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Abstract
Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) 
alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance 
image (MRI) processing, clinical diversity, antipsychotic exposure, and substance use may underlie some of the variability. By 
application of refined methodology and careful sampling, we rectified common confounders investigating WM and symptom 
correlates in a sample of strictly antipsychotic-naïve first-episode patients with schizophrenia. Eighty-six patients and 112 
matched controls underwent diffusion MRI. Using fixel-based analysis (FBA), we extracted fibre-specific measures such 
as fibre density and fibre-bundle cross-section. Group differences on fixel-wise measures were examined with multivariate 
general linear modelling. Psychopathology was assessed with the Positive and Negative Syndrome Scale. We separately 
tested multivariate correlations between fixel-wise measures and predefined psychosis-specific versus anxio-depressive 
symptoms. Results were corrected for multiple comparisons. Patients displayed reduced fibre density in the body of corpus 
callosum and in the middle cerebellar peduncle. Fibre density and fibre-bundle cross-section of the corticospinal tract were 
positively correlated with suspiciousness/persecution, and negatively correlated with delusions. Fibre-bundle cross-section 
of isthmus of corpus callosum and hallucinatory behaviour were negatively correlated. Fibre density and fibre-bundle cross-
section of genu and splenium of corpus callosum were negative correlated with anxio-depressive symptoms. FBA revealed 
fibre-specific properties of WM abnormalities in patients and differentiated associations between WM and psychosis-specific 
versus anxio-depressive symptoms. Our findings encourage an itemised approach to investigate the relationship between 
WM microstructure and clinical symptoms in patients with schizophrenia.
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Introduction

Abnormalities in neuronal connectivity of the brain are 
implicated in the pathophysiology of schizophrenia [1]. 
In particular, the dysconnectivity hypothesis implies that 
microstructural alterations of white matter (WM) contrib-
ute to the symptom expression in patients [2]. Although 
WM alterations have been demonstrated in several meta-
analyses [3, 4], findings are widespread [5] and non-spe-
cific for patients with schizophrenia [6]. This variabil-
ity may partly be explained by multiple confounders in 
magnetic resonance imaging (MRI) studies [7], such as 
crossing fibres and partial volume effects from grey matter 
(GM) and cerebrospinal fluid (CSF), along with clinical 
heterogeneity, illness duration, antipsychotic medication, 
and substance use. Studies carefully designed to rectify the 
effect of such confounders are central for the understand-
ing of the neurobiological underpinnings of schizophrenia, 
aiming to advance their diagnostic and prognostic speci-
ficity [8].

Diffusion weighted imaging (DWI) is a non-invasive 
MRI imaging technique and diffusion tensor imaging 
(DTI) is a specific physical model [9, 10] that has been 
extensively applied for in vivo investigation of WM micro-
structure [11]. However, DTI-derived measures such as 
fractional anisotropy (FA) are non-specific, and the model 
cannot resolve the fibre orientation, presence of crossing 
fibres, and partial volume effects from adjacent GM and 
CSF featuring across the brain at the conventional spatial 
resolution of the DWI data [12].

Fixel-based analysis (FBA) is a recently developed 
framework that addresses the limitations of the DTI 
model, allowing for assessment of more biological specific 
micro- and macrostructural measures of WM [13, 14]. The 
term fixel refers to each individual fibre population within 
a voxel. In a typical FBA, fixels are derived from WM 
fibre orientation distributions (FODs), which are computed 
using constrained spherical deconvolution (CSD) tech-
niques [14]. A method called single-shell 3-tissue CSD 
(SS3T-CSD) was recently proposed [15] to obtain similar 
results compared to multi-shell multi-tissue CSD (MSMT-
CSD) [16], using only single-shell DWI data to reliably 
model the tissue compartments of WM, grey matter and 
cerebrospinal fluid [17]. Thus, the FBA-derived measure 
of apparent fibre density (FD) captures microstructural 
information that is proportional to the total intra-axonal 
volume of a specific fibre population within a voxel. At 
the macrostructural level, FBA provides a morphological 
measure reflecting the total cross-sectional size of an indi-
vidual fibre bundle (FC) [13]. Finally, the measure of fibre 
density and fibre-bundle cross-section (FDC) combines the 
properties of FD and FC, providing a measure sensitive 

to both intra-axonal volume and the cross-sectional size 
of a specific fibre bundle[16] (see Fig. 1 for illustration). 
Reductions in fixel-wise measures appear to reflect neu-
rodegenerative processes [18, 19] which, in conjunction 
with a strong neurodevelopmental aethiology [20, 21], 
have been suggested as part of the pathophysiology of 
schizophrenia [22, 23].

A recent extensive review reports a steep increase in FBA 
studies between 2018 and 2021, including both healthy as 
well as a range of clinical populations [14]. Apparent advan-
tages over the non-specific measures derived from DTI-mod-
elling are demonstrated thoroughly even on single-shell data, 
as fixel-wise measures appear largely insensitive to signal 
related to myelin and other non-WM cells, fluids and tis-
sue[14]. Furthermore, several of the reviewed FBA studies 
demonstrated larger effect sizes and higher sensitivity to 
group differences compared to DTI-modelling, particularly 
in WM regions featuring crossing fibres [24–26]. To our 
knowledge, only two studies have employed FBA in patients 
with schizophrenia: Stämpfli et al. (2019) [27] investigated 
FD and FA alterations in 20 clinically stable and medicated 
patients with schizophrenia or schizoaffective disorder, and 
reported reduced FD in widespread WM tracts in patients 
compared to healthy controls, but no group difference on FA. 
Additionally, a negative correlation between FD of the tha-
lamic radiation (TR) and positive symptoms were reported, 
but it was highly associated with current antipsychotic dose. 
Although the authors suggest that FD may be a promising 
approach to detect subtle WM alterations and potential clini-
cal associations, the small and diagnostic heterogenous sam-
ple of medicated patients with 10-year mean duration of 
illness calls for further studies in larger samples of patients 
not exposed to clinical confounders.

