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Retention time (RT) alignment is a crucial step in liquid chromatography-mass

spectrometry (LC-MS)-based proteomic and metabolomic experiments,
especially for large cohort studies. The most popular alignment tools are
based on warping function method and direct matching method. However,
existing tools can hardly handle monotonic and non-monotonic RT shifts
simultaneously. Here, we develop a deep learning-based RT alignment tool,
DeepRTAlign, for large cohort LC-MS data analysis. DeepRTAlign has been
demonstrated to have improved performances by benchmarking it against
current state-of-the-art approaches on multiple real-world and simulated
proteomic and metabolomic datasets. The results also show that DeepRTAlign
can improve identification sensitivity without compromising quantitative
accuracy. Furthermore, using the MS features aligned by DeepRTAlign, we
trained and validated a robust classifier to predict the early recurrence of
hepatocellular carcinoma. DeepRTAlign provides an advanced solution to RT
alignment in large cohort LC-MS studies, which is currently a major bottleneck
in proteomics and metabolomics research.

Liquid chromatography (LC) is usually coupled with mass spectro-
metry (MS) in proteomics experiments to separate complex samples.
The retention time (RT) of each analyte in MS data usually have shifts
for multiple reasons, including matrix effects and instrument
performances’. Thus, in any experiment involving multiple samples,
corresponding analytes must be mapped before quantitative, com-
parative, or statistical analysis. This process is called correspondence’.
In other words, this problem can be defined as finding the “same
compound” in multiple samples. Generally, in proteomics, corre-
spondence can be done based on peptide identifications. However,

taking the test data in this study as an example, only 15%-25% of pre-
cursors have the corresponding identifications due to the data-
dependent ion selection process in the data-dependent acquisition
(DDA) mode. Even for the data-independent acquisition (DIA) data, a
number of unidentified precursors (potential peptides) remain, which
cannot be considered in the subsequent analysis due to the complex
MS/MS spectra®. Most existing tools for DDA and DIA data analysis,
such as MaxQuant*, PANDA®, MSFragger®’ and DIA-NN®, perform RT
alignment using the match between runs (MBR) function (also called
the cross-align function) to transfer the identified sequences to the
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unidentified precursors between any two LC-MS runs. Although MBR
can increase the total number of identifications to some extent, it is
integrated into specific software tools and relies on the identified
peptides, which limits its further application in clinical proteomics
research to explore new biomarkers from unidentified precursors. In
metabolomics, feature alignment is a prerequisite for identification
and quantification. In theory, the accuracy of feature alignment
depends on the m/z and RT information in MS data. Currently, high-
resolution mass spectrometers can limit the m/z shift to less than
10 ppm. Thus, RT alignment is especially important for accurately
analyzing large-scale proteomics and metabolomics research data.

There are two types of computational methods for RT alignment.
One is called the warping method. Warping models first correct the RT
shifts of analytes between runs by a linear or non-linear warping
function”’. There were several existing popular alignment tools based
on this method, such as XCMS'°, MZmine 2" and OpenMS'". However,
this warping method is not able to correct the non-monotonic shift
because the warping function is monotonic’. Another kind of method
is the direct matching method, which attempts to perform corre-
spondence solely based on the similarity between specific signals from
run to run without a warping function. The representative tools
include RTAlign, MassUntangler and Peakmatch®. The perfor-
mances of the existing direct matching tools are reported inferior to
the tools using warping functions due to the uncertainty of MS signals®.
Either way, these tools mentioned above can hardly handle both
monotonic and non-monotonic RT shifts. Thus, machine learning or
deep learning techniques are applied to solve this issue. Li et al. applied
a Siamese network for accurate peak alignment in gas
chromatography-MS data from complex metabolomic samples'®. But
there is no deep learning-based alignment algorithm for LC-MS data
analysis currently.

Here, we present a deep learning-based RT alignment tool, named
DeepRTAlign, for large cohort LC-MS data analysis. Combining a
coarse alignment (pseudo warping function) and a deep learning-
based model (direct matching), DeepRTAlign can deal with monotonic
shifts as well as non-monotonic shifts. We have demonstrated its high
accuracy and sensitivity in several proteomic and metabolomic data-
sets compared with existing popular tools. Further, DeepRTAlign
allows us to apply MS features directly and accurately to downstream
biological analysis, such as biomarker discovery or prognosis predic-
tion, which can complement traditional identification (ID)-based
methods.

