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Abstract

Treatment outcomes for individuals with substance use disorders (SUDs) are variable and more 

individualized approaches may be needed. Cross-validated, machine-learning methods are well-

suited for probing neural mechanisms of treatment outcomes. Our prior work applied one such 

approach, connectome-based predictive modeling (CPM), to identify dissociable and substance-

specific neural networks of cocaine and opioid abstinence. In Study 1, we aimed to replicate 

and extend prior work by testing the predictive ability of the cocaine network in an independent 

sample of 43 participants from a trial of cognitive behavioral therapy for SUD, and evaluating its 

ability to predict cannabis abstinence. In Study 2, CPM was applied to identify an independent 

cannabis abstinence network. Additional participants were identified for a combined sample of 

33 with cannabis use disorder. Participants underwent fMRI scanning before and after treatment. 

Additional samples of 53 individuals with co-occurring cocaine and opioid use disorders and 

38 comparison subjects were used to assess substance specificity and network strength relative 

to participants without SUDs. Results demonstrated a second external replication of the cocaine 

network predicting future cocaine abstinence, however it did not generalize to cannabis abstinence. 

An independent CPM identified a novel cannabis abstinence network, which was (i) anatomically 

distinct from the cocaine network, (ii) specific for predicting cannabis abstinence, and for 

which (iii) network strength was significantly stronger in treatment responders relative to control 

particpants. Results provide further evidence for substance-specificity of neural predictors of 
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abstinence and provide insight into neural mechanisms of successful cannabis treatment, thereby 

identifying novel treatment targets.

Introduction

Despite the availability of effective evidence-based treatment approaches, outcomes for 

individuals seeking treatment for substance use disorders (SUDs) remain variable across 

individuals and success rates are suboptimal (1, 2). There is a growing consensus that 

alterations in neural functioning contribute importantly to the pathophysiologies of SUDs, 

yet incorporation of neuroimaging into clinical addiction treatment remains rare (3) and 

findings have been inconsistent across studies, in part due to reliance on methods such 

as correlation and regression that may overfit models to small datasets (4). Nonetheless, 

when combined with robust, data-driven predictive modeling, neuroimaging may provide a 

powerful tool for elucidating neural bases of recovery and has the potential to uncover novel 

treatment targets to facilitate the development of more individualized treatment approaches 

(4, 5).

Accordingly, our prior work has identified dissociable neural networks of cocaine (6) and 

opioid (7) treatment outcomes using a whole-brain predictive modeling approach called 

connectome-based predictive modeling (CPM) (8, 9). CPM is a data-driven method for 

identifying brain-behavior relationships that incorporates cross-validation to protect against 

overfitting and improve the generalizability of identified models. Furthermore, this approach 

also allows for direct mapping back to brain anatomy to facilitate the interpretation 

of neural mechanisms underlying identified brain-behavior relationships (termed ‘neural 

fingerprinting’).

Although some neural substrates of SUDs may be shared across substances, using CPM 

we found cocaine and opioid abstinence networks to be anatomically distinct from one 

another and specific for predicting cocaine versus opioid abstinence, even within the same 

individuals (7). These results, which are consistent with preclinical work (10), suggest that 

there may be key differences in the neural factors linked to abstinence from different 

substances, which could have important implications for improving existing treatment 

approaches.

These findings align with prior work emphasizing the heterogeneity of SUDs and the 

need to develop more individually-tailored treatment approaches (11). Congruently, distinct 

personality features may give rise to vulnerability for misusing different drugs (12), and 

interventions that directly target patients’ individual personality profiles may be effective 

for preventing and reducing substance misuse (13, 14). These data highlight the utility 

of parsing some of the heterogeneity among individuals with SUDs to develop more 

individually-targeted interventions and improve treatment outcomes. Consistent with this, 

our prior CPM results provide preliminary evidence that the development of treatment 

approaches that target neural mechanisms specific to different substances could have 

promise for improving SUD treatment outcomes. Nonetheless, further replication and 

extension is needed to confirm the substance specificity of previously identified abstinence 

networks.
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Cannabis is the most widely used illicit drug worldwide with global rates of use increasing 

steadily over the past decade (15). Recent estimates suggest that 22.1 million people 

met criteria for cannabis use disorder (CUD) in 2016 (16), and CUD has been linked 

to poor mental health, psychosis, and bronchitis (17). Notably, the prevalence of CUD 

has increased as rates of use have risen, particularly among more vulnerable populations 