Grazioplene et al. (2018) [28] performed FBA as well 
as DTI on a larger group of 54 first-episode and 27 chronic 
patients with schizophrenia. They reported that clusters 
where patients displayed lower FA compared to HC over-
lapped substantially with WM regions containing complex 
fibre architecture, and that FA was strongly associated with 
crossing fibres complexity. Using FBA, patients displayed 
lower FD in corpus callosum (CC) compared to HC. How-
ever, no associations with specific clinical symptoms were 
reported from this heterogenous patient sample. Although 
both studies on patients with schizophrenia reported FD 
alterations with an apparent higher specificity of fixel-wise 
measures compared to FA, clinical implications remain 
unclear due to the medicated and heterogenous patient 
groups. Furthermore, neither study investigated the meas-
ures of FC and FDC, and common confounders to the FBA 
studies may have contributed to the findings [29].

The Positive and Negative Syndrome Scale (PANSS) 
[30] is one of the most used measures of symptom severity 
in patients with schizophrenia. DTI studies have identified 
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symptomatic correlates to global and regional WM, com-
monly applying a total score comprising the sum of positive, 
negative, and general symptom domains, or the respective 
domain scores [31, 32]. However, the psychometric proper-
ties of PANSS have been questioned [33–35] and several 
subscales have been proposed [36, 37] to achieve a more 
cardinal description with a higher degree of specificity [38, 
39]. Hence, we a priori applied selected items from two 
distinct, predefined symptom domains in order to identify 
potential WM alterations related to either psychosis-specific 
symptoms central to schizophrenia [40], or symptoms repre-
senting more general and unspecific psychopathology [41] 
(see Methods for details).

Based on the aforementioned FBA studies [27, 28], we 
predicted that patients would present with reduced FD in 
widespread WM regions including CC, when compared to 
HCs. Further, we expected a negative correlation between 
fixel-wise measures and PANSS items.

Next, we investigated regional specificity of potential 
correlations between fixel-wise measures and the psycho-
sis-specific symptoms and anxio-depressive symptoms, 
respectively. Finally, we explored if recreational substance 

use confounded the identified group differences and clinical 
correlates.

Methods

Data were acquired as part of two consecutive cohorts 
PECANS 1 and 2 (Pan European Collaboration on Antipsy-
chotic Naïve Schizophrenia) conducted in the Capital Region 
of Copenhagen, Denmark, in the period of 2008–2019 [42, 
43]. The studies comply with the Committee on Biomedi-
cal Research Ethics (H-D-2008-088, H-3-2013-149) and 
with the Helsinki Declaration of 1975, and were registered 
at Clinicaltrials.gov (NCT01154829, NCT02339844). All 
participants provided oral and written informed consent 
prior to inclusion in the study.

Participants

Patients aged 18–45 years were recruited from psychiat-
ric hospitals and outpatient clinics. Diagnoses were con-
firmed using the Schedules for Clinical Assessment in 

Fig. 1  Fixel-based analyses. Figure  1 illustrates the top row a Dif-
fusion tensor imaging (DTI) provides general information about the 
diffusion signal within a voxel (blue box). The measures derived 
are averaged to one single principal direction of axonal fibres (dem-
onstrated by the elongated oval), which is affected by crossing 
fibre populations. b Using spherical deconvolution, the fixel-based 
analyses (FBA) enable identification of the individual fibre popula-
tions with different orientations (purple and green axons) within the 

voxel. Quantifiable measures are extracted for each individual fibre 
population. c The bottom row illustrates the fixel-based measures 
of fibre density (FD), fibre-bundle cross-section (FC), and the com-
bined measure of fibre density and fibre-bundle cross-section (FDC). 
Reduced FD reflects a decrease in the microscopical intra-cellular 
volume of axons within a voxel. Reduced FC indicates a macroscopic 
decrease of the cross-sectional size of a particular fibre bundle
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Neuropsychiatry (SCAN), version 2.1[44]. Exclusion crite-
ria for patients were previous treatment with antipsychotics 
or methylphenidate, a current diagnosis of drug dependency 
according to the International Classification of Diseases  10th 
Edition (ICD-10), treatment with antidepressant medication 
within the last month, involuntary admission or treatment, 
or severe physical illness. Previous substance abuse, and 
current occasional substance use and benzodiazepine pre-
scriptions were accepted. HCs were recruited using online 
advertising and matched to patients based on age, sex, and 
parental socioeconomic status. Exclusion criteria for HCs 
were any physical or mental illness, having a first degree 
relative with psychotic symptoms, or substance abuse dur-
ing the last three months before inclusion. All participants 
reported quantity and frequency of their substance use (alco-
hol, tobacco, cannabis, stimulants, hallucinogens, opioids, 
other illicit drugs) and provided a urine drug-screen test 
(Rapid Response, Jepsen HealthCare, Tune, DK). A neuro-
radiologist examined all MRI scans, and participants with 
overt MRI pathology were excluded.