Results

Workflow of DeepRTAlign

The whole workflow of DeepRTAlign is shown in Fig. 1, and can be
divided into two parts, i.e., the training part and the application part.
The training part contains the following steps.

(1) Precursor detection and feature extraction. Taking raw MS files as
input, precursor detection and its feature extraction were per-
formed using an in-house developed tool XICFinder, an MS
feature extraction tool similar to Dinosaur”. The algorithm of
XICFinder is based on our quantitative tool PANDA’. Using the
Component Object Model (COM) of MSFileReader, it can handle
Thermo raw files directly. XICFinder first detects isotope patterns
in each spectrum. Then, the isotope patterns detected in several
subsequent spectra are merged into a feature. A mass tolerance of
10 ppm was used in this step.

Coarse alignment. First, the RT in all the samples will be linearly
scaled to a certain range (e.g., 80 min in this study, as the RT range
of training dataset HCC-T is 80 min). Second, for each m/z, the
feature with the highest intensity is selected to build a new list for
each sample. Then, all the samples except an anchor sample (we
considered the first sample as the anchor in this study) will be
divided into pieces by a user-defined RT window (we used 1 min in
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this study). All the features in each piece are compared with the
features in the anchor sample (mass tolerance: 0.01 Da). If the
same feature does not exist in the anchor sample, this feature is
ignored. Then, the RT shift is calculated for each feature pair. For
all the features in each piece, the average RT shift is calculated. To
align each piece with the anchor sample, the average RT shift
between a piece and the anchor sample is directly added to each
feature in this piece.

Binning and filtering. All features will be grouped based on m/z,
according to the parameters bin_width and bin_precision (0.03
and 2 by default). Bin_width is the m/z window size, and bin_pre-
cision is the number of decimal places used in this step. Only the
features in the same m/z window will be aligned. After the binning
step, there is also an optional filtering step. For each sample in
each m/z window, only the feature with the highest intensity will
be kept in the user-defined RT range. DeepRTAlign does not
perform the filtering step by default.

Input vector construction. Only the RT and m/z of each feature are
considered when constructing the input vector. As shown in
Fig. 1a, we consider two adjacent features (according to RT)
before and after the target feature corresponding to a peptide.
Part 1 and Part 4 are the original values of RT and m/z. Part 2 and
Part 3 are the difference values between the two samples. Then,
we used two base vectors (base_1 is [5, 0.03] and base_2 is [80,
1500]) to normalize the features (the difference values will be
divided by base_1, the original value will be divided by base_2).
Each feature-feature pair will be transferred to a 5 x 8 vector as the
input of the deep neural network (Supplementary Fig. 1).

Deep neural network (DNN). The DNN model in DeepRTAlign
contains three hidden layers (each has 5000 neurons), which is
used as a classifier that distinguishes between two types of feature
Supplementary Table -feature pairs (i.e., the two features should be
or not be aligned). Finally, a total of 400,000 feature-feature pairs
were collected from the HCC-T dataset (1) based on the Mascot
identification results (mass tolerance: +10 ppm, restrict the RT of a
peptide to be within the RT range of the corresponding precursor
feature). 200,000 of them are collected from the same peptides,
which should be aligned (labeled as positive). The other 200,000
are collected from different peptides with a m/z tolerance of
0.03 Da, which should not be aligned (labeled as negative). These
400,000 feature-feature pairs were used to train the DNN model. It
should be noted that it is not necessary to know the peptide
sequences corresponding to the features when performing feature
alignment. The identification results of several popular search
engines (such as Mascot, MaxQuant and MSFragger) are only used
as ground truths when benchmarking DeepRTAlign.

The hyperparameters in DNN. BCELoss function in Pytorch is used
as the loss function. The sigmoid function was used as the activa-
tion function. We used the default initialization method of pytorch
(kaiming_uniform). We used Adam (betas = (0.9, 0.999), eps =1e-
08, weight decay=0, amsgrad=False, foreach=None, max-
imize =False, capturable =False, differentiable =False, fused=
None) as the optimizer. The initial learning rate is set to 0.001, and
is multiplied by 0.1 every 100 epochs. Batch size is set to 500. The
number of epochs is chosen empirically. We conducted several
trial runs and found that the loss tended to be stable at 100-300.
So, we set the epoch number to 400 for final training. All other
parameters are kept by default in Pytorch v1.8.0.

