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Abstract
Objective.Headmotion correction (MC) is an essential process in brain positron emission
tomography (PET) imaging.We have used the Polaris Vicra, an optical hardware-basedmotion
tracking (HMT) device, for PETheadMC.However, this requires attachment of amarker to the
subject’s head.MarkerlessHMT (MLMT)methods aremore convenient for clinical translation than
HMTwith externalmarkers. In this study, we validated theUnited ImagingHealthcaremotion
tracking (UMT)MLMT systemusing phantom and human point source studies, and tested its
effectiveness on eight 18F-FPEB and four 11C-LSN3172176 human studies, with frame-based region of
interest (ROI) analysis.We also proposed an evaluationmetric, registration quality (RQ), and
compared it to a data-driven evaluationmethod,motion-corrected centroid-of-distribution
(MCCOD).Approach.UMTutilized a stereovision camerawith infrared structured light to capture
the subject’s real-time 3D facial surface. Each point cloud, acquired at up to 30Hz, was registered to
the reference cloud using a rigid-body iterative closest point registration algorithm.Main results. In
the phantompoint source study, UMT exhibited superior reconstruction results than theVicrawith
higher spatial resolution (0.35± 0.27mm) and smaller residual displacements (0.12± 0.10mm). In
the human point source study, UMTachieved comparable performance as Vicra on spatial resolution
with lower noise.Moreover, UMT achieved comparable ROI values asVicra for all the human studies,
with negligiblemean standard uptake value differences, while noMC results showed significant
negative bias. TheRQ evaluationmetric demonstrated the effectiveness ofUMTand yielded
comparable results toMCCOD. Significance.Weperformed an initial validation of a commercial
MLMT system against the Vicra. Generally, UMT achieved comparablemotion-tracking results in all
studies and the effectiveness ofUMT-basedMCwas demonstrated.

Introduction

Motion trackingmethods for brain positron emission tomography (PET) can be categorized into data-driven
and hardware-basedmotion tracking (HMT) categories. Data-drivenmethods use PET rawdata or
reconstructions and do not require external devices. The post-reconstruction registrationmethod employs pre-
defined dynamic frames, which are registered to a reference frame to obtainmotion transformations
(Mukherjee et al 2016, Picard andThompson 1997). Sun et alutilized tracer-specific kineticmodeling to deal
with inter-framemovement patterns for dynamic PET (Sun et al 2022b). However, intra-framemotion, i.e.
motionwithin one dynamic frame, cannot be corrected. Data-drivenmethods using PET raw count data, such
as centroid of distribution (COD) andmoments of inertia, can achieve great reductions inmotion-induced
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blurring, but generally do not have high temporal resolution and can be inaccurate during large changes in tracer
activity (Schleyer et al 2015, Rezaei et al 2021, Revilla et al 2022). Recently, deep learning for headmotion
correction (DL-HMC) has demonstrated its feasibility in predicting rigidmotion for brain PET (Zeng et al 2022),
but further advancements are necessary to enhance its robustness.

Compared to data-drivenmotion tracking,HMT typically has higher temporal and spatial resolution. For
example, inOnishi et al (2022), a brain PET scanner has an inter-crystal gap for a retro-reflectivemarker-based
HMT.At our center, the Polaris Vicra (NorthernDigital Inc.), an optical HMTdevicemounted outside the
scanner, has been used in over 5000 PET studies (Jin et al 2013b). However, Vicra is not routinely used clinically
due to the requirement to attach a light-reflectingmarker (figure 1(a)) to the patient. Also, slippage of the
attachedmarkers can occur.

Compared tomarker-basedHMT,markerlessmotion tracking (MLMT)methods aremore convenient. In
MLMT, camera images are captured to detect headmovements in real time. The core principle ofMLMT
involves employing computer vision techniques for robust featurematching, enabling the computation of
changes in head position accurately. In the past,MLMThas been successfully applied inMRImotion tracking
(Kyme et al 2020, Chen et al 2023). Over time, severalmarkerlessmotion trackingmethods for PEThave been
proposed. In animal studies, Kyme et al (2014) andMiranda et al (2017) appliedMLMT to track headmotion in
awake rodents and successfully demonstrated its effectiveness in correctingmotion in rat PET. In human
studies, Olesen et al (2013) appliedmarkerless tracking at 5 Hz for brain PETusing two cameras, where the
reference imageswere created by aligning andmerging point clouds from two cameras, and the tracking result
was calculated by the iterative closest point (ICP) algorithm; in a subsequent paper (Slipsager et al 2019), an
improved 30 HzMLMTwith one camerawas applied in both PET andmagnetic resonance imaging (MRI), also
using ICP registration to obtainmotion information, and themotion correction effectiveness was evaluated in a
large cohort study by time-activity curve analysis. However, these studies did not include a comparison study
with othermotion trackingmethods. Iwao et al (2022) applied a time-of-flight type range sensor in a helmet PET
system and achieved event-by-event (EBE) headmotion correction (MC), although quantitative accuracy in the
final images was not yet evaluated. In addition, note that the proposedKinect systemwas designed for helmet
geometry andwould require adaptation for cylindrical PET geometries. Overall, currentMLMTmethods lack
validation, and evaluationmetrics are limited. Therefore, evenwith encouraging initial results, there is not yet a
robust commercial system for brain PETmotion correction.