In the current study, we restricted analyses to patients 
with an ICD-10 diagnosis of schizophrenia (DF20.x) to 
increase sample homogeneity. From our sample of 109 
antipsychotic-naïve first-episode psychosis patients pooled 
from the 2 cohorts (PECANS I and II), we included 86 
patients and 112 HCs for the primary analysis. For sensitiv-
ity analyses regarding the potential confounding effect of 
substance use, we applied the same rigorous criteria as in 
a previous DTI-study [45] and excluded participants with 
a lifetime regular use (i.e. ‘once or a few times per week’) 
of one or more recreational drugs (cannabis, stimulants, 
hallucinogens, opioids, or other illicit drugs), resulting in 
a substance-free subsample of 62 patients and 104 healthy 
controls. Supplementary Figure S1 displays details of the 
inclusion process.

Assessments

Clinical assessments

Trained raters assessed psychopathology using the PANSS 
[46]. For correlation analyses we separately tested items 
from two symptom domains based on previous studies: 
Lefort-Besnard et al. (2018) [40] applied machine learning 
to examine underlying patterns of PANSS symptom profiles 
and reported the 3 PANSS items P1 (delusions), P3 (halluci-
natory behaviour) and P6 (suspiciousness/persecution) to be 
the most prominent positive symptoms showing a consist-
ent heavy load across distinct schizophrenia subtypes [40]. 
Furthermore, P1, P3, and P6 represent central ‘pathogno-
monic’ symptoms of schizophrenia, as reflected in strong 
correlations with overall illness severity [47], sensitivity 
to improvements following antipsychotic treatment [37], 

and a sound prediction of relapse [48]. Yazaji et al. (2002) 
[41] performed a principal component analyses on all 30 
PANSS items and proposed an anxio-depressive symptom 
domain comprising the general psychopathology items of 
G1 (somatic concern), G2 (anxiety), G3 (guilt feelings), and 
G6 (depression) [41], also previously applied in a study on 
patients with schizophrenia [49].

The Global Assessment of Functioning (GAF) scale [50] 
was used to assess level of functioning in patients.

Image acquisition

MRI data were acquired as described in our previous DTI 
studies on subgroups of the current sample [45, 51, 52]. 
Briefly, we used a Philips Achieva 3.0 T MRI scanner 
(Philips Healthcare, Best, The Netherlands) with a 32-chan-
nel SENSE Head Coil (Invivo, Orlando, Florida, USA). 
Volumes of whole-brain diffusion weighted images were 
acquired in 30 non-collinear directions (b = 1000 s/mm2) 
and 5 non-diffusion weighted images (b = 0 s/mm2). See 
Supplementary Text S2 for details.

Image processing

In this work, we followed the recommended steps of FBA 
[53]. Both sets of dMRI data were denoised using an over-
complete Local Principal Component Analysis (PCA) 
method [54] in MATLAB software (version 2017b, Natick, 
Massachusetts: The MathWorks Inc.). The FMRIB diffu-
sion toolbox (part of FSL 6.0.0) [55, 56] and MRtrix3Tissue 
(https:// 3tiss ue. github. io) [57] were used for pre-processing, 
starting with bias correction [57], followed by correction for 
eddy current-induced susceptibility distortions and subject 
movements [58, 59]. Head motion parameters were recorded 
(3 translational and 3 rotational motion parameters). Next, 
the data were spatially up-sampled to 1.3 × 1.3 × 1.3  mm3 
resolution using cubic b-spline interpolation [57]. Whole 
brain masks were generated. For each subject, the 3-tissue 
response functions were estimated for single-fibre WM, 
GM and CSF using an unsupervised method [60, 61]. A 
group-level response function was calculated by averaging 
the response functions of all the subjects for each tissue type. 
Using these group average response functions, Single-Shell 
3-Tissue constrained spherical deconvolution (SS3T-CSD) 
was performed for each subject to obtain WM-like fibre 
orientation distribution (FOD) maps [60]. We then applied 
multi-tissue informed intensity normalisation in the log-
domain with added gradual outlier rejection [62]. A study-
specific population template was generated with iterative 
registration and averaging FOD maps from 40 subjects (20 
patients and 20 controls matched on age, sex, and parental 
socio-economic status). Each subject’s WM FOD was non-
linearly registered to the population template [63, 64]. These 

https://3tissue.github.io
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FODs were segmented to produce fibre-specific fixels and 
were reoriented according to the former nonlinear transfor-
mation to the template space [13, 65]. For each subject, FD, 
FC, and FDC across all WM fixels were computed. Finally, 
we performed a whole-brain probabilistic tractography on 
the FOD template which serves to quantify fixel-to-fixel 
connectivity for the purpose of fixel-wise smoothing and 
connectivity-based fixel enhancement [24]. Structural T1 
weighted images were processed using Freesurfer (version 
7.1.1) software. Sequence Adaptive Multimodal Segmenta-
tion (SAMSEG) tool was used to calculate intracranial vol-
umes (ICV) for all the subjects [66].

MRI quality control was performed by visually inspect-
ing all dMRI residual maps to identify artefactual signal 
intensities [67, 68]. Thirteen subjects that did not pass the 
QA were excluded. Three quality metrics (temporal signal-
to-noise ratio (TSNR), maximum voxel intensity outlier 
count (MAXVOX), and mean voxel intensity outlier count 
(MEANVOX)) were computed from each dMRI volume 
using a quality assessment method previously described in 
Roalf et al. [69]. The quality metrics in the present study 
ranged between the ‘good’ and ‘excellent’ (Supplementary 
Table S3).