Parameter evaluation. Network parameters used were examined
on the training set (HCC-T) by 10-fold cross validation and the
best parameters were selected based on the cross-validation
results (Supplementary Table 2). The trained model was evaluated
on several independent test sets (Supplementary Table 3). These
results demonstrated that there is no overfitting in the
DNN model.
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Fig. 1| The illustration of DeepRTAlign algorithm. a The training procedures of
DeepRTAlign. The n is the feature rank number (sorted by RT) in one m/z window of
sample 1. The m is the feature rank number (sorted by RT) in one m/z window of
sample 2. Please note that “n-1”, “n-2”, “n+1” and “n + 2” represent four adjacent

Aligned feature list

features of the feature n in one m/z window. b The workflow for RT alignment using
DeepRTAlign. DeepRTAlign supports four feature extraction methods (Dinosaur,
MaxQuant, OpenMS and XICFinder). The features extracted will be aligned using
the trained model shown in (a), with the aligned feature list as the output.

(8) Quality control (QC) of the output. A QC module was imple-
mented in DeepRTAlign to perform QC for the output of
DeepRTAlign. As shown in Supplementary Fig. 2, in each m/z
window, DeepRTAlign will randomly select a sample as a target
and build its decoy. In theory, all features in the decoy sample
should not be aligned. Based on this, the final false discovery rate
(FDR) of the alignment results can be calculated.

In the application part (Fig. 1b), DeepRTAlign directly supports
the results of four MS feature extraction tools, i.e., Dinosaur”, Max-
Quant, OpenMS and XICFinder, as input. Feature lists from other tools
(such as MZmine 2) can be used after converting format to txt or csv
files. In this part, feature lists will first go through the coarse alignment
and input vector construction steps, as shown in the training part.
Then, the constructed input vectors will be fed into the trained DNN
model. According to the classification results of the DNN model,
DeepRTAlign will output an aligned feature list for further analysis.

Model evaluation on the training set and the test sets
To optimize the network parameters in the DNN model, the best
parameters were selected based on the 10-fold cross-validation

results on the training set (HCC-T) (Supplementary Table 2). Then,
to benchmark the DNN model, we additionally trained four models
using several popular machine learning methods (RF, KNN, SVM
and LR) on the same training set (HCC-T). The test results of our
DNN model and all the other machine-learning models are shown in
Supplementary Table 3. We found that our DNN model owned the
highest AUC compared with other models. Although the DNN
model is trained on the HCC-T dataset, it achieved good general-
izability and can be applied to other datasets with different sample
types or species.

Then, we randomly collected 2000 negative pairs correctly pre-
dicted by both DNN and RF (BOTH-right pairs), and 2000 negative
pairs correctly predicted by DNN but incorrectly predicted by RF
(DNN-right pairs) in a test set (HCC-N, RT range: 1-80 min, m/z toler-
ance: 0.03 Da, the same way as we collected the negative pairs in the
training set HCC-T, see “Workflow of DeepRTAlign”). The average RT
differences of the 2000 BOTH-right pairs and the 2000 DNN-right
pairs were similar (5.03 min and 4.89 min, respectively). However, the
average m/z difference of the 2000 BOTH-right pairs was 0.011 Da,
which was five times the average m/z differences of the 2000 DNN-
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right pairs (0.002 Da). These results indicated that the advantages of
DNN may mainly lie in recognizing the negative pairs with close m/z
values. And we found that those negative pairs with similar m/z values
(with differences less than 0.002 Da) were rare cases in the whole
training data (10% only). Traditional machine learning methods usually
are difficult to discriminate and predict correctly in such a situation.
Although the bootstrapping-based RF is supposed to alleviate the
problem such as imbalanced data in some degree, its classification
power will drastically drop when the minority is extremely rare'. The
minor pairs might be scarcely sampled during the bootstrapping and
their effects on trees are overwhelmed by the majority of the data. In
contrast, the DNN model is trained with mini-batches iteratively
through gradient descent, which guarantees each pair, including the
rare cases, is learned through a shuffled order. Particularly, those
incorrectly predicted rare cases lead to greater loss values and thus
greater gradients to update the model, which may explain why DNN
can predict them better.

