splicing impacts 
the proteome. Here we provide evidence that over half (about 64%) 
of the frame-preserving splicing events of relatively highly expressed 
genes detected by transcriptomics are indeed translated and pre-
sent at the protein level (Fig. 5d), and 22% are detected across the 
entire expression range (Fig. 5c). Given the highly dynamic nature 
of protein expression and the challenges of detecting differentially 
expressed splice variants, we expect these numbers to be underes-
timates, as evidenced by the lack of full detection of constitutively 
spliced exon–exon junctions even at the highest levels of peptide  
coverage (Fig. 5e).

Our study established a compendium of ~25,000 peptides 
which provide proteomics evidence for ~5,000 splice events. This 
detection was enabled using multiple proteases (Fig. 5f,g). While 
trypsin digestion generates peptides of a preferred length and 
behavior for mass spectrometric detection, it also limits the abil-
ity to detect splice junctions. Splice site sequences are inherently 
biased for lysine codons such that trypsin digestion results in an 
under-representation of junction-spanning peptides (Supplemen-
tary Fig. 7b)65. The use of alternative proteases, however, generates 
a substantial increase in peptides spanning these junctions, approxi-
mately doubling their number for MS detection (Fig. 5f). We fur-
ther confirm additional features of alternative splicing events that 
limit their detection at the proteomics level. These include intron 
retention, NMD (which may be triggered by intron retention or other 
frame-shifting events), and low or high PSI range alternative splic-
ing events (Fig. 5j), which may arise because of splicing regulation 
or transcript turnover. Our results are largely consistent with the 
findings of previous ribosome profiling studies, providing evidence 
that the majority of alternatively spliced junctions overlapping cod-
ing sequence in stably expressed transcripts are translated75. The 
results of the present study provide direct evidence that alternative 
splicing is widespread at the protein level, refuting conclusions of 
previous studies on MS data with limited coverage generated using  
trypsin alone63,64.

Owing to its scope, depth and coverage, the dataset reported in 
this study represents a resource to drive future work on the human 
proteome. To make this peptide catalog accessible, we have cre-
ated an online resource—deep-sequencing.app. This resource has a 
gene-centric design, such that one can query any gene and examine 
the corresponding peptides, SAPs and splicing junctions detected. 
Beyond providing detailed knowledge of selected genes and their 
proteoforms, these data could be similarly useful for MS analyses by 
targeted proteomics and for large-scale machine learning endeavors76. 
For targeted work, our resource provides a global-scale proteomics 
database of mutations and splice junctions, and the specific peptides 
that enable their monitoring. For machine learning, it offers over 12 mil-
lion PSMs from the use of multiple proteases and MS/MS dissocia-
tion methods. These data resources will thus enable new insights into 
unstudied portions of the proteome, potentially offering improved 
prediction of parameters including peptide detectability, dissocia-
tion behavior and chromatographic retention. Finally, these data are 
expected to facilitate prioritization of SAPs and protein isoforms for 
future functional studies.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Cell culture and lysis
HeLa S3 cells (CCL-22; ATCC) were grown at 37 °C with 5% CO2 in F-12K 
medium (ATCC) supplemented with 10% FBS and antibiotics. HUVEC 
cells (CC-2517; Lonza) were grown at 37 °C with 5% CO2 in Endothelial 
Growth Media (EGM) supplemented with EGM Complete Media (Lonza) 
and antibiotics. HepG2 cells (HB-8065; ATCC) were grown at 37 °C with 
5% CO2 in EMEM (ATCC) supplemented with 10% FBS and antibiotics. 
K562 cells (CCL-243; ATCC) were grown at 37 °C with 5% CO2 in IMDM 
(ATCC) supplemented with 10% FBS and antibiotics. GM12878 cells 
(GM12878 K Order 104598; Coriell Institute for Medical Research) were 
supplemented with 15% FBS and RPMI-1640 medium (Sigma Aldrich). 
hESC-1 cells were prepared according to previously published proto-
cols77. Cells were collected at >70% confluency through centrifugation 
at 300g for 5 min at 4 °C. The supernatant was removed, and cells were 
washed with PBS and centrifuged at 300g for 5 min at 4 °C. The resulting 
pellet was stored at −80 °C. Cell pellets were resuspended in lysis buffer 
containing 8 M urea, 50 mM Tris (pH 8), 5 mM CaCl2, 30 mM NaCl, and 
protease (Roche) and phosphatase (Roche) inhibitor tablets. The pel-
let was lysed by four rounds of sonication at 4 °C, alternating between 
20 s on and 20 s off. Lysate protein concentration was measured by 
Bicinchoninic acid Protein Assay Kit (Thermo Pierce).