(18), spurring increased demand for effective CUD treatments (19). Nonetheless, there are 

currently no efficacious pharmacological treatments for CUD, although several medications 

appear to be effective for symptoms of cannabis withdrawal (e.g., sleep disturbance, 

loss of appetite) (20). There are several psychosocial treatment options for CUD, with 

cognitive behavioral therapy, motivational enhancement therapy, relapse prevention, and 

contingency management showing an overall moderate effect size in the short-term, yet there 

is little evidence for longer term efficacy of any available interventions (17, 21). Therefore, 

elucidating neural features predicting successful CUD treatment has the potential to identify 

promising new treatment targets (3, 4, 5, 22).

Here we seek to replicate and extend our prior work by analyzing neuroimaging data 

from a heterogeneous sample of individuals with cocaine and cannabis use disorders. Aims 

were threefold: In Study 1, we sought to (i) test the replicability of the cocaine network 

in another external sample and (ii) to determine whether the cocaine abstinence network 

would generalize to predict cannabis abstinence. Based on our earlier work indicating 

substance specificity of abstinence networks, we anticipated that the cocaine abstinence 

network would replicate in an external sample, but that it would not generalize to predict 

cannabis abstinence. Thus, in Study 2, we further aimed to (iii) conduct an independent 

CPM analysis to identify separate neural substrates as predictive of cannabis abstinence. 

Based on extant literature on neural correlates of cannabis use (23), we hypothesized that 

cannabis abstinence networks would be characterized by connections within and between 

frontoparietal, frontostriatal, and cerebellar regions.

Notably, our prior work found that when comparing treatment responders and non-

responders (defined based on their pattern of abstinence during treatment) to healthy 

control participants, treatment responders were characterized by significantly greater cocaine 

and opioid abstinence network strength relative to control participants, suggesting that 

the achievement of abstinence may require ‘hyper-functioning’ of abstinence networks 

to above the level observed in non-substance-using individuals (7, 24). Therefore, here 

we also compared network strength of the newly identified cannabis abstinence network 

among treatment responders, non-responders, and healthy comparison subjects to assess 

whether individuals who are successful in treatment would again be characterized by ‘hyper-

functioning’ network strength relative to comparison subjects.

Subjects and Methods

Participants

Participants for the cocaine network replication and initial application to cannabis 

abstinence (Study 1) were drawn from a randomized clinical trial (RCT) of cognitive-

behavioral treatments for SUDs (NCT01442597; 25). The trial included a heterogeneous 

polysubstance-using sample of outpatient treatment-seeking individuals. A majority of these 
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individuals met criteria for multiple lifetime substance use disorders, and participants were 

included in the current analysis if they had lifetime cocaine and/or cannabis use disorder, as 

well as usable pre-treatment fMRI reward task data (motion <.3mm), resulting in a sample 

of 43 individuals (see Table 1 for subject characteristics). Within this sample, 18 individuals 

met criteria for cocaine use disorder and 39 individuals met criteria for lifetime cannabis 

use disorder; 14 of these participants met criteria for both lifetime cocaine and cannabis use 

disorders.

Following this, a separate CPM was conducted to test whether an independent network 

might predict cannabis abstinence (Study 2). Although most participants met criteria for 

multiple lifetime substance use disorders, they also indicated their primary drug of choice 

at the time of treatment entry, and only participants who reported cannabis as their primary 

drug were included in the second analysis. Additionally, data from another 16 individuals 

from two separate RCTs (NCT00350649, NCT01406899; 26, 27) were also included 

for a combined sample size of 33 individuals entering treatment for CUD with usable 

pretreatment fMRI data.