Ablation analysis

We performed the ablation analysis to evaluate the DNN model in
DeepRTAlign on different test sets (HCC-N, HCC-R, UPS2-M, UPS2-Y,
EC-H, AT and SC). For the coarse alignment step, we have shown that
there are no obvious differences when using different samples as the
anchor sample (Supplementary Table 4). We also tested the perfor-
mance of DeepRTAlign with or without the coarse alignment step
(Supplementary Table 5). We found that our DNN model with the
coarse alignment step owned a higher AUC compared with the same
DNN model without coarse alignment.

Then, we calculated the importance of each feature in the DNN
model, the RF model and the LR model to show which feature is more
important when training the DNN, RF and LR models on the same
training set (HCC-T). For DNN, the importance of each feature in DNN
was calculated as the AUC decrease tested in the HCC-N dataset when

MZmine 2(FE)+MZmine 2(A)
N MZmine 2(FE)+DeepRTAlign(A)

0.8

0.6

precision

0.4
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0.0
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MZmine 2(FE)+MZmine 2(A)
B MZmine 2(FE)+DeepRTAlign(A)

0.8

0.6
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0.4
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HCC-N EC-H UPS2-M UPS2-Y AT

Fig. 2 | Performance evaluation of DeepRTAlign compared with MZmine 2 and
OpenMS. a, ¢ The precisions and recalls of MZmine 2 and DeepRTAlign on different
test sets. b, d The precisions and recalls of OpenMS and DeepRTAlign on different
test datasets. “FE” means the feature extraction method. “A” means the RT align-
ment method. We took the Mascot identification results with FDR <1% as the

each feature in DNN was replaced with a random value, compared to
the DNN model without random features. For RF, the feature impor-
tance is the attribute “feature_importances” in sklearn.ensem-
ble.RandomForestClassifier (scikit-learn framework v0.21.3). For LR,
the feature importance is the attribute “coef ” in sklearn.linear_ mo-
del.LogisticRegression (scikit-learn framework v0.21.3). As shown in
Supplementary Table 6, we found that feature 6 (mz,,-mz,,) and feature
16 (mz,-mz,) were the top 2 important features, indicating that DNN,
RF and LR models relied mostly on the features about m/z for align-
ment prediction. We also found the importances of feature 5 (RT,-
RT.,) and feature 15 (RT,-RT,) in DNN were about half of feature 6
(mz,-mz,,) and feature 16 (mz,,-mz,), while the ratio (importance of
feature 5/importance of feature 6) decreased to only about 32.7% in RF
and 0.72% in LR. This difference indicates that the importance of RT-
related features in the DNN model is relatively higher than that in the
RF and LR models.

Comparison with existing alignment tools

According to the information required, all the alignment tools can be
divided into three types (Supplementary Table 7). DeepRTAlign,
MZmine 2 and OpenMS only need MS information. Quandenser
requires both MS and MS/MS information. In addition, MaxQuant,
MSFragger and DIA-NN with MBR functions require identification
results for alignment.

Comparison with MZmine 2, OpenMS

First, DeepRTAlign was compared with two other popular MS-based
only alignment tools, MZmine 2 and OpenMS, on proteomic datasets.
As shown in Fig. 2, we found that DeepRTAlign showed an improve-
ment in both precision and recall compared with OpenMS and
MZmine 2. The noise threshold in MZmine 2 is the key parameter
associated with the number of extracted features. But it is difficult
for users to choose. Lowering the noise threshold will further
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10 B OpenMS(FE)+DeepRTAlign(A)
0.8
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Q
0.4
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10 EEE OpenMS(FE)+DeepRTAlign(A)
0.8
S 06
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=
0.4
0.2
0.0
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ground truth in datasets HCC-N, UPS2-M and UPS2-Y and took the MaxQuant
identification results with FDR <1% as the ground truth in datasets EC-H and AT. In
dataset EC-H, we only considered the E. coli peptides for evaluation. In datasets
UPS2-M and UPS2-Y, we only considered the UPS2 peptides for evaluation. Source
data are provided as a Source Data file.

Nature Communications | (2023)14:8188



Article

https://doi.org/10.1038/s41467-023-43909-5

increase its extraction time. The focus of this work is not to compare
the pros and cons of different feature extraction tools, so we chose
relatively high noise thresholds (1.0E6 on proteomic data, 1.0E5 on
metabolomic data) to ensure the feature quality and control of the
running time.