Statistical analyses

Analyses of descriptive data were performed using SPSS 
version 25.0 (Armonk, NY, US). Distributions of continuous 
data were tested for normality by visual inspection of histo-
grams, outliers were examined, and Levene’s Test for Equal-
ity of Variances was applied. Group differences were tested 
using Pearson’s χ2 test, Fisher’s Exact Test, the Mann–Whit-
ney U test, or analysis of variance (ANOVA) as appropriate.

Fixel-based analyses were performed using connectivity-
based fixel enhancement and non-parametric permutation 
testing with 5000 permutations [24]. Primary analyses of 
group comparisons were performed using Multivariate Gen-
eral Linear Model (GLM) with measures of FD, FC, and 
FDC. Age, sex, cohort, ICV, and six motion parameters were 
used as covariates of no-interest.

Secondary analyses comprised tests of partial correla-
tion between fixel-wise measures (FD, FC, and FDC) as 
independent variables in two separate multivariate models, 
including the 3 psychosis-specific and the 4 anxio-depres-
sive symptoms, respectively. First, we modelled fixel-wise 
measures as independent variables (predictors) and item P1, 
P3, and P6 as dependent variables (outcome), along with 
age, sex, cohort, ICV, and six motion parameters as covari-
ates in one model. Second, we identically modelled fixel-
wise measures as predictors, and items G1, G2, G3, and G6 
as outcomes, along with identical covariates in one model. 
By including all the domain-specific items in one multivari-
ate model, we aimed to identify the variance associated with 

each symptom which is orthogonal to (not overlapping with) 
the remaining symptoms included.

Sensitivity analyses comprised identical tests of group 
differences and correlations in the substance-free subsample. 
Furthermore, we post hoc tested identical models on group 
differences, comparing patients and controls on DTI-derived 
measures of fractional anisotropy (FA) in the full sample, 
as well as in the substance-free sample (See Supplementary 
text S4 for details of the processing pipeline). Finally, we 
tested correlations between PANSS items of interest (P1, 
P3, P6, G1, G2, G3, G6, G16).

The anatomic locations and size of the clusters compris-
ing significant fixels were extracted using the John Hop-
kins University (JHU) white matter tractography atlas after 
transforming the significant fixels from the template space to 
standard Montreal Neurological Institute (MNI) space [70, 
71]. The WM bundles to which significant fixel clusters 
belonged to were validated using TractSeg software [72]. 
Fixel wise measures are relative and have arbitrary units. 
Hence, the mean percentage effect size (%r) within the sig-
nificant clusters were estimated in order to express the effect 
size relative to controls for the group differences. Similarly, 
mean beta coefficients (β) within the significant clusters 
were reported for single group correlation analyses. All sig-
nificant results are reported after corrections for multiple 
comparisons using family-wise error (FWE) with a threshold 
of p < 0.05. In post hoc tests we additionally corrected for 
multiplicity using the false discovery rate (FDR) [73].

Results

Demographic characteristics of patients and HCs are 
reported in Table 1. The match on age, gender, parental 
socioeconomic status, and handedness was balanced. There 
were a few patients with lifetime alcohol abuse or depend-
ency, but regular use of alcohol was more common among 
the HCs (p = 0.019). Additionally, patients used more nico-
tine, cannabis, benzodiazepines, opioids, stimulants, hal-
lucinogens, and other illicit drugs. Substance-free patients 
did not differ significantly from the full sample of patients 
on any demographic and clinical variables (Supplementary 
Table S5 and S6). Clinical data on patients are reported 
in Table 2. Patients had significantly lower premorbid IQ 
(DART, p < 0.010).

Group differences of fixel‑wise measures

In the full sample, we found reduced FD in patients in a 
widespread cluster of the body of corpus callosum (CC) 
(%r = 3.503) and of the left middle cerebellar peduncle 
(MCP) (p < 0.05, Fig. 2). In the substance-free sample, 
we found reduced FC of the MCP bilaterally. (p < 0.05, 
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Table 1  Sociodemographic data 
full sample

Variable mean (SD)/Percent (N) Patients (N = 86) Controls (N = 112) Significance group effect

Age years, mean (SD) 25 (6) 24 (5) p = 0.45, F = 0.93
Gender p = 0.97, χ2 < 0.01
 Male 49% (42) 49% (55)
 Female 51% (44) 51% (57)

Parental SES p = 0.45, χ2 = 1.60
 Low 18% (15) 13% (14)
 Medium 54% (45) 53% (59)
 High 28% (23) 34% (38)

Handedness p = 0.28, χ2 = 2.55
 Right 85% (72) 85% (91)
 Left 7% (6) 11% (12)
 Ambidextrous 8% (7) 4% (4)
 DART, mean (SD) 19 (8) 22 (6) p < 0.01, F = 12.16

Alcohol p < 0.01, χ2 = 24.05
 Dependency 1% (1) 0% (0)
 Harmful use 6% (5) 0% (0)
 Use regularly 61% (51) 89% (97)
 Tried few times 29% (24) 9% (10)
 Never tried 4% (3) 2% (2)