Digestion
Protein was reduced by addition of 5 mM dithiothreitol and incubation 
for 45 min at 55 °C. The mixture was cooled to room temperature, fol-
lowed by alkylation of free thiols by addition of 15 mM iodoacetamide 
in the dark for 30 min. The alkylation reaction was quenched with 5 mM 
dithiothreitol. For tryptic digestion, a 1-mg protein aliquot was digested 
overnight with 20 µg of trypsin (Promega) at room temperature in 1 M 
urea. For LysC digestion, a 1-mg protein aliquot was digested overnight 
with 20 µg of LysC (Wako) at room temperature in 4 M urea. For LysN 
digestion, a 1-mg protein aliquot was digested for 4 h with 20 µg of 
LysN (Thermo Pierce) at 37 °C in 4 M urea. For GluC digestion, a 1-mg 
protein aliquot was digested overnight with 25 µg of GluC (Roche) at 
room temperature in 0.5 M urea. For chymotrypsin digestion, a 1-mg 
protein aliquot was digested overnight with 12.5 µg of chymotrypsin 
resuspended in 0.2% formic acid (Promega) in 1 M urea. For digestion 
with AspN, a 1-mg protein aliquot was incubated with 6 µg of AspN 
(Roche) at room temperature overnight. Each digest was quenched 
by the addition of Trifluoroacetic acid and desalted on a 100-mg C18 
Sep-Pak cartridge (Waters).

Fractionation
High-pH reversed-phase (RP) fractionation was performed using either 
a Surveyor LC quaternary pump or a Dionex UltiMate 3000. Frac-
tionation was performed at a flow rate of 1.0 ml min−1 using a 5-µm 
column packed with C18 particles (250 × 4.6 mm2, Phenomenex) on a 
Surveyor LC quaternary pump. Samples were resuspended in buffer 
A and separated using the following gradient: 0–2 min, 100% buffer 
A, and separated by increasing buffer B over a 60-min gradient at a 
flow rate of 0.8 ml min−1 (buffer A: 20 mM ammonium formate, pH 10; 
buffer B: 20 mM ammonium formate, pH 10, in 80% ACN). Flow rate was 
increased to 1.5 ml min−1 during equilibration. Fractionation was per-
formed at a flow rate of 0.45 ml min−1 using a 1.7-µm column packed with 
BEH particles (50 × 1 mm2, Waters) on a Dionex Ultimate 3000 pump 
(Thermo). Samples were resuspended in buffer A and separated by 
increasing buffer B over a 45-min gradient at a flow rate of 0.45 ml min−1 
(buffer A: 20 mM ammonium bicarbonate; buffer B: 20 mM ammonium 
bicarbonate in 80% ACN). Trypsin-digested H1-hESC cells were first 
fractionated via strong cation exchange fractionation. Peptides were 
dissolved in 400 µl of strong cation exchange buffer A (5 mM KH2PO4 
and 30% acetonitrile (ACN); pH 2.65) and injected onto a polysulfoethyl-
aspartamide column (9.4 × 200 mm2; PolyLC) attached to a Surveyor LC 
quaternary pump (Thermo Electron) operating at 3 ml min−1. Fractions 

were collected every 2 min starting at 10 min into the following gradi-
ent: 0–2 min at 100% buffer A, 2–5 min at 0–15% buffer B (5 mM KH2PO4, 
30% ACN and 350 mM KCl (pH 2.65)) and 5–35 min at 15–100% buffer 
B. Buffer B was held at 100% for 10 min. Fractions were collected from 
8–12 min, 12–14 min, 14–16 min and 16–25 min. Each of these four strong 
cation-exchange fractions was further fractionated by high-pH RP 
fractionation on a Surveyor LC quaternary pump, as described above.