Then, we also compared DeepRTAlign with MZmine 2 and
OpenMS on a public real-world metabolomic dataset SM1100%. This
dataset was generated from standard mixtures consisting of 1100
compounds with specified concentration ratios. It contains two groups
(SA and SB), and each group has 5 replicates. We used DeepRTAlign
(combined with 3 different feature extraction tools: MZmine 2,
OpenMS and Dinosaur), MZmine 2 and OpenMS to align features
across runs. Thus, it resulted in five different algorithm combinations
(Supplementary Table 8). Here, to demonstrate DeepRTAlign’s capa-
city to deal with metabolomic data, every adjacent sample pair in each
group (i.e., SA1-SA2, SA2-SA3, SA3-SA4, SA4-SAS and SB1-SB2, SB2-SB3,
SB3-SB4, and SB4-SB5) was aligned using the five algorithm
combinations.

For feature extraction, the default parameters in OpenMS
and Dinosaur were used. In MZmine 2, the parameter “Noise Level”
was set to 1.0E5 to make the extracted feature number similar to
those of OpenMS and Dinosaur. Then, the extracted features in
each sample were annotated according to the 1100 standard com-
pounds with strict standards (mass tolerance: +5 ppm, RT tolerance:
+0.5min as suggested in ref. 19). Based on the annotation results, the
precision and recall values for each combination were calculated and
showed in Supplementary Table 8. We can see that all five combina-
tions performed well due to the simpler composition of this metabo-
lomic standard dataset (compared with the proteomic datasets).

a 15ng : 10ng b

1400

20ng : 10ng C

Comparison with quandenser

DeepRTAlign was then compared with another popular tool
Quandenser®® which used both MS and MS/MS information. Quan-
denser applies unsupervised clustering on both MS1 and MS2 levels to
summarize all analytes of interest without assigning identities. Using
Dinosaur as the feature extraction method, we compared DeepRTAlign
with Quandenser on the Benchmark-FC dataset. We mapped all the
extracted features to the identification results and only considered the
Escherichia coli (E. coli) peptides without missing values in all the
replicates. As shown in Supplementary Fig. 3, we found that DeepR-
TAlign was comparable to Quandenser in terms of the number of
aligned peptides and the quantification accuracy. But DeepRTAlign
could align many more features (no matter if there were correspond-
ing identification results) than Quandenser since it was an ID-free
alignment approach.

Comparison with MaxQuant, MSFragger and DIA-NN with or
without MBR
We compared DeepRTAlign with the alignment methods based on the
identification results, which was currently the most used alignment
strategy. MBR is an updated version of these kinds of alignment
methods, which can transfer identification results to the un-
identification features”. We further compared DeepRTAlign with
MaxQuant’s MBR and MSFragger’s MBR on the Benchmark-FC dataset
(Fig. 3). MaxQuant or MSFragger was run twice with and without the
MBR function while keeping the other parameters unchanged.

As shown in Fig. 3, by combining MaxQuant to extract features,
DeepRTAlign to align features and MSFragger to identify their peptide
sequences, we could obtain 150% more peptides compared to the
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Fig. 3 | The number and ratio distributions of all E. coli peptides between
specific samples (15 ng/10 ng, 20 ng/10 ng, and 25 ng/10 ng) in each replicate
(R1, R2 and R3) after alignment. a-c The E. coli peptide number in each sample
after alignment. d-f The ratio distributions of all E. coli peptides between specific
samples (15 ng/10 ng, 20 ng/10 ng, and 25 ng/10 ng). The numbers 1, 2 and 3 in the

legends indicate feature extraction method, alignment method and identification
method, respectively. In all boxplots, the center red line is the median of log2 of the
peptide fold changes. The box limits are the upper and lower quartiles. The whis-
kers extend to 1.5 times the size of the interquartile range. Source data are provided
as a Source Data file.
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original MaxQuant workflow (using MaxQuant to extract features,
align them and identify their peptide sequences) without compro-
mising the quantification accuracy. DeepRTAlign also aligned 7% and
14.5% more peptides than OpenMS and MSFragger's MBR, respec-
tively, while its quantification accuracy was comparable to other
methods. Benchmarked on dataset Benchmark-MV against MSFrag-
ger’s MBR, DeepRTAlign also aligned more peptides with acomparable
quantification accuracy (Supplementary Fig. 4). These results
demonstrated DeepRTAlign had a better performance for alignment
than MBR-applied MaxQuant and MSFragger.