Tobacco p < 0.01, χ2 = 22.41
 Dependency 8% (7) 1% (1)
 Harmful use 1% (1) 2% (2)
 Use regularly 37% (32) 16% (17)
 Tried few times 15% (13) 32% (35)
 Never tried 38% (33) 50% (53)

Cannabis p < 0.01, χ2 = 17.53
 Dependency 1% (1) 0% (0)
 Harmful use 7% (6) 0% (0)
 Use regularly 17% 15) 6% (7)
 Tried few times 45% (39) 50% (54)
 Never tried 29% (25) 44% (47)

Benzodiazepines p < 0.01, χ2 = 35.30
 Dependency 0% (0) 0% (0)
 Harmful use 0% (0) 0% (0)
 Use regularly 4% (3) 0% (0)
 Tried few times 27% (22) 1% (1)
 Never tried 69% (56) 99% (105)

Opioids p < 0.01, χ2 = 15.39
 Dependency 0% (0) 0% (0)
 Harmful use 0% (0) 0% (0)
 Use regularly 1% (1) 0% (0)
 Tried few times 19% (16) 3% (3)
 Never tried 80% (69) 97% (104)

Stimulants p < 0.01, χ2 = 13.24
 Dependency 0% (0) 0% (0)
 Harmful use 0% (0) 0% (0)
 Use regularly 6% (5) 0% (0)
 Tried few times 24% (20) 11% (12)
 Never tried 70% (59) 89% (94)

Hallucinogens p < 0.01, χ2 = 7.64
 Dependency 0% (0) 0% (0)
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Significant effect of group is marked in bold
a  Between group effect calculated with 2 sample t test
N number, SES socio-economic status, SD standard deviation

Table 1  (continued) Variable mean (SD)/Percent (N) Patients (N = 86) Controls (N = 112) Significance group effect

 Harmful use 0% (0) 0% (0)
 Use regularly 0% (0) 0% (0)
 Tried few times 15% (12) 4% (4)
 Never tried 85% (68) 96% (102)

Other drugs p = 0.034, χ2 = 6.77
 Dependency 0% (0) 0% (0)
 Harmful use 0% (0) 0% (0)
 Use regularly 2% (1) 0% (0)
 Tried few times 10% (6) 2% (2)
 Never tried 89% (54) 98% (98)

MRI-Translational  motiona, mean (SD)
 Tx 0.858 (0.237) 0.8721 (0.188) p = 0.645
 Ty − 0.402 (0.247) − 0.3757 (0.240) p = 0.452
 Tz − 0.015 (0.700) 0.0327 (0.474) p = 0.571

MRI-Rotational  motiona, mean (SD)
 Rx 5.03E-05 (0.009) − 5.96E-04 (0.008) p = 0.604
 Ry − 0.001 (0.004) − 5.43E-04 (0.004) p = 0.416
 Rz − 0.002 (0.005) − 0.0017 (0.004) p = 0.941

Table 2  Clinical data on patients with schizophrenia

DART  Danish version of the National Adult Reading Test, DUI duration of illness, DUP duration of untreated psychosis, GAF The Global 
Assessment of Functioning, N number, PANSS Positive And Negative Syndrome Scale, SD standard deviation;

Variable mean (s.d.) Full sample (n = 86) Substance-free sam-
ple (n = 62)

Substance-using sam-
ple (n = 24)

Group effect substance-free 
vs. Substance-using sample

GAF 36.7 (7.5) 34.4 (13.5) 33.2 (11.2) p = 0.70, F = 0.15
DUI/Weeks 74.9 (82.6) 60.5 (66.1) 102.1 (103.8) p = 0.08, F = 3.10
DUP/Weeks 101.9 (132.3) 103.8 (129.2) 91.0 (165.0) p = 0.85, F = 0.04
DART 18.9 (8.0) 19.5 (8.0) 17.2 (8.4) p = 0.27, F = 1.22
P1 Delusions 3.9 (1.1) 3.9 (1.2) 3.9 (0.8) p = 0.94, F < 0.01
P3 Hallucinations 3.4 (1.5) 3.4 (1.5) 3.5 (1.4) p = 0.66, F = 0.19
P6 Suspiciousness/persecution 3.6 (1.4) 3.6 (1.4) 3.6 (1.3) p = 0.86, F = 0.03
G1 somatic concern 2.2 (1.6) 2.3 (1.6) 2.1 (1.6) p = 0.62, F = 0.25
G2 Anxiety 3.9 (1.5) 3.9 (1.3) 3.9 (1.8) p = 0.86, F = 0.03
G3 guilt feelings 2.7 (1.5) 2.6 (1.5) 2.9 (1.6) p = 0.43, F = 0.62
G6 depression 3.5 (1.3) 3.5 (1.1) 3.3 (1.5) p = 0.59, F = 0.29
PANSS positive total 19.4 (4.0) 19.2 (4.1) 20.1 (3.8) p = 0.35, F = 0.88
PANSS negative total 20.2 (6.9) 20.0 (6.7) 20.6 (7.5) p = 0.72, F = 0.13
PANSS general total 39.7 (8.6) 39.2 (9.0) 40.8 (7.6) p = 0.43, F = 0.62
PANSS total score 79.2 (16.1) 78.4 (16.1) 81.5 (14.3) p = 0.42, F = 0.66
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%r = 0.077). In post hoc test of FD in CC, comparing the 
full patient sample to the substance-free sample, we found 
no group difference (p = 0.72).