LC–MS/MS
Samples were resuspended in 0.2% formic acid and separated via RP 
chromatography. Peptides were injected onto an RP column prepared 
in-house. Approximately 35-cm lengths of 75-µm to 360-µm inner/
outer diameter bare-fused silica capillaries, each with a laser pulled 
electrospray tip, were packed with 1.7-µm diameter, 130-Å pore size, 
Bridged Ethylene Hybrid C18 particles (Waters). Columns were fitted 
onto either a nanoAcquity (Waters) or a Dionex (Thermo) and heated 
to 60 °C using a home-built column heater. Mobile phase buffer A was 
composed of water and 0.2% formic acid. Mobile phase B was composed 
of 70% ACN, 0.2% formic acid and 5% dimethylsulfoxide. Each sample 
was separated over a 100-min gradient, including time for column 
re-equilibration. Flow rates were set at 300–350 µl min−1.

Peptide cations were converted to gas-phase ions by electrospray 
ionization and analyzed on a Thermo Orbitrap Fusion or a Thermo 
Orbitrap Lumos (Thermo Fisher Scientific). All fractions were analyzed 
using HCD. Precursor scans were performed from 300 to 1,500 m/z at 
either 60,000 or 120,000 resolution (at 400 m/z). A 5 × 105 ion count 
target was used on the Orbitrap Fusion; a 1 × 106 ion count target was 
used on the Orbitrap Lumos. Precursors selected for MS/MS were iso-
lated at 0.7 Thomson (Th) with the quadrupole, fragmented by HCD 
with a normalized collision energy of 30 and analyzed using turbo 
scan in the ion trap. For some analyses, precursors above 500 m/z were 
fragmented by HCD using the described conditions, while precursors 
below 500 m/z were fragmented by CAD with a normalized collision 
energy of 30. The maximum injection time for MS/MS analysis was 
normally set at either 25 or 35 ms, but was set higher for some analyses, 
with an ion count target of 104. Precursors with a charge state of 2–8 
were sampled for MS/MS. Dynamic exclusion time was set at 15 s, with 
a 10-p.p.m. tolerance around the selected precursor and its isotopes. 
Monoisotopic precursor selection was turned on. Analyses were per-
formed in top speed mode with either 3- or 5-s cycles.

LysC, LysN, AspN, GluC and chymotrypsin fractions were analyzed 
using ETD. To maximize identifications, precursor scans were per-
formed from 200 to 800 m/z at either 60,000 or 120,000 resolution 
(at 400 m/z). A 5 × 105 ion count target was used on the Orbitrap Fusion; 
a 1 × 106 ion count target was used on the Orbitrap Lumos. Precur-
sors selected for MS/MS were isolated at 0.7 Th with the quadrupole. 
Precursors were fragmented by ETD using custom reaction times; +3: 
40 ms, +4: 22 ms, +5: 14 ms, +6: 10 ms, +2: 70 ms. Electron-transfer/
higher-energy collision dissociation (EThcD) was performed on +2 
precursors, at 25% supplemental activation collision energy. Precur-
sor ions were selected for fragmentation based on charge state in the 
following order: +3, +4, +5, +6, +2. Fragment ions were analyzed in the 
ion trap. Dynamic exclusion time was set at 15 s, with a 10-p.p.m. toler-
ance around the selected precursor and its isotopes. Monoisotopic 
precursor selection was turned on. Analyses were performed in top 
speed mode with either 3- or 5-s cycles.

Fractionated peptides from chymotrypsin-catalyzed proteolysis 
were analyzed using CAD. Precursor scans were performed from 300 
to 1,500 m/z at either 60,000 or 120,000 resolution (at 400 m/z). A 
5 × 105 ion count target was used on the Orbitrap Fusion; a 1 × 106 ion 
count target was used on the Orbitrap Lumos. Precursors selected for 
MS/MS were isolated at 0.7 Th with the quadrupole, fragmented by CAD 
with a normalized collision energy of 30 and analyzed using turbo scan 
in the ion trap. The maximum injection time for MS/MS analysis was 
normally set at either 25 or 35 ms, but was set higher for some analyses, 
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with an ion count target of 104. Precursors with a charge state of 2–8 
were sampled for MS/MS. Dynamic exclusion time was set at 15 s, with 
a 10-p.p.m. tolerance around the selected precursor and its isotopes. 
Monoisotopic precursor selection was turned on. Analyses were per-
formed in top speed mode with either 3- or 5-s cycles.