It should be noted that since MSFragger did not provide its
extracted feature list, we used the features extracted by Dinosaur,
OpenMS and MaxQuant for a fair comparison. DeepRTAlign is com-
patible with multiple feature extraction methods (Dinosaur, OpenMS,
MaxQuant and XICFinder), which is convenient for users to choose the
feature extraction method suitable for their experiments.

Furthermore, DeepRTAlign also performed better than MBR in
DIA-NN on single-cell proteomics DIA data (Supplementary Fig. 5).
Considering the aligned peptides present in at least two cells,
DeepRTAlign can align 39 (6.33%) more peptides on average than the
existing popular tool DIA-NN in each cell. Moreover, using DeepRTA-
lign, the average number of the aligned features present in at least two
cells is approximately 42.3 times the average number of the aligned
peptides, providing the possibility to identify different cell types using
the aligned MS features besides the aligned peptides in the future.

Generalizability evaluation on simulated datasets

Based on the 14 real-world datasets (9 proteomic datasets: EC-H, HCC-
N, UPS2-M, UPS2-Y, HCC-R, AT, MI, SC and CD; 5 metabolomic data-
sets: NCC19, SM1100, MM, SO and GUS), we generated a total of 336
(14*24) simulated datasets with different RT shifts to evaluate the
generalizability boundary of DeepRTAlign.

As shown in Fig. 4, it can be found that in most cases, DeepRTAlign
owns higher precision and recall values than OpenMS on the pro-
teomic datasets. Meanwhile, we also find DeepRTAlign and OpenMS
perform worse when the standard deviation of the RT shift increases
(from 0.1 to 5). Thus, we recommend that the RT shift distribution be
controlled to different levels in practical applications for proteomic
and metabolomic studies. In most proteomic datasets, when the
standard deviation of RT shift is larger than 1 min, the precision and
recall drop significantly (Fig. 4). In most metabolomic datasets, a
similar phenomenon occurs when the standard deviation is larger than
0.3 min, especially in recall (Supplementary Figs. 6, 7). Under the
FDR <1%, DeepRTAlign outperformed OpenMS on two metabolomic
datasets (SM1100 and MM) but not on the other datasets (NCC19, SO
and GUS). We explored the extracted features in datasets NCC19, SO
and GUS and found that they contained a large number of features with
very close m/z. One possible reason is this type of data is not compa-
tible with our current decoy design method. Thus, we further tested
DeepRTAlign on these three datasets by setting FDR threshold to
100%. As shown in Supplementary Fig. 7, we found that the perfor-
mance of DeepRTAlign became comparable with that of OpenMS on
these three datasets. However, it should be noted that OpenMS does
not perform well on these three datasets either, indicating a potential
limitation for MS1-only alignment method. Meanwhile, we found that
both proteomic and metabolomic datasets were unaffected when only
changing the mean of RT shifts.

MS features aligned by DeepRTAlign enable accurate prediction
of HCC early recurrence

The accurate detection of HCC early recurrence after surgery is one of
the main challenges in liver cancer research™. In our previous work?,
MS features were proved to have a good discriminating power to
classify tumor and non-tumor samples.
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Fig. 4 | Comparison of DeepRTAlign and OpenMS on multiple simulated
datasets generated from 9 real-world proteomic datasets. The simulated data-
sets were constructed by adding normally distributed RT shifts to the corre-
sponding real-world dataset. (a, d) p=0 min. b, e p=5min. ¢, f £ =10 min. The
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normal distribution has an increasing o, i.e.,, 6=0, 0.1, 0.3,0.5, 0.7, 1, 3, 5 for
different p (0, 5 and 10 min), respectively. Source data are provided as a Source
Data file.
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Here, we applied DeepRTAlign to re-analyze the proteomics data
of the tumor samples from 101 HCC patients in Jiang et al.’s paper** and
used the aligned MS features to train a classifier for predicting HCC
early recurrence (Fig. 5a). For all the 101 patients in Jiang et al.’s paper,
we define the recurrent patients within 24 months after surgery as the
early recurrences (V= 30), and the non-recurrent patients longer than
60 months after surgery as late recurrences (N=22). Two reference
classifiers for recurrence prediction were also built based on the
quantified peptides or proteins. We used the same workflow for a fair
evaluation of the three classifiers based on MS features, peptides and
proteins, respectively: (1) Perform minimum Redundancy Maximum
Relevance (mRMR) algorithm® between the early recurrence group
and late recurrence group. (2) Choose the top 200 MS features, pep-
tides, and proteins with the highest mRMR scores as input to train an
SVM classifier, respectively. All the parameters in SVM were set by
default using the scikit-learn package (kernel="rbf, gamma="auto’,
C=1). As shown in Fig. 5b, the five-fold cross validation of the top 200
aligned features-based classifier on the training set (C1, N=52) shows