Correlations between fixel‑wise measures 
and psychosis‑specific symptoms

Significant results are reported in Table 3. For details on 
smaller significant clusters and the specific localizations 
(X, Y, Z coordinates), see Supplementary Table S7 and 
Figure S8.

In the full sample, FC (β = 0.030) and FDC (β = 0.035) 
of the corticospinal tract (bilaterally) correlated posi-
tively with PANSS item P6 (suspiciousness/persecu-
tion) (p < 0.05), likewise in the substance-free sam-
ple, FC (β = 0.035) and FDC (β = 0.042). Additionally, 
FDC of the left corticospinal tract correlated negatively 
with PANSS item P1 (delusions) (β = − 0.060) (Fig. 3 

visualises clusters and mean beta coefficients). FC of the 
isthmus of CC correlated negatively with PANSS item P3 
(hallucinatory behaviour) (β = − 0.036, p < 0.05).

Correlations between fixel‑wise measures 
and anxio‑depressive symptoms

In the full sample, FC of the splenium of CC correlated 
negatively with PANSS item G1 (somatic concern) 
(β = − 0.034); and FD of the genu of CC correlated nega-
tively with PANSS item G3 (guilt feelings) (β = − 0.011, 
p < 0.05, Supplementary Figure S7).

Similarly in the substance-free sample, FC (β = − 0.042) 
and FDC (β = − 0.066) of the splenium of CC correlated 
negatively with PANSS item G1 (somatic concern); and 
FD of the genu of CC correlated negatively with PANSS 
item G3 (guilt feelings) (β = − 0.016, p < 0.05).

Fig. 2  Group difference on fibre density. Figure 2 illustrates the loca-
tion of the main group difference on FD comparing patients with 
schizophrenia with healthy controls. Group comparisons were per-
formed using Multivariate General Linear Model (GLM). Family-
wise error (FWE) with a threshold of p < 0.05 was applied to correct 
for multiple comparisons. Top row 1A is the significant group differ-
ence in the body of corpus callosum in an axial and coronal plane, 
comparing the full sample of patients with schizophrenia with healthy 

controls. The cluster is coloured yellow–red according to effect size 
of the group difference, enhanced in image 1B. Bottom row 2A is the 
significant group difference in middle cerebellar peduncle in an axial 
and coronal plane, comparing the subsample of patients and controls 
with no recreational substance use. Significant fixels are coloured red, 
while non-significant fixels are black, enabling the identification of 
crossing fibres, enhanced in image 2B
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Post hoc examinations

The DTI-analyses on FA in the full and the substance-free 
sample did not reveal any significant group differences when 
comparing patients to controls (Supplementary Text S3).

Non-parametric correlation tests between PANSS items 
revealed after FDR correction for multiplicity positive cor-
relations between P6 and P1 in the full sample, as well as 
between P6 and G1 in the substance-free sample. Finally, 
our explanatory test of associations between P1, P6 and G16 
(active social avoidance) revealed that G16 was highly sig-
nificant positively correlated with P6 (r = 0.413, p = 0.001), 
but not P1 after correction for multiplicity.

Discussion

In this study, we identified group differences in WM and 
revealed associations between fixel-wise measures and two 
distinct domains of psychopathology in differentially located 
WM tracts.

We confirmed the expected reduction of FD in a large 
cluster of the body of CC in the full sample of patients 
compared to HCs, corroborating the findings reported 
by Grazioplene et al. (2018) [28] on medically stabilised 
chronic patients. Although they demonstrated an association 

between illness duration and FD in CC, our results indi-
cate that callosal alterations are present from illness onset 
and independent of antipsychotic medication. Lower FD is 
proportional to reduced intra-axonal volume (i.e. reduced 
axonal matter), which here may indicate aberrant structural 
underpinnings for the interhemispheric information transfer 
across the body of CC in patients. The finding is correspond-
ing to previous WM studies in patients with schizophrenia, 
reporting reduced volumen and lower FA in particularly the 
midsagittal segment of CC [74].

We did not find reduced FD in widespread WM regions 
as expected but identified a smaller area in the left MCP 
where patients displayed lower FD than HCs. Notably, in the 
substance-free sample we found reduced FC in even larger 
and bilateral clusters of MCP. MCP contains afferent fibres 
connecting pons to the cerebellum, and is a major projection 
pathway relaying sensory information from the cerebral cor-
tex to cerebellum [75]. The reduction of the cross-sectional 
size of the MCP fibre bundle may represent a pathophysi-
ological feature specific for schizophrenia, whereas the more 
widespread findings reported by Stämpfli et al. [27] may to 
some extend be explained by effects of chronicity, antip-
sychotic medication, and recreational substance use. The 
location of MCP would be in accordance with the cognitive 
dysmetria theory by Andreasen [76], proposing that dys-
connectivity in specifically the cortico-cerebellar networks 

Table 3  Correlations between fixel-wise measures and psychopathology

Correlation tests were performed using Multivariate General Linear Model (GLM). Family-wise error (FWE) with a threshold of p < 0.05 were 
applied to correct for multiple comparisons. Only significant associations and the largest cluster within the white matter tracts are reported, 
details on smaller clusters within the same tract and specific localizations (X, Y, Z coordinates) in Supplementary Table S7
β Absolute mean beta coefficient, FC fibre-bundle cross-section, FD fibre density, FDC fibre density and cross-section, G general; P positive, 
PANSS Positive And Negative Syndrome Scale

PANSS item Fixel measure Correlation Cluster size 
(voxels)