Careful evaluation of theMCmethod is necessary. IdealMC evaluationmethods, such as direct
measurements ofmotion and comparison ofmotion displacement to ground truth, are not clinically feasible.
Comparison of frame-based standardized uptake value (SUV) is a commonMCevaluationmethod. Several
other evaluationmethods such as contrast-to-noise ratio (CNR), cross correlation,mutual information and
standardized uptake value ratio (SUVR)were also proposed for differentmotion correction applications (Klen
et al 2016, Chen et al 2018, Keller et al 2012, Reilhac et al 2018).We recently proposed an objective quality
controlmetric for rigid headmotion information, calledmotion corrected centroid-of-distribution (MCCOD)
(Sun et al 2022a).MCCODhas the advantage over othermethods of providing real-time assessment ofmotion
data accuracy. Such real-time data provides the opportunity to correct or remove periods of largemotionwhere

Figure 1. (a)Mannequin phantomwith light-reflectingmarker and radioactive point sources, (b)Overlay between themaximum-
intensity-projection of the phantomattenuationmap and the PET reconstruction of the point sources, (c) example of a phantom
point cloud (left) before registration (top) and after registration (bottom) and example of a patient point cloud (right) before
registration (top) and after registration (bottom).
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registration accuracymay be poor. InmarkerlessHMT, detection accuracy relies on device robustness, such as
registration betweenmoving frames and segmented facemodels, and accuracy is subject to non-rigid facial
expression changes (Iwao et al 2022). Therefore, a quantitative evaluationmetric forMLMT is important and
should be objective and real-time.

In this study, we propose a prototypemarkerlessHMT camera developed byUnited ImagingHealthcare
(UIH), to perform real-time headmotion tracking in brain PET.We validate theUIHmotion tracking (UMT)
system against theVicra (1) using phantomand human studies with attached radioactive point sources, and (2)
with human 18F-FPEB and 11C-LSN3172176 studies.We also test a camera-based evaluationmetric (registration
quality,RQ) and applyMCCOD for comparison.

Materials andmethods

Human studies
Subjects were enrolled in institutional review board–approved studies that were also approved by the Yale
Radiation Safety Committee. Subjects were also enrolled in a separate institutional review board–approved
protocol for evaluation of the camera system. All subjects gavewritten informed consent.

Data acquisitions
All studies were performed on a Siemens BiographmCT (Jakoby et al 2011) using both theVicra andUMT
systems. TheUMTwasmounted on the gantry of the scanner, and time synchronizationwas applied between
UMTandmCT (see Supplement). In a 15min phantom study, threeNa-22 point sources (80 kBq each) and the
Vicra tool were attached to amannequin head (figures 1(a), (b)). Thirteenmanual translation and rotation step
motionswere performed everyminute, and the phantomwas held static betweenmovements. CTwas used for
attenuation correction (AC). The phantomwas stationary during theCT acquisition and thefirstminute of the
PET scan.

A 15 min human studymimicking the phantom studywas performedwith the same point sources and
without tracer injection. A volunteer was instructed to perform step headmotions of translation and/or rotation
everyminute. The volunteer was instructed to remain static for thefirstminute and between stepmotions. No
CTwas acquired.

As part of ongoing studies, twelve 120min PETdynamic human studies were performed using 18F-FPEB
(Wong et al 2013,Mecca et al 2021) (153± 24MBq injection,metabotropic glutamate 5 receptors,N= 8) and
11C-LSN3172176 (500± 209MBq,muscarinicM1 receptor,N= 4) (Naganawa et al 2021). CT acquired prior to
the PETwas used for AC. Each participant underwent separate T1-weightedMRI.

Motion trackingmethods
UMTutilized a stereovision camerawith infrared structured light to capture the subject’s real-time 3D facial
surface. The system consisted of an illumination class I laser (940 nm) and two infrared cameras which collected
reflected optical signal. These data were transferred to a dedicated processor to calculate point clouds (a list of
spatial coordinates) at up to 30Hz. Therewere∼20 000 points per cloud, with spatial accuracy<0.2 mmas
validated by a high-resolutionmotion stage. The point cloudswere down-sampled by averaging point location
within a grid of 3 mmvoxels (Steinbrucker et al 2014).