the highest AUC (0.998) compared with those classifiers built on top
200 peptides (AUC: 0.931) and top 200 proteins (AUC: 0.757). Please
note that in the 101 patients from dataset HCC-T, the cases of early
recurrence (N=30), and the cases of late recurrence (N=22) were
considered as the training set (C1) for HCC early recurrence prediction.

Next, we mapped the top 200 MS features, peptides and proteins
selected by mRMR to a test set HCC-R (C2, N=11), respectively. There
were 15 features, 55 peptides and 56 proteins successfully mapped in
HCC-R. Then, the mapped 15 features were used to train a SVM clas-
sifier on the HCC-T dataset. To keep the same criteria, the top 15 of the
mapped peptides and proteins were used to train the corresponding
SVM classifiers in the same way, respectively. Notably, the feature-
based classifier achieved better results than peptide- and protein-
based classifiers on HCC-R (Fig. 5c). We tried to map all the 15 MS
features in the feature-based early recurrence classifier to the corre-
sponding identification results. There were eight features successfully
mapped to the identification results of the HCC-T dataset. Seven fea-
tures left remained unknown (Supplementary Data 1).
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Fig. 5 | Construction and validation of an HCC early recurrence classifier based
on the MS features aligned by DeepRTAlign. a Study design for construction and
validation of this 15-feature-based classifier. First, all the features in dataset HCC-T
(N=101) were aligned by DeepRTAlign. Top 200 features were selected by mMRM.
We mapped the top 200 MS features to an independent test set HCC-R (C2). There
were 15 features successfully mapped to HCC-R. In the 101 patients from dataset
HCC-T, the cases of early recurrence (N =30), and the cases of late recurrence
(N=22) were considered as the training set (C1) for HCC early recurrence predic-
tion. Then, the mapped 15 features were used to train a SVM classifier based on the
Cl dataset, and tested on the HCC-R dataset (C2, N =11). Peptide- and protein-based
classifiers were generated in the same way, but they were not marked in Fig. 5a for

False Positive Rate

clarity. These 15 features in the early recurrence classifier were then targeted in
PRM experiments and analyzed by PD and Skyline based on an independent dataset
HCC-R2 (C3, N=23). The 15-feature-based classifier was further tested on dataset
HCC-R2 (C3) using the Skyline quantification results. b The five-fold cross validation
AUCs on C1 of the SVM models for HCC recurrence prediction trained by the top
200 aligned MS features, top 200 peptides, and top 200 proteins, respectively. Top
200 peptides and top 200 proteins were also selected by mRMR. ¢ The test AUCs
on C2 of the SVM models trained on HCC-T dataset by the aligned 15 MS features,
top 15 peptides, and top 15 proteins, respectively. d The test AUC on C3 of the 15-
feature-based SVM model. Source data are provided as a Source Data file.
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To further validate the 15 MS features in the feature-based early
recurrence classifier, we enrolled a new HCC cohort HCC-R2 (C3,
N=23, Supplementary Data 2) and performed scheduled PRM
(sPRM)*® experiments for validation. Those 23 HCC patient samples
were not fractionated, allowing us to detect all targeted features in a
single run. The 15 features and the other 34 features from the top 200
features identified from our training set (HCC-T) were tentatively
included in the target list of our sPRM method (Supplementary Data 3).
Remarkably, all the 15 features were reliably identified in Proteome
Discoverer (PD) results and verified in Skyline results (Supplementary
Data 4 and Supplementary Data