Protein identification
The 2,491 raw files were simultaneously analyzed by database search to 
identify proteins and peptides using the Andromeda search engine50 
inside MaxQuant (v.1.5.7.5)51,52. Searches were performed against the fol-
lowing protein sequence databases: UniProt canonical (release 2017_02; 
UP000005640_9606), UniProt isoform (UP000005640_9606_addi-
tional), Ensembl canonical (release 86; GRCh38.pep.all), Ensembl 
isoform (GRCh38.pep.abinitio). Searches used the default precursor 
mass tolerances (20 p.p.m. first search and 4.5 p.p.m. main search) 
and a product mass tolerance of 0.35 Da. The in silico digest was set 
to specific cleavage and a maximum of two missed cleavages for all 
proteases, except chymotrypsin, where up to four missed cleavages 
were allowed. Parameters for each protease (LysC, LysN, chymotrypsin, 
AspN, GluC and trypsin) were set in groups. The fixed modifications 
specified were carbamidomethylation of cysteine residues and variable 
modifications were oxidation of methionine and acetylation of protein 
N terminus. PSMs and protein groups were both sequentially filtered 
to a 1% FDR over the whole dataset, resulting in detection of 12,151,708 
forward PSMs (7,469 reverse PSMs; 0.06% FDR), 1,119,510 forward 
peptides (4,486 reverse peptides; 0.4% FDR) and 17,717 proteins (176 
reverse proteins; 0.99% FDR). Note, PSMs that match only to protein 
groups that do not pass the protein-level FDR filtering are not present 
in the output tables, resulting in lower than the initially specified 1% 
PSM FDR (0.06%). Protein groups were filtered for ‘Only identified by 
site’, ‘Reverse’ and ‘Contaminant’. Gene locus information was mapped 
to majority protein identifications with Human Gene Nomenclature 
Database identifications from UniProt and Ensembl BioMart.

Protein coverage calculation
Sequence coverage for various subsets of runs was calculated with a 
custom C# application. For each row in the MaxQuant proteinGroups.
txt output, all associated peptides were retrieved from peptides.txt. 
For each peptide, it was first determined whether it was found in this 
subset of runs, using the experiment-based PSM count columns in 
peptides.txt. If so, the sequence was searched for all occurrences in 
the sequence of the first major protein of the protein group, ignoring 
enzyme specificity. A list of unique amino acid residues observed was 
maintained across all peptides, and at the end the number of residues 
in the list was divided by the total number of residues in the major 
protein sequence. Whenever possible, sequence coverages obtained 
in this manner were compared with those computed by MaxQuant and 
included in proteinGroups.txt, and the agreement was excellent. The 
console C# code is located at https://github.com/cwenger/cwenger.
github.io/tree/master/MaxQuantAnalyzer.

Spectra visualization and annotation
All presented spectra were annotated and visualized with a 
web-based Interactive Peptide Spectra Annotator78. Two spectra 
shown in Fig. 4 have the following Universal Spectrum Identifiers—
mzspec:PXD024364:20160115_alr_CompleteHumanProteome_HUVEC_
chymo_CAD_fr14:scan:50088:CMAVCGSAIPTTAASTPDAVDKY/2 (left 
side) and mzspec:PXD024364:HeLaS3_trypsin_19_140824180249:sca
n:34854:DPVKLPTTAASTPDAVDK/2 (right side).

De novo proteome assembly
The PSMs were extracted from the evidence.txt file and filtered by 
‘Potential contaminant’ and ‘Reverse’. Each PSM was reverse translated 
into nucleotide sequence with a nondegenerate codon table and writ-
ten into a FASTA file as input to SOAPdenovo. The SOAPdenovo config 

file parameters were set to default except for maximal read length to 
150. SOAPdenovo-Trans-31mer was run with k-mer length 23 (at least 8 
amino acids) and minimum contig length 100 (at least 34 amino acids). 
Scaffolds from the assembly were matched back to the proteome 
sequences using brute force string matching.

RNA-seq data and analysis
The paired RNA-seq data for HeLa S3/HUVEC/HepG2/K562/GM12878/
hESC are a part of the ENCODE dataset49 and were downloaded from 
SRA (SRP014320). Raw reads were filtered using trimmomatic (v.0.36) 
using default parameters for paired-end data. Filtered reads were 
mapped to the human reference genome GRCh38 (Ensemble release 
91) using STAR aligner (v.2.5.3a). Further processing—sorting, con-
verting from SAM to BAM format and indexing—was done using  
SAMtools (v.1.6).