Beta coefficient White matter tract

PANSS Psychosis-specific items
 Full sample 86 patients
  P6 (Suspiciousness/persecution) FC FDC Positive Positive 5909

3205
β = 0.030
β = 0.035

CST, bilaterally

 Substance-free subsample 62 patients
  P1 (Delusions) FDC Negative 392 β = − 0.060 Left CST
  P3 (Hallucinatory behaviour) FC Negative 172 β = − 0.036 Isthmus of CC
  P6 (Suspiciousness/persecution) FC

FDC
Positive
Positive

10,295
3870

β = 0.035
β = 0.042

CST, bilaterally

PANSS Anxio-depressive items
 Full sample 86 patients
  G1 (Somatic concern) FC Negative 2446 β = − 0.034 Splenium of CC
  G3 (Guilt feelings) FD Negative 154 β = − 0.011 Genu of CC

 Substance-free subsample 62 patients
  G1 (Somatic concern) FC

FDC
Negative
Negative

1436
2129

β = − 0.042
β = − 0.066

Splenium of CC

  G3 (Guilt feelings) FD Negative 68 β = − 0.016 Genu of CC
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underlays the disturbed sensory information processing in 
patients with schizophrenia, potentially explaining positive 
psychotic symptoms [77, 78]. However, as both cluster- and 
effect size were small, results must be interpreted modestly.

The current study is to our knowledge the first to demon-
strate the link between distinct domains of psychopathology 
and specific locations of WM alterations using FBA. Our 
main clinical finding was the positive correlation between 
FC and FDC of the CST and suspiciousness/persecution, 
which was replicated in a larger cluster in the substance-free 
sample. Additionally, delusions were negatively correlated 
with FDC more ventrally in the left CST in the substance-
free sample.

The CST is a major projection tract, originating from the 
motor cortex and descending into the spinal cord via the 
midbrain, and is considered a vital pathway for the modula-
tion of both motor and somatosensory information in the 
cortico-cerebellar network [79]. Our findings in CST may 
at the first glance be surprising, considering that formations 

of psychotic symptoms in schizophrenia have primarily 
been linked to alterations in the dopamine system [80–82]. 
Studies using functional MRI have identified three major 
fronto-striatal-thalamic dopaminergic networks [83]. The 
mesostriatal and particularly the mesolimbic pathways have 
been investigated as to understand the dopaminergic distur-
bances in schizophrenia [84–86], and alterations in reward 
and incentive salience systems have been identified [87]. 
In line with these findings, previous studies have reported 
links between delusions, paranoia and aberrant white matter 
in mesolimbic and -striatal tracts, such as the supero-lateral 
medial forebrain bundle and the inferior fronto-occipital 
fasciculus [88, 89]. The dopaminergic systems are also ana-
tomically connected to the motor cortex via ascending fibres 
originating in substantia nigra (the nigrostriatal pathway) 
[90]. However, CST is mainly composed of descending 
pyramidal cells using glutamate as excitatory neurotrans-
mitter [91], suggested to play a role in the cortical excita-
tory to inhibitory imbalance in schizophrenia [92]. Although 

Fig. 3  Correlations between fixel-wise measures and psychosis-spe-
cific symptoms. Top image illustrates the localization of the signifi-
cant correlations between fixel-wise measures and the PANSS items 
P1 and P6 in corticospinal tract (CST) in the substance-free sample. 
Blue colours indicate negative correlations, red/yellow colours indi-
cate positive correlations. Colour is graded according to beta estimate 

as proxy to effect size. Images are displayed in radiological direc-
tions. Bottom row: scatterplots illustrate the associations between 
FDC of the significant fixels of CST and the items scores of P1 and 
P6, respectively. a anterior, FDC fibre density and cross-section, i 
inferior, l left, p posterior, r right, s superior
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the complex interplay between neuronal circuits regulated 
by neurotransmitters is not well understood [93], a recent 
review by Howes and Shatalina (2022) [94] suggests a 
model of schizophrenia integrating the dopamine hypoth-
esis and the role of cortical excitation-inhibition imbalance. 
Indeed, dysconnectivity of motor pathways has been linked 
to prediction error and mismatch negativity in functional 
MRI studies in patients with schizophrenia [95, 96]. We 
speculate if the positive correlation, i.e. more suspicious-
ness/persecution associated with larger CST fibre bundles 
and more intra-axonal volume could reflect this hypo- and 
hyper-connectivity, contributing differently to specific clini-
cal symptoms in schizophrenia [97].

Additionally, CST has been demonstrated to be a direct 
amygdala-motor pathway involved in functional coactivation 
of amygdala and motor-related areas during perception of 
emotional expressions [98], and corticospinal downstream 
projections have been shown to be involved in a motor sys-
tem reaction to fearful expressions [99]. Functional hyper-
activity in amygdala have been demonstrated in patients 
with schizophrenia when in a paranoid state, compared to 
nonparanoid patients and controls [100, 101]. One study 
linked severity of paranoia in patients with schizophrenia 
with increased functional connectivity within the core lim-
bic circuit and prefrontal cortex, reflecting amplified threat 
processing and impaired emotion regulation [102]. Accord-
ing to the integrated model, synaptic abnormalities (caused 
by neurodevelopmental features, including stress) disrupts 
the excitation/inhibition balance and could lead to disinhi-
bition of excitatory cortical projections regulating the mes-
ostriatal dopamine neurons, further resulting in dopamine 
dysregulation and psychotic symptoms [94]. Studies have 
reported positive correlations between fixel-wise measures 
and resting state- as well as task-based functional activity 
[103, 104], but as our data do not allow for such conclusions, 
future multimodal investigations of associations between 
fixel-wise measures and functional activity linked to clini-
cal symptoms is necessary.