All parent RCTs monitored abstinence via weekly urine toxicology screens during the study 

treatment period, as well as at 1-, 3-, and 6-month post-treatment follow-up visits. All 

participants provided written informed consent approved by the Yale School of Medicine 

IRB following description of study procedures, and all experiments were performed in 

accordance with relevant guidelines and regulations.

Finally, to facilitate follow-up analyses addressing substance specificity and comparison 

with control participants, additional samples of individuals with co-occurring cocaine- and 

opioid-use disorders (n=53) and healthy comparison subjects (n=38) were also included (see 

Supplement for subject characteristics) (details on these samples have also been described 

previously, see 6, 7).

Neuroimaging data acquisition and preprocessing

fMRI data were acquired during the Monetary Incentive Delay task (reward processing) 

and the Stroop task (cognitive control) at baseline and following treatment. Neuroimaging 

data were preprocessed using SPM8 and the Bioimage Suite (28), as described previously 

(6, 29), and runs with motion exceeding .3mm were excluded. Consistent with our prior 

work (6, 29), data were parcellated into 268 nodes defined using the Shen brain atlas (30), 

and mean time courses for each node were used to compute pairwise Pearson correlations 

between every node pair. Fisher’s r-to-z-transformation was applied to create symmetric 

268×268 matrices, also known as ‘connectomes’, which summarize the connection strength 

between every pair of nodes throughout the brain and serve as the input for CPM (8, 31) (see 

Supplement for additional details). Reward task matrices were generated for participants 

with at least one usable run (out of two, i.e., ≥50% acceptable data), and average cognitive 

control matrices were generated for participants with at least three usable runs (out of six, 

i.e., ≥50% acceptable data).

Lichenstein et al. Page 4

Mol Psychiatry. Author manuscript; available in PMC 2024 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT00350649
https://clinicaltrials.gov/ct2/show/NCT01406899


Cocaine abstinence network replication

Network strength of the cocaine abstinence network, previously identified and validated 

using CPM (6), was extracted from reward and cognitive control matrices. Predictive 

accuracy (i.e., association between cocaine abstinence network strength and actual observed 

abstinence during treatment) was assessed using Spearman’s rank order correlation, as 

in our prior work (6, 29). As only a positive association between network strength and 

abstinence indicates accuracy (i.e., a negative correlation between observed and predicted 

values constitutes a model failure), results were considered significant at one-tailed α<.05 

(32).

Cannabis abstinence network identification

As described above, CPM is a cross-validated machine-learning approach that takes whole-

brain connectomes and a behavioral variable of interest as inputs and identifies positive and 

negative features that are predictive of the given behavioral variable (8), such as abstinence 

(6, 29). CPM analyses were conducted using custom scripts in Python, based on Shen et 

al. (8), and available on GitHub (https://github.com/fye92/abcd_fy/tree/main/CPM_code). 

A 5-fold cross-validation (CV) CPM was adopted for all analyses: for each fold, 80% of 

participants were randomly assigned as training data and the remaining 20% were assigned 

as testing data. During training, Pearson correlation coefficients (r) were calculated across 

participants between edge weights in the input matrices and cannabis abstinence (i.e., the 

percentage of cannabis-negative urines provided during treatment). Edges that positively 

correlated with cannabis abstinence with (p<0.01) were identified as the positive features 

(“positive edges”), whereas edges that negatively correlated with cannabis abstinence 

were identified as the negative features (“negative edges”). A summary statistic was then 

calculated for each individual by subtracting the sum of negative edge weights from the sum 

of positive edge weights, and a linear regression model was trained on this statistic to predict 

abstinence. The predictive features identified in the training data were then extracted from 

the task-based matrices from the testing data, and the trained models were applied to the 

summary statistic of the testing data to generate predictions, as in prior work (6, 7, 8, 9, 31, 

33, 34, 35).