To compare proteomics and transcriptomics data (Fig. 3b), raw 
reads per gene were counted in Perseus (v.1.6.14.0)79, and rows were 
logarithmized with pseudocount 1 and normalized by z-scoring for each 
experiment independently. Intensity-based absolute quantification 
values from the standard proteomics search were summed for each 
cell line (through fractions, fragmentation methods and proteases), 
logarithmized, z-scored for each cell line independently and imputed 
by replacing missing values from the normal distribution (width = 0.3, 
down shift = 1.8), separated for each cell line. After joining the two 
tables, genes with both proteomics and transcriptomics data were used 
for the principal component analysis plot. Component 1 (accounting 
for 27.8% of the variance) was not used because it explains the differ-
ence between proteomics and transcriptomics data.

Mutation analysis—transcriptomics
Nonsynonymous mutations were extracted from RNA-seq data of all 
studied cell lines using the ‘Variation extraction’ tool in MaxQuant 
(Tools/Variation extraction; Supplementary Fig. 4)59. This tool reports 
in a fasta file all nonsynonymous mutations that pass a list of filters: 
total reads depth should more than or equal to 10; number of reads with 
mutations should be more than or equal to 5; the frequency of reads 
with mutations to overall depth should be more than or equal to 15%; 
the base quality, as well as the mapping quality, should be more than 
or equal to 13, which automatically filters out multi-mapped reads. 
The ‘Variation extraction’ tool generates, amongst many output files, 
a protein.fa file with all annotated ‘protein_coding’ sequences as well 
as information about nonsynonymous mutations in a header for each 
sequence.

Mutation analysis—proteomics
To enable MaxQuant to use the specified mutations, one has to add the 
fasta file into the ‘Fasta files’ tab (Global Parameters/Sequences/Fasta 
files) and change the ‘Variation mode’ parameter to ‘Read from fasta 
file’59. In the MaxQuant output ‘peptides.txt’ file an additional column 
such as ‘Mutated’ and ‘Mutation names’ columns will be created. The 
‘Mutated’ column reports ‘No’ if one peptide comes from the reference 
proteome (without mutations), ‘Yes’ if a peptide results from muta-
tion inclusion and ‘Mixed’ if one can find peptides in the reference as 
well as mutated proteomes. The ‘Mutation names’ stands for a list of 
involved mutations.

Splicing analysis—transcriptomics and proteomics
The analysis of alternative splicing is based on the gene graph struc-
ture, where nodes represent the beginnings and the ends of exons, 
and edges correspond to exon–exon junctions as well as connections 
within an exon. Each splicing event in this graph is a local subgraph 
with multiple paths; however, all paths start from the same node 
and finish on the same downstream node. It is important to point 
out that one path can consist of several isoforms. The algorithm is 
adapted from ref. 80. To use the same approach for proteomics, protein 
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coordinates of peptides were converted to genome locations, tak-
ing into account the intron–exon structure of genes. The modified 
version of the algorithm is available as a plugin for Perseus software 
(Supplementary Fig. 6).

Binary classification of alternative splicing events
The binary classification was conducted with XGBoost python package 
(v.1.5.0)68. The optimum set of learning parameters has been estimated 
using a grid search (RandomizedSearchCV function from sklearn pack-
age) with the sevenfold cross-validation technique and area under 
the ROC curve as a performance metric. The selected parameters are 
listed as follow—learning rate: 0.05; L1 regularization weight: 1.15; L2 
regularization weight: 4.0; minimum child weight: 2.0; maximum 
depth: 3; minimum loss reduction (gamma): 2.0; subsample ratio of 
columns: 0.3; subsample ratio of the training instances: 0.65; scale 
positive weight: 4.44.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All raw mass spectrometry data files and MaxQuant output from the 
standard search have been deposited to the ProteomeXchange Consor-
tium (http://proteomecentral.proteomexchange.org) via the MassIVE8 
partner repository with the dataset identifier PXD024364. Profiled 
protein and transcript variants are compiled in the following location: 
https://deep-sequencing.app.

Code availability
All code used for visualization is available via the link https://github.
com/coongroup/DeepProteomeSequencing-Software.
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