To performmotion estimation, each point cloud (figure 1(c))was registered to a reference point cloud
collected at the beginning of each scan, using a rigid-body ICP registration algorithm (Besl andMckay 1992).
The average calculation time for a 120min human protocol was approximately 30 min. This algorithm found a 6
degree-of-freedom solution tominimize the sumof the squared distance between points in each point cloud
pair (Chen andMedioni 1992). A bounding boxwasmanually selected and applied on the first frame, and the
reference cloudwas segmentedwithin the bounding box to include the upper face/cheek area and exclude all
non-face areas. Duringmotion tracking, the ICP algorithmwas only appliedwithin the bounding box. If the
rotation or translation output from the ICP registration exceeded empirically set thresholds (3milliradian
rotation or 0.5mm translation in any direction), the currentmoving framewas considered to contain significant
motion. Subsequently, the bounding boxwas repositioned based on the transformationmatrix and applied to
subsequent frames. Thefinal transformationmatrix was converted to the PET coordinate system via a pre-
calculated calibrationmatrix (see Supplement). Nofilteringwas applied to themotion data.

TheUMT frameworkwas comparedwith theVicra, whichwas used as the reference. The Polaris Vicra
tracking system (NorthernDigital Inc.,Waterloo, Canada) used infrared illuminators and stereo cameras to
sense 3Dpositions of reflective spheres, whichweremounted to the subject’s headwith a ‘tool’. Data were
collected at 30Hz.
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Tomeasure headmotion betweenCT and PET, a secondVicra reflection tool (‘bed tool’)was attached to the
patient bed andwas tracked alongwith the tool on the patient’s head (‘head tool’).We assumed that the patient’s
headwasmotionless relative to the bed during theCT acquisition, so the spatial relationship of the head tool
relative to the bed tool was constant, i.e. afixed transformationmatrix.With the bed tool, Vicra can track the
motion fromCTpose to PETpose to eliminate attenuationmismatch. For this evaluation, the transformation
matrix betweenCT and PETposes was applied in the proposedUMT framework, sinceUMTdid notmeasure
themotion between PET andCT (see Supplement). In the future, wewill developCT automatic segmentation
and registration algorithms forUMT.

Event-by-eventmotion compensated reconstruction and image analysis
Image reconstructionwas performed using theMOLAR (Motion-compensationOSEM list-mode algorithm for
resolution-recovery reconstruction) platform (Jin et al 2013a).Motion information at 30 Hz provided byVicra
orUMTwas converted to a text file with one line for eachmeasurement, including time tag and the 12 values in
the rigid transformationmatrix. Then, EBEMC reconstructions were performed by reassigning the endpoints of
each line-of-response (LOR) according to themotion information. Bothmethods used the same reconstruction
pipeline and frame timing. OSEM reconstruction (3 iterations× 21 subsets)with spatially invariant point-
spread-function (PSF) of 4 mm full-width-half-maximum (FWHM)was used (Jin et al 2013a). Time-of-flight
informationwas included in the reconstruction and no post-smoothing filter was applied. An isotropic voxel
size of 0.5mmwas used for the point source reconstructions and 2mmwas used for the 18F-FPEB and
11C-LSN3172176 studies. Dynamic PETdatawere reconstructed into 33 frames: 6× 30 s, 3×1 min, 2×2 min,
22×5 min. For the phantom and humanpoint source studies, the six parameters of rigidmotionmeasured by
theVicra andUMT systemswere compared. A full 15min frame and fifteen 1min frameswere reconstructed.
To assess within-image blurring, the regions around each point sourcewerefitted to a three-dimensional (X:
lateral, Y: anterior-posterior, and Z: axial), Gaussianmodel with 8 parameters (peak height, background, X, Y,
andZ center locations, andX, Y, andZ FWHMs).Measurementsmade in the reconstruction of the 1stminute,
i.e. nomotion, were used as the reference. Center shift of the point sources wasmeasured by the Euclidian
distance (mm) of the estimated centers between target and reference reconstructions. For the 18F-FPEB and
11C-LSN3172176 human studies, region of interest (ROI) analysis was applied (see Supplement). For eachROI,
paired sample t-tests (one-tailed)were applied to the absolute value of the percent differences with respect to the
Vicra data, to test statistically if theUMTerrorwas smaller than that of the nomotion correction data.

Motion correction evaluationmethods
Twomotion correctionmetrics were evaluated. Thefirstmetric was based solely onmotion data. Due to head
motion and facial expression changes, e.g.mouth breathing, ICP registrationmay be inaccurate. To quantify the
UMTMCquality, we proposed ametric called registration quality (RQ), which quantified registration accuracy
as the fraction of points in the point cloud that were accurately registered:

( )
( )

( )=
¢N m

N m
RQ 1

{ | ( ) } ( )j¢ Î m m m r d, , 2i i i
2

whereN is the number of points (∼5000 points per cloud), m represents the registeredmoving frame, r
represents the reference frame, and i indexes the points in the point cloud.j is a squared Euclidean distance
operator quantifying the closeness of mi and r .i The distance threshold, d, was empirically set at 2.4 mm (80%of
theUMTvoxel size). To quantify overall registration quality, the time durationwithRQ below an empirical
threshold (0.97)was tabulated for each study.