The direction of the correlations between psychopathol-
ogy and fixel-wise measures were as expected all negative, 
except for item P6 (suspiciousness/persecution). Intrigu-
ingly, the correlations between FDC of the CST and delu-
sions and suspiciousness/persecution were opposite, i.e. 
less delusions, but more suspiciousness/persecution were 
associated with larger CST fibre bundles and more intra-
axonal volume. We speculated that the opposite correla-
tions partly may be a consequence of our multivariate 
models identifying the aspects of P6 which are not over-
lapping with P1, i.e. it is not the delusional, but rather spe-
cifically the emotional / interpersonal aspect of P6 which 
is positively associated with fibre density and fibre-bundle 
cross-section of CST. We post hoc confirmed this emo-
tional / interpersonal representation, as P6 contrary to P1 

was strongly associated with G16 (active social avoid-
ance). Indeed, CST has been denoted as a major structural 
underpinning of an emotional-motor- [105] and mirror-
neuron system [106, 107] linked to the processing and 
interpretation of emotional states, actions and intentions 
of others [108, 109], which is known to be impaired in 
patients with schizophrenia [110, 111]. However, the more 
ventrally located subregion of the correlation to delusions 
may be a component in these opposite correlations. A 
recent review state dopamine signalling in more dorsal 
regions of the striatum to be particularly associated with 
threat-related stimuli [112], and it has been suggested that 
neurochemical mechanisms differ according to subregions 
on a ventral–dorsal axis, indicating that hypoconnectivity 
appears more prominent in ventrally located regions, con-
trary to hyper-connectivity in dorsal localizations [113].

P3 (hallucinatory behaviour) was negative correlated with 
FC in the isthmus of CC. WM fibres traversing the isthmus 
connects the superior temporal and inferior parietal GM 
regions bilaterally [114, 115], and have in DTI studies been 
associated with persistent [116] and auditory hallucinations 
[97, 117]. Nonetheless, our findings in CC mainly indicate 
neuropathological mechanisms non-specific for psychosis, as 
the correlations between fixel-wise measures and the anxio-
depressive symptoms all were located to segments of the 
CC. Hence, fibre density and fibre-bundle cross-section of 
callosal WM appear associated with hallucinations as well as 
anxio-depressive symptoms, although in different segments. 
Alterations of callosal WM as a cross-diagnostic commonal-
ity for mental disorders such as schizophrenia, bipolar dis-
order [118, 119], and major depressive disorder [120] are in 
accordance with DTI studies demonstrating lower FA of CC 
in patients compared to controls. The negative correlation 
between FD located to the genu of CC and G3 (guilt feel-
ings) appears to correspond to findings from one recent FBA 
study, revealing reduced FC and FDC of the genu of CC in 
patients with major depressive disorder [121].

The direction of all correlations between psychopathol-
ogy and fixel-wise measures located to the CC were all 
negative as expected, suggesting that reduced callosal fibre-
bundle cross-section and less intra-axonal volume were 
associated with more severe psychopathology. However, to 
validate specific structural underpinnings of the symptom 
domains, the findings should be replicated in studies ideally 
including patients with non-psychotic disorders as contrast.

A major strength of this study is the large sample size of 
antipsychotic-naïve patients with first-episode schizophre-
nia, which enabled sensitivity analyses of a substance-free 
sample. Although our sensitivity analyses comparing the 
substance-free patients to HCs did not reveal group differ-
ences in CC, the post hoc tests indicated that the lack of 
significant group differences in CC could be attributed to 
loss of power, rather than a potential effect of recreational 
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substance use. Hence, we have meticulously controlled for 
the effects of common confounders as we aimed for.

Some limitations should be considered. Our results from 
a refined group of antipsychotic-naïve patients with no life-
time recreational substance use represent limited external 
validity, as patients with schizophrenia commonly present 
both medicated and with substance use in clinical settings. 
However, the internal validity is robust considering the clini-
cally homogenous sample.

Finally, our diffusion data were acquired using the single-
shell, with a relatively low b-value of 1000 s/mm2 and 30 
gradient directions, which might compromise the specificity 
to intra-axonal signal. Nonetheless studies using SSMT-CSD 
technique have shown that single-shell DWI data produces 
similar results results compared to multi-shell DWI data 
[17]. Additionally, the biological accuracy of single-shell 
data processed with CSD has been confirmed in post-mor-
tem histological studies [122]. Hence, we believe that the 
biological interpretation of our results is reliable and convey 
biologically relevant findings, even though they rely on less 
optimal data acquisition parameters.

Concluding, our study reveals fibre-specific characteris-
tics of WM alterations in antipsychotic-naive patients with 
first-episode schizophrenia, suggesting these alterations play 
a central role in both positive and general psychopathology 
in differentiated symptom-specific WM tracts. Particularly, 
fibre characteristics of CST appeared related to positive 
psychotic symptoms in a refined sample of patients with-
out any recreational substance use. Overall, FBA appears to 
demonstrate an advance in specificity when examining the 
neuronal underpinnings of central psychotic symptoms and 
generalised psychopathology.
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