Model performance was quantified as the Spearman correlation (rho) between the testing-

data predictions and actual values across the whole sample. To further improve the reliability 

of our results and to prevent over-fitting to a random split of the data, models using 5-fold 

CV were repeated 100 times to generate 100 Spearman rho values, consistent with current 

recommendations (33). Only features present in 100% of iterations were included in the final 

cannabis abstinence network.

Permutation testing was adopted to evaluate the significance of the observed Spearman rho 
values. For 1,000 iterations, abstinence values were randomly permuted and then fed into 

CPMs. The resulting 1,000 Spearman rho values formed a null distribution and a one-tailed 

p-value was calculated by contrasting the actual Spearman rho against the null distribution:

p =  Number of null rℎo > rℎoactual 
 Number of null rℎo available 
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Again, one-tailed p-values were chosen over two-tailed p-value because rhoactual was 

expected to be positive (i.e., a negative rho indicates model failure) (32).

Post-hoc sensitivity testing

Assessing relationship with pre-treatment cannabis use—To determine the 

specificity of the identified cannabis abstinence network for predicting future abstinence 

during treatment (i.e., versus a more general marker of current/ongoing use), we computed 

a Pearson correlation (r) between cannabis abstinence network strength and cannabis use 

frequency during the 28 days prior to treatment.

Cannabis abstinence network strength across substance use outcomes—
To assess substance specificity of the cannabis abstinence network, we extracted the 

cannabis network from an independent sample of methadone-maintained individuals with 

co-occurring opioid and cocaine use disorders (details on this sample have been described 

previously, see 6, 7, 36; also see Supplement for Subject Characteristics and recruitment 

information). Spearman correlations were computed to assess whether cannabis abstinence 

network strength would predict cocaine or opioid abstinence in this independent sample.

Application to post-treatment data—Consistent with prior work (6, 7), we also sought 

to assess whether the strength and predictive ability of the cannabis abstinence network 

would be stable across pre- and post-treatment data. Therefore, a Pearson correlation (r) was 

calculated between baseline network strength and post-treatment network strength (n=21), a 

paired t-test was adopted to compare pre- and post-treatment connectivity strengths, and a 

Spearman correlation (rho) was calculated between post-treatment network strength and the 

post-treatment abstinence data (n=15; see Supplement for additional details).

Cannabis abstinence network strength relative to heathy comparison 
participants—Finally, to assess how cannabis abstinence network strength varies between 

individuals with CUD and comparison participants, the cannabis network was extracted 

from a healthy comparison sample. Network strength was compared between control 

participants, treatment responders, and non-responders, and independent samples t-tests 

were used to compare network strength between groups. Patients were classified as 

treatment responders if they had a minimum of 75% cannabis-negative urines during 

treatment, consistent with recent literature (37)— and also consistent with the bimodal 

distribution of cannabis-negative urines in this dataset (see Supplemental Figure 1 for the 

distribution of cannabis abstinence)—resulting in 16 participants (48.5%) being classified as 

treatment responders and 17 participants (51.5%) classified as treatment non-responders. 

Although these subsamples are small, it is important to note that this analysis is not 

designed to compare treatment responders to non-responders, but rather to assess how 

healthy comparison subjects’ network strength compares to individuals with CUD who have 

and have not achieved ≥75% abstinence in treatment. Findings from this analysis should 

nonetheless be considered exploratory.
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Results

Cocaine abstinence network replication and application to cannabis abstinence (Study 1)

Consistent with prior work (6), connectivity within the previously established cocaine 

abstinence network, as assessed during reward task performance, was significantly 

associated with subsequent within-treatment abstinence from cocaine both among 

individuals with lifetime cocaine use disorder (n=18; rho=.44, p=.033), as well as across 

the entire poly-substance-using sample more generally (n=43; rho=.28, p=.034). Follow-up 

analysis indicated that this effect did not generalize to cognitive task data (full sample, n=40: 

rho=.22, p=.083; cocaine sample, n=16: rho=.23, p=.20).