The secondmetric was based on PET rawdata.We have previously usedCODas a data-drivenmethod to
detectmotion (Lu et al 2019, Ren et al 2017). The central coordinates of the LORof all events were averaged over
1 s intervals to generate COD traces inX, Y, andZ. A follow-on toCODwasmotion-corrected COD (MCCOD),
whichwas an objective quality control approach to assess rigidmotion information (Sun et al 2022a); see
Supplement for details.MCCODdisplacements indicatedmotion estimation errors.

In the human study, we generatedMCCOD traces based on bothVicra andUMTdata to qualitatively
evaluateUMTmotion tracking performance. In addition, we assessed the effectiveness of theRQmetric by
comparing ‘spikes’ in this trace to large visibleMCCODdisplacements.
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Results

Phantomandhuman studywith external point sources
For the phantompoint source study, themean and standard deviation (SD) of rotation and translation
differences tracked byUMTandVicrawere 0.39± 0.71° and−0.60± 2.18 mm, respectively. Qualitative results
show thatUMTandVicramotion tracking are in an overall very good agreement (figure 2(a)). Small
discrepancies in rotation (0.65± 0.10°) and translation (1.08± 0.28 mm) inX at 4–5 min aswell as rotation
(0.59± 0.06°) inY at 8–9 minwere observed. Short period disagreements (‘spikes’) betweenVicra andUMT
occurred at the times of stepmotions; thesemay be caused either by theVicra tool wobbling or by poor
performance of theUMT ICP registration. The SDof rotation and translation during the static time periods
between stepmotions forUMTwere 0.04° and 0.05mm, and for Vicrawere 0.07° and 0.39mm, i.e. therewere
less high-frequency fluctuations between stepmotions for theUMT than theVicra; this difference in variability
is visible infigure 2(a).

Figure 3(a) shows reconstructed axial, sagittal, and coronal images of the point sources in the phantom
study; these slices intersect the highest pixel value for each source for eachmethod. For the 0–1 min reference
phase (figure 3(a), top row, nomotion), isotropic resolutionwas observed in theX–Y (axial)planes for all three
points while poorer resolution is observed in theZ direction, perhaps caused by the spatially-variant resolution
of themCT (Jakoby et al 2011). For phases withmotion (figure 3(a), rows 2 and 3, 15min reconstructions), UMT
yielded similar peak intensity as the reference image, while Vicra yielded lower peak values consistent with less-

Figure 2.Motion tracking results of point source studies for (a) themannequin phantom study and (b) the human volunteer study.
UMTdata are shown in blue andVicra data are shown in orange.Note the differences in scale. UMT:United ImagingHealthcare
Motion tracking system.
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accuratemotion compensation. For comparison, nomotion corrected (NMC) images are shown asmaximum
intensity projections in comparison to those forUMTandVicra (see supplemental figure 2).

Table 1(a) shows the analysis of the full (15 min) and frame-based (individual 1min periods) reconstructions
of the point sources for phantom study.Numerically, for all the points and in all directions, UMT showed
smaller FWHMvalues thanVicra (table 1(a)) in both the full analysis (0.35± 0.27 mm) and the frame-based
analysis (0.09± 0.08 mm). UMT also yielded smaller center shifts than theVicra (differences of 0.12± 0.10mm
in full analysis and 0.57± 0.02 mm in frame-based analysis). Due to the nature of themannequin, i.e. no facial
expressions, this study represented the best possible UMTperformance.

For the human studywith point sources,figure 2(b) shows the translation and rotation tracked byUMTand
Vicra. ForX axis rotation and translation, good agreement betweenUMT andVicra was found, withmean± SD
differences of−0.18± 0.61° and 0.05± 0.93mm, respectively. For the othermotion parameters (Y axis rotation
and translation,Z axis rotation and translation), larger differences were found: 0.34± 0.36°,−0.07± 1.31mm,
−0.46± 0.72° and 1.09± 1.33mm, respectively. Like themannequin study, UMTyielded lower noise in
translation tracking than theVicra. Figure 3(b) illustrates the full 15min reconstruction of the point sources in
the human study. Visually, UMToutperformedVicra for Point 2, exhibiting a higher peak intensity. For the
other sources, bothUMT andVicra displayed lower peak intensities than the reference, accompanied by
elongated tails in the axial and coronal views.