In contrast, baseline cocaine network strength was not related to subsequent within-

treatment cannabis abstinence, neither across the entire sample (reward: n=43, rho=−.14, 

p=.183; cognitive: n=40, rho=−.19, p=.122) nor when constrained only to individuals with 

primary cannabis use disorder (reward task: n=39, rho=−.13, p=.221; cognitive: n=36, 

rho=−.13, p=.230).

Independent Cannabis Abstinence Network Identification (Study 2)

Across 100 iterations, connectome-based models run with 5-fold cross-validation and 

generated from both types of task data each successfully predicted cannabis abstinence 

during treatment (reward: rho=0.67, p<0.001; cognitive: rho=0.69, p<0.001), indicating 

relevance of both cognitive control and reward-related processes in cannabis treatment 

outcomes. While not identical, network comparisons indicated significant anatomical 

overlap between networks (see Supplement for details). Given the similarities in both 

predictive accuracy and anatomical features, we next combined the cognitive control and 

reward task matrices to test the predictive accuracy of a multi-task model. This combined 

model (also run with 100 iterations and 5-fold cross-validation; rho=0.69, p<0.001; see 

Figure 1a) had comparable predictive accuracy and captured relevant features from both 

reward-related and cognitive control-related brain states. Therefore, the combined model 

was used as the primary cannabis model for all subsequent analyses (described below).

Network Anatomy—Similar to previously identified cocaine and opioid abstinence 

networks (6, 7), the cannabis abstinence network was complex and included connections 

within and between multiple brain regions and networks. Nonetheless, the network 

contained only 2% of all possible connections (786 total edges; 307 positive, 479 negative). 

Therefore, despite its complexity, the connections included were also quite specific. 

Figure 1b summarizes cannabis network anatomy based on overlap with macroscale brain 

regions, including connections between frontal, parietal, temporal, occipital, limbic, and 

subcortical regions. The highest degree nodes (i.e., nodes with the greatest number of 

network connections) of the positive network (i.e., nodes for which increased connectivity 

is predictive of cannabis abstinence) were in the dorsolateral prefrontal cortex, premotor/

supplementary motor area, and parietal regions, whereas the highest degree nodes of the 

negative network (i.e., nodes for which decreased connectivity is predictive of cannabis 

abstinence) were in the bilateral insula and caudate.
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Figure 1c summarizes cannabis abstinence network anatomy based on overlap with 

canonical networks (e.g., default mode, frontoparietal). The positive network was 

predominantly characterized by connections between the motorsensory network and 

frontoparietal, medial frontal, and salience networks. The negative network was largely 

comprised of within-network connections of the motorsensory network.

Comparison between cocaine and cannabis abstinence network anatomy—
Cannabis and cocaine abstinence networks showed very distinct patterns of network 

anatomy (Figure 2a). Whereas the positive cocaine abstinence network was characterized 

by connections between the motorsensory network and salience and cerebellar networks, 

as well as between the frontoparietal and medial frontal network, the positive cannabis 

abstinence network was dominated by connections between the motorsensory network 

and frontoparietal and medial frontal networks. Furthermore, there were no overlapping 

edges between the positive cocaine abstinence and positive cannabis abstinence networks. 

Similarly, whereas the negative cocaine abstinence network was comprised of connections 

between the salience, medial frontal, frontoparietal, default mode, visual, visual association, 

motorsensory, and cerebellar networks, the negative cannabis abstinence network was 

characterized by a much more focal pattern of within-network motorsensory connectivity. 

Furthermore, the negative cocaine and negative cannabis abstinence networks shared only 

5 edges, connecting nodes within the subcortical network to the medial frontal and visual 

networks, as well as connecting nodes between the salience and default mode networks.

Assessing relationship with pre-treatment cannabis use—Pre-treatment cannabis 

use frequency was not associated with cannabis abstinence network strength (r=.021, 

p=.907), suggesting that cannabis abstinence network strength is uniquely predictive of 

future cannabis abstinence during treatment (e.g., versus a general marker of current use 

patterns).

Specificity of cannabis abstinence network across substance use outcomes—
In an independent sample of 53 individuals entering treatment for cocaine use disorder (see 

Supplement for subject characteristics; this sample has also been described previously, see 6, 

7), there were no significant associations between within-treatment cocaine abstinence and 

cannabis abstinence network strength extracted from combined cognitive control and reward 

task matrices (rho=−.09, p=.256; see Figure 2b). Given that this sample was characterized 

by co-occurring cocaine and opioid use disorders, we also assessed whether cannabis 

abstinence network strength would relate to opioid abstinence. Similarly, there were no 

significant associations between within-treatment opioid abstinence and cannabis abstinence 

network strength (rho=−.145, p=.151).

Post-Treatment Replication—Cannabis abstinence network strength was stable across 

treatment (n=21 with pre- and post-treatment cognitive control and reward task data; r=0.8, 

p<.001; paired t=−0.495, p=.626). Additionally, when applying the cannabis abstinence 

network to post-treatment fMRI and cannabis abstinence data (n=15), a comparable effect 

size was observed, although the association was not statistically significant in the smaller 

sample (rho=.34, p=.10).
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Comparison with Healthy Control Participants—On average, cannabis abstinence 

network strength was not significantly different between CUD and control participants 

(extracted from combined cognitive control and reward task matrices; t=−.577, p=.567). 

However, when comparing control participants to treatment responders and non-responders, 

we found that control participants displayed an intermediate level of network strength, 

consistent with our prior work in other, non-cannabis SUDs (7). Specifically, relative to 

control participants, cannabis abstinence network strength was significantly increased in 

treatment responders (t=−9.597, p<.001), and significantly decreased among non-responders 

(t=7.784, p<.001).

Discussion

Here we demonstrate that a previously identified cocaine abstinence network (6) 

successfully predicted cocaine abstinence during treatment in a third independent sample. 

Consistent with our earlier work identifying substance-specific networks predicting cocaine 

and opioid abstinence (7), the cocaine abstinence network was also found to be specific for 

predicting cocaine, but not cannabis abstinence. Accordingly, we applied CPM to test for 

a separate cannabis abstinence network in a sample of individuals entering treatment for 

CUD. This independent CPM was successful and identified a network that was anatomically 

distinct from the cocaine abstinence network, and specific for predicting cannabis (versus 

other substance) use.

The current finding that the cocaine abstinence network generalizes to a third independent 

sample supports the utility of CPM for identifying neural substrates of addiction recovery 

that generalize across individuals and settings and may therefore represent useful treatment 

targets. Indeed, we are currently investigating whether directly targeting CPM-derived 

networks via real-time connectome-based neurofeedback may improve outcomes for 

individuals engaged in treatment for opioid use disorder. Furthermore, despite recent 

evidence that reliable brain-behavior correlations in heterogenous, normative populations 

may require very large sample sizes (n≈2000) (38), the current results demonstrate that 

replicable and generalizable brain-behavior relationships can be identified in clinical 

populations using smaller samples, so long as these are combined with machine learning 

techniques and appropriately stringent cross-validation approaches (39).

Given that the cocaine abstinence network was found to be specific for predicting cocaine, 

but not cannabis abstinence, we also applied CPM to identify a novel cannabis abstinence 

network. Cannabis abstinence was primarily associated with increased connectivity between 

the motorsensory network and frontoparietal, medial frontal, and salience networks, as well 

as decreased within-network connectivity of the motor sensory network. Within these larger 

canonical networks, increased connectivity of regions of the dorsolateral prefrontal cortex, 

premotor/supplementary motor area, and parietal cortex and decreased connectivity of the 

caudate and bilateral insula were found to be central to predicting cannabis abstinence 

during treatment.