Table 1(b) shows analysis results of the human point source study. In the full analysis, at Point 2 (∼5 cm
above the left ear of the volunteer), UMTprovided better spatial resolution than theVicra and yielded similar
peak intensity as the reference image. For Point 1 (close to top of head) and Point 3 (∼5 cm above the right ear),
UMTyielded comparable spatial resolution as theVicra inX andZ directions, but resolution degradation inY
was observed for Points 1 and 3 forUMT. In addition,UMT yielded substantially larger center shift (by 0.62±
0.13mm) in the full analysis. In the frame-based analysis, UMThad smaller FWHMvalues thanVicra for all
points (0.15± 0.08mm), similar to themannequin study. As for center shift, Vicra outperformedUMT for 2
points; the average difference was 0.26± 0.45mm for all points. Comparedwith themannequin study, UMT
had poorer performance of center shift in the human study, perhaps due to its sensitivity to facial expressions
such asmouth/nosemovement, hands touching face, etc.

Figure 3.Reconstructed images of the point sources for (a) themannequin phantom study and (b) the human volunteer study. Slices
shown intersect the highest voxel value for each source for eachmethod. The top row shows the reconstruction of thefirstminute of
acquisition (nomotion). The next two rows show the full 15 min reconstructionswithmotion correction byUIHMotion Tracking
(UMT) andVicra. For each point source, the color barwas scaled to themaximum intensity from the reference image, which differs
for each source. All the images for each sourcewere displayed to their respectivemaxima for visual comparison.UMT:United Imaging
HealthcareMotion tracking system.
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Table 1. Full (15 min) and frame-based point source study evaluation. (a)Mannequin phantompoint source study result. (b)Human volunteer point source study result.

Mannequin phantom
Point 1 Point 2 Point 3

FWHM-X (mm) Y Z Center shift (mm) X Y Z Center shift X Y Z Center shift

(a)
NoMotion (ref.) 1.87 1.94 2.43 0.00 1.87 1.88 2.17 0.00 1.96 1.90 2.91 0.00

UMT full 1.82 1.98 2.11 0.03 1.83 1.86 2.18 0.01 2.00 2.05 2.97 0.07

Vicra full 1.98 2.46 2.34 0.24 1.98 2.34 2.52 0.14 2.24 3.02 3.06 0.09

UMT frameMean

(SD)
1.85 1.91 2.32 0.33 1.84 1.83 2.13 0.47 2.01 1.96 2.73 0.54

(0.07) (0.11) (0.24) (0.25) (0.04) (0.07) (0.16) (0.28) (0.17) (0.15) (0.32) (0.30)
Vicra frameMean

(SD) 1.88 1.96 2.41 0.92 1.88 1.89 2.41 1.03 2.08 2.05 2.87 1.10

(0.08) (0.10) (0.23) (0.76) (0.04) (0.08) (0.21) (0.72) (0.17) (0.15) (0.30) (0.79)

(b)
Human volunteer Point 1 Point 2 Point 3

FWHM-X (mm) Y Z Center shift (mm) X Y Z Center shift X Y Z Center shift

NoMotion (ref.) 1.61 1.79 1.72 0.00 1.77 2.38 1.94 0.00 1.75 2.30 2.25 0.00

UMT full 1.75 2.62 1.72 0.82 1.77 2.28 2.03 0.75 2.03 3.66 2.44 1.23

Vicra full 1.78 2.05 1.84 0.27 2.02 2.81 2.37 0.22 2.03 2.65 2.60 0.46

UMT frameMean 1.65 1.87 1.60 1.32 1.73 2.22 2.00 0.82 1.72 2.36 2.06 1.97

(SD) (0.04) (0.07) (0.11) (1.0) (0.06) (0.11) (0.12) (0.50) (0.07) (0.11) (0.11) (1.52)
Vicra frameMean 1.72 2.01 1.83 0.65 1.82 2.34 2.22 1.04 1.80 2.42 2.36 1.31

(SD) (0.07) (0.12) (0.14) (0.34) (0.07) (0.14) (0.16) (0.52) (0.05) (0.10) (0.14) (1.0)

Mean and SDof FWHMwere calculated across all images. The center shift is the distance between themaximum intensity voxel of the reconstructed images and the reference image. NoMotion (ref.) is the result of the 0–1 min static frame.

UMT full andVicra full indicate the full 15 min reconstruction evaluation result. UMT frame andVicra frame indicate the frame-based evaluation result. Bold font indicates whetherUMTorVicra showed superior performance. FWHM:

FullWidth atHalfMaximum.UMT:United ImagingHealthcareMotion Tracking system.
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HumanPET studies
For the human studies, we compared the real-timemotion tracking information fromUMTandVicra in one
typical 11C-LSN3172176 subject withmoderatemotion (figure 4). Over a 2 h scan, themean and SDof rotation
and translation differences tracked byUMT andVicra were 0.84± 0.62° and 0.15± 0.72 mm, respectively. The
translation values in all directions agreed, but therewere someminor drifts inY rotations, withmean and SD
differences betweenUMTandVicra of 0.51± 0.35°. These discrepanciesmay be caused by factors such as
nonrigidmotion (which can affect UMT) and tool slippage andwobbling (which affects theVicra). As seen in
figure 4, similar to the point source studies, UMTyields lower noise than theVicra; this ismost clearly visualized
in the translation results. Quantitatively, we calculated the translationmotion SDwithin 1min intervals and
averaged this value over the 120min scan across all 12 subjects. The result showed that Vicra average SDwas 0.49
mmwhileUMTwas 0.27mm.

Figure 5 shows reconstructed images for the two tracers with nomotion correction (NMC) ormotion
information fromUMTorVicra. Infigure 5(a), comparedwithNMC,UMTandVicra both improved image
resolution, e.g. at frontal cortical regions (arrows). This area usually suffersmore rotation-inducedmotion since
it is far from the head’s center of rotation. Infigure 5(a), minor visual differences were observed betweenVicra
andUMTmethods. Infigure 5(b), UMTandVicra yield improved lateral cortical structures (arrow)whileNMC
was blurred. These examples show thatUMTcan achieve similarmotion tracking performance toVicra in
human studies.

Table 2 shows the SUV analysis over 2 h scans for large ROIs forNMCandUMT,with percentage differences
reportedwith respect toVicra. For 18F-FPEB, the average difference betweenUMT andVicra was very small
(mean± SD 0.05%± 0.73%), and the inter-subject SDofUMT-Vicra difference wasmuch less thanNMC
(5.16%± 3.11%). For 11C-LSN3172176, the average difference betweenUMTandVicrawas a bit larger (0.84%
± 1.15%), and average SD across subjects betweenUMTandVicrawas alsomuch less thanNMC (3.46%±
2.82%). For both tracers, greymatter (GM)has higher uptake thanwhitematter, NMCunderestimatedGMand
overestimatedwhitematter whileUMTvalues had amaximummean difference of 1.18% compared toVicra.
Paired sample t-test showed thatNMCabsolute bias was significantly greater thanUMT (p< 0.05) in 12 / 14
ROIs (p< 0.1 in the remaining 2 ROIs). Figure 6 shows the SUV analysis for 74 small GMROIs. Infigure 6(a),
themean difference betweenUMT andVicrawas 0.19%whileNMC showed large negative biases. Variability
across subjects of theUMT results in both tracers (error bars)was small (mean± SD1.11%± 0.40%). In
figure 6(b), for thewhole period, the corresponding SDof the%differences across ROIswas also low.

Motion correction evaluation
Figure 7 shows theUMTRQmetric andCOD/MCCODresults of one 11C-LSN3172176 (figure 7(a)) and one
18F-FPEB subject (figure 7(b)); theCOD/MCCODdata are shown for the one directionwithmost prominent
motion (therewasminimalmotion in other directions). Infigure 7(a), the proportion of timewithRQ below

Figure 4.Motion tracking results fromone typical 11C-LSN3172176 subject. UMTdata are shown in orange andVicra data are shown
in blue.Note the differences in scale. UMT:United ImagingHealthcareMotion tracking system.
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0.97was 0.03%. Themost pronounced spike in theRQ curvewas at∼45 min corresponding to a clearmotion, as
seen in theCODgraph in theY direction. Other spikes inRQ did not show correspondingmovement in the
CODgraph, perhaps due to non-rigidmovements (seeDiscussion). From45 to 80 min, therewere three head
motions fromCOD-Y, andUMTvisually outperformedVicra in correcting thesemotionswith smoother
MCCODresults. Overall, Vicra (blue) andUMT (orange)MCCOD tracers were generally consistent, with
increasingfluctuationwith time expected due to the 11C half-life. In terms of ROI accuracy, themotion
correction quality forUMTandVicra were comparable with average small GMROI percent difference of 0.18%
± 1.11% in this subject.

Figure 5.Typical reconstruction examples (0–120 min post injection) of (a) 18F-FPEB and (b) 11C-LSN3172176.NMC indicates
reconstructionwithoutmotion correction, UMT indicates reconstructionwithUMT-basedmotion correction, Vicra indicates
reconstructionwithVicra-basedmotion correction. The arrows denote areas of clear difference betweenUMTandVicra versus
NMC.NMC:NoMotionCorrection. UMT:United ImagingHealthcareMotion tracking system.

Table 2.Brain ROI analysis.

Tracer

18F-FPEB 11C-LSN3172176

BrainROI NMCbias UMTbias NMCbias UMTbias

Amygdala −7.87%± 7.80% 0.44%± 1.62% −3.26%± 6.85% 0.00%± 2.60%

Caudate −23.25%± 14.67% 1.36%± 3.49% −8.62%± 11.66% 2.96%± 2.86%

Cerebellum cortex −0.90%± 3.19% 0.85%± 0.58% 0.98%± 3.69% 0.99%± 0.56%

Frontal −13.82%± 5.44% −0.64%± 0.86% −4.65%± 4.49% 1.46%± 0.98%

Hippocampus −6.93%± 3.70% −0.83%± 0.79% −2.30%± 6.21% 0.43%± 1.99%

Insula −10.24%± 5.05% −0.39%± 1.41% 0.40%± 1.11% 0.83%± 0.91%

Occipital −3.23%± 9.96% 0.48%± 2.06% 0.73%± 2.01% 3.04%± 2.45%

Parietal −9.07%± 4.41% −1.21%± 0.63% 11.90%± 9.68% −0.63%± 1.90%

Putamen −6.59%± 3.71% 0.02%± 1.93% −1.39%± 3.97% 1.22%± 1.16%

Temporal −10.53%± 14.82% 0.09%± 2.27% −3.27%± 2.63% 1.06%± 1.37%

Thalamus −9.11%± 5.11% −0.27%± 1.08% −3.24%± 2.48% 1.65%± 0.78%

Cerebellumwhitematter 1.34%± 4.58% 1.07%± 0.50% −1.33%± 3.69% 0.12%± 0.56%

Cerebral whitematter 6.78%± 4.09% 0.36%± 0.83% 1.64%± 0.64% −0.68%± 0.34%

Pallidum* 16.86%± 4.65% −0.70%± 0.96% 11.90%± 9.68% −0.63%± 1.90%

Greymatter average −9.23% −0.01% −1.16% 1.18%

Greymatter SD 5.56% 0.73% 4.90% 1.06%

Whitematter average 4.06% 0.72% 0.16% −0.28%

Whitematter SD 2.72% 0.35% 1.48% 0.40%

Nomotion correction (NMC) andUIHmotion tracking (UMT) bias values shown as average± standard deviation of the%difference with

respect toVicra values across all subjects. Paired sample t-test shows thatNMCabsolute bias is significantly greater thanUMT (p< 0.05) in
12/14ROIs (p< 0.1 in the remaining 2ROIs). SD: standard deviation.
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Figure 7(b) shows theUMTRQ andZ directionCOD/MCCOD results of one 18F-FPEB subject who showed
more pronouncedmovements. From15–30 and 80–120 min, theRQ curve showed numerous spikes (the
proportion of timewithRQ below 0.97was 10.65%) andCOD-Z showed somematching displacements during
these periods. Other spikes inRQwere caused by facialmovement, e.g.mouth breathing (seeDiscussion) and
thesewere reflected in theUMTmotion correction quality fromMCCOD. In this case, Vicra outperformed
UMT, and the average small GMROI difference betweenUMT andVicra reconstructions was larger (−1.16%
± 3.61%).

Discussion

In this study, we evaluated theUMT, a commercialmarkerless headmotion tracking system against theVicra
marker-based system. TheUMT system yielded similar results as Vicra in both phantom and human point
source studies.We then appliedUMTmotion tracking to 12 human studies and compared reconstruction
quality withVicra-based correction using a common reconstruction platform (Jin et al 2013a). For 18F-FPEB
and 11C-LSN3172176, the proposedmethod achieved comparable reconstructed images andROI results as
compared toVicra. To evaluate theUMTmotion correction quality, we proposed a camera-basedmetric called
registration quality (RQ) and verified the feasibility ofRQ via an existing PET-basedmotion evaluationmethod,
MCCOD.Note thatMCCOD is not applicable in the firstminutes postinjection because of the rapid dynamic
changes in tracer distribution, whereasRQ is able to evaluate themotion tracking performance throughout the
scan. Furthermore,RQ is capable of assessing performance across all tracers, whileMCCOD is dependent on the

Figure 6. Small ROImean (a) and SD (b) across ROIs of the percent difference betweenNMCandUMTversus Vicra over individual
scan frames. Error bars illustrate SD across different subjects. NMC:NoMotionCorrection. SD: Standard deviation.UMT:United
ImagingHealthcareMotion tracking system.
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tracer distribution and the count level. However, RQ relies on the point cloud registration, which limits its
applicability to othermotion trackingmethods.

To use theVicra system, a toolmust befirmly attached to the subject’s head. UMTyielded similarmotion
tracking results without an attachedmarker. Generally,markerlessmotion tracking can enhance the subject’s
comfort and simplify operator procedures. In addition, theVicra tool slippage andwobbling can causemotion
tracking errors (Lu et al 2020, Sun et al 2022a). However, there are stillmany steps necessary to fully automate
and validate theUMT system, including improving the face segmentation and handling non-rigid facialmotion.
Segmentation of the reference point cloud is needed for accuratemotion tracking, andwe are currently
developing an automatic segmentation algorithm. For facial expression changes, non-rigidmotions currently
produced tracking errors due to the use of rigid registration. Futureworkwill use camera-basedmetrics such as
RQ to detect facial expression changes.

Comparedwith data-drivenmethods such as CODand short frame registration (Revilla et al 2022, Spangler-
Bickell et al 2022), camera systems such asUMT should provide better performance in thefirstminutes
postinjection because the rapid change in distribution affects performance of these data-drivenmethods. In
addition, the time resolution of data-drivenmethodsmust be optimized, unlike the 30Hz sampling ofUMT.

The goal for theUMT system is its application to theNeuroEXPLORER (NX) brain PET system (Carson et al
2021)which should provide useable spatial resolution better than 2mmwith ultra-high sensitivity. In this study,
we attached point sources to a phantom and human head and evaluatedmotion tracking performance based on
FWHManalysis. By employing thismethodology, we have the ground truth reference from the static time
period. In the point source study, the average FWHMdifference between reference andUMT is 0.21± 0.35mm,
which suggests thatUMTmay have enough accuracy to track headmotion duringNX scanswithout significant
loss of resolution.Wewill include continuousmotion in phantom studies in future evaluation on theNX.
Furthermore, we evaluated quantitative results on themCT system and found excellent agreement in ROI
results compared toVicra (table 2). This workwill be repeated on theNX and comparedwith image-basedMC
such as post reconstruction image registration (Jin et al 2013b) because exceptional accuracy inmotion
correctionwill be necessary to operate at higher spatial resolution. For theNX, theUMT systemwill be used
without theVicra system, so an objective evaluationmetric forMLMT is important. To assess the quality of the
UMTmotion data, we proposed theRQmetric, which reflects ICP registration accuracy as the fraction of points
in the point cloud that are accurately registered to the reference point cloud.Our approach is to apply theRQ
metric to gate the listmode data, i.e. to remove listmode datawhenRQ detects poor registrations such as the
spikes infigure 7.Only count data during periodswith highRQwill be included in EBE reconstruction and the

Figure 7.Motion data of one 11C-LSN3172176 study (a) and one 18F-FPEB study (b). Top:UMT registration quality (RQ,
dimensionless) data, bottom:CODandMCCOD (mm)withVicra and theUMTdata.Motion data are shown in theY andZ
directions for (a) and (b), respectively (motionwasminimal in other directions). In the bottompanels, the curves were shifted
vertically for clarity. Spikes in (b) relate to facial expressions.MCCOD is not shown for thefirst 5 min because of the rapid change in
tracer distribution. COD:Centroid ofDistribution.MCCOD:motion-correctedCOD.UMT:United ImagingHealthcareMotion
tracking system.
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effective duration of each framewill be adjusted for quantitative reconstruction. In the future, wewill evaluate
the impact of variousRQ thresholds (d) for gating on theNeuroEXPLORER.

Here, we used theMCCODmethod and the proposedRQmetric to evaluate the quality ofmotion
correction data.We found that some spikes in theRQ trace did not alignwith displacements of theUMT
MCCODcurve. These effectsmay have been caused by facial expressions. To characterize these effects, we
examined the point clouds during periods of lowRQ. Supplemental figure 3 illustrates theUMTpoint cloud of a
subject with varying facial expressions. Supplemental figure 3(b) corresponds to a spike in theRQ curve at
104 min infigure 7(b). The point clouds from these time periods revealedmouth breathing, which led to facial
deformation that impactedUMTdata. In addition, image-basedmetrics such asmutual information and cross
correlation can also be applied between reference andmotion-corrected dynamic frames using differentmotion
correctionmethods to assessMCquality in thefinal images, where highermutual information and cross
correlation values correspond to better accuracy (Keller et al 2012).

Conclusion

Weevaluated a commercialmarkerless headmotion tracking system against theVicra systemusing radioactive
point sources on a phantom and a human head aswell as on dynamic clinical PETdata. UMToutperformed
Vicra in the phantom study and achieved comparable results in human point source studies. In twelve human
PET studies, UMTachieved comparable results toVicra, demonstrating promising clinical potential for
markerlessmotion tracking.We proposed a built-inmetric calledRQ formotion tracking evaluation ofUMT
and compared it with amotion correction evaluationmethod (MCCOD)which uses PET rawdata. Our
feasibility data shows that theRQmetric is useful inMCevaluation and can detect some facial expression
changes. Futureworkwill include evaluation using theNeuroEXPLORERwithmultiple tracers including
18F-FDG.
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