The current finding that sensorimotor connections played a key role in predicting cannabis 

abstinence is consistent with prior data-driven work identifying neural features predictive 
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of chronic cannabis use (40), as well as opioid abstinence during treatment (7). This is 

hypothesized to relate to the automatization of drug use behaviors with extended substance 

use (7, 41). Accordingly, increased connectivity between frontoparietal, medial frontal, and 

motorsensory networks may facilitate greater top-down control over automatized drug use 

behaviors, rendering these individuals less vulnerable to relapse. Additionally, the insula has 

been associated with drug craving and may promote drug seeking behavior in the face of 

conflicting goals/negative consequences (42). Therefore, reduced insula connectivity may 

also facilitate success in treatment via reduced cannabis craving and drug-seeking.

These results have implications for informing the development of improved treatments 

for CUD. For instance, it may be possible to directly target this neurocircuitry using 

neuromodulatory approaches, such as real-time connectome-based neurofeedback (43). 

Alternatively, this pattern of results can also inform the development of behavioral treatment 

approaches. For example, existing treatments rarely consider or target acquired automaticity 

of drug use behaviors. The observed anatomy of the cannabis abstinence network suggests 

that developing behavioral strategies to improve top-down control over these automatized 

behaviors may help to improve individuals’ success in treatment, as well as specifically 

strategizing around managing cannabis craving.

Prior literature demonstrates that different brain states are optimal for revealing different 

brain-behavior relationships using functional connectivity data (44). Congruently, our prior 

work revealed that identification of both the cocaine and opioid abstinence networks was 

brain-state specific, such that a cocaine abstinence network could be identified using reward 

but not cognitive control data and the opposite was found for the opioid abstinence network 

(7). The current analyses revealed that both reward and cognitive control brain states were 

relevant for predicting cannabis abstinence in treatment. Therefore, data from both brain 

states were combined to generate the cannabis abstinence network. Nonetheless, future 

work using data acquired during brain states more closely related to CUD treatment (e.g., 

exposure to cannabis cues) may further improve our CPM model performance, as well 

as potentially uncovering additional neural connections relevant to achieving abstinence in 

treatment.

The current results also demonstrate that comparison subjects displayed intermediate 

network strength relative to treatment responders and non-responders, consistent with our 

prior work (7). Furthermore, we also observed that network strength remained consistent 

from pre- to post-treatment among the CUD group. Collectively, this pattern of results 

suggests that the features identified in the model are present prior to treatment and have 

a meaningful impact on individuals’ likelihoods of achieving abstinence. Therefore, this 

pattern of results further supports the idea that targeting these connections directly may help 

improve treatment outcomes for individuals entering treatment for cannabis use.

The current study has several limitations. The present sample of individuals entering 

treatment for CUD was characterized by a very small proportion of female individuals, 

precluding exploration of sex-/gender-related differences in neural features underlying 

cannabis abstinence. Future studies with larger samples of females are essential (23). The 

sample is also characterized by multiple lifetime substance use and other diagnoses. While 

Lichenstein et al. Page 10

Mol Psychiatry. Author manuscript; available in PMC 2024 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this is typical of real-world treatment settings and may improve the external validity of our 

results, it is also important to acknowledge that it is not a “pure” CUD sample. Therefore, 

co-occurring disorders may have impacted results. Additionally, although we used a rigorous 

cross-validation approach (5-fold cross-validation across 100 iterations), we did not include 

an external validation sample. Nonetheless, the current finding of a third independent 

replication of the cocaine abstinence network supports the utility of applying CPM to 

identify networks in modest samples that do ultimately generalize across different samples. 

Future work is needed to assess whether the cannabis network also replicates to predict 

cannabis treatment outcomes in independent samples of treatment-seeking individuals. 

Furthermore, analyses applying CPM to data acquired during brain states specific to 

cannabis use and treatment (e.g., cannabis cue-reactivity tasks) will be useful to assess for 

additional connections relevant to achieving abstinence in treatment. Related, it is critical 

that future research assess whether directly targeting the cannabis abstinence network 

via neurofeedback, neuromodulation, or other novel therapeutic approaches may improve 

treatment outcomes for individuals seeking treatment for CUD.

The current study sought to replicate our earlier work CPM to identify a neural network 

predictive of cocaine abstinence in treatment. We further aimed to extend these findings by 

assessing whether the cocaine abstinence network would extend to also predict cannabis 

abstinence in treatment. The present findings demonstrate that the cocaine abstinence 

network generalized to predict cocaine treatment outcome in a third independent sample, 

supporting the utility of CPM for identifying robust, reproducible, and clinically relevant 

neural networks. Consistent with prior work demonstrating the substance specificity of 

CPM-derived cocaine and opioid abstinence networks, we found that the cocaine abstinence 

network was specific for predicting cocaine, but not cannabis abstinence. Accordingly, 

we then applied CPM to identify a novel cannabis abstinence network, characterized by 

increased connectivity between the motorsensory network and frontoparietal, medial frontal, 

and salience networks, as well as decreased within-network connectivity of the motor 

sensory network. These results have implications for elucidating the neural mechanisms 

underlying successful cannabis-use treatment, as well as potentially uncovering novel 

treatment targets to improve treatment outcomes for this population.
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Preliminary data on the cannabis abstinence network were presented at the Society for Biological Psychiatry’s 2022 
Annual Scientific Meeting, New Orleans, LA.
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Figure 1. Cannabis Abstinence Network.
Panel A displays model performance for positive, negative, and combined cannabis 

abstinence network CPM models. Panel B illustrates network anatomy based on overlap 

with macroscale brain regions; edges of the positive network are depicted with red lines 

and edges of the negative network are depicted with blue lines. Panel C illustrates network 

anatomy based on overlap with canonical neural networks. Darker shading indicates that 

network connections account for a greater percentage of the total network.
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Figure 2. Specificity of Cannabis and Cocaine Abstinence Networks.
Panel A illustrates the anatomical specificity of cocaine and cannabis abstinence networks. 

Cells shaded in green represent network connections that are more characteristic of the 

cannabis versus cocaine abstinence network and cells shaded in orange represent network 

connections that are more characteristic of the cocaine versus cannabis abstinence networks. 

Panel B illustrates the substance specificity of abstinence networks by depicting the effect 

size for each network for predicting cocaine and cannabis abstinence.
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Table 1.

Demographic and clinical characteristics

Cocaine Abstinence 
Network Replication 

Sample*
n=43

Cannabis Abstinence 
Network Identification 

Sample*
n=33

Group Comparison χ2/t 

(p)

Female, No. (%) 9 (20.9) 3 (9.1) 1.97 (.161)

Age, mean (SD) 36.3 (11.3) 27.6 (8.4) 3.87 (<.001)

Educational attainment (completed high 
school or above, %)

32 (74.4) 22 (66.7) 0.55 (.460)

Race, No. (%) 2.68 (.612)

 White 10 (23.3) 9 (27.3)

 Black 23 (53.5) 17 (51.5)

 Hispanic 6 (14.0) 2 (6.1)

 Other 4 (9.3) 5 (15.1)

Currently employed, No. (%) 12 (27.9) 12 (36.4) 0.62 (.432)

Currently married/cohabitating, No. (%) 6 (14.0) 3 (9.1) 0.42 (.516)

Years of regular cocaine use, mean (SD) 5.1 (9.3) 1.8 (7.5) 1.74 (.086)

Years of regular cannabis use, mean (SD) 12.5 (11.2) 10.3 (9.5) 0.88 (.381)

Lifetime alcohol use disorder, No. (%) 38 (88.4) 21 (63.6) 6.58 (.010)

Lifetime No. of arrests, mean (SD) 9.4 (10.5) 7.6 (9.6) 0.73 (.466)

*
Note. N=17 individuals with lifetime cannabis use disorder are included in both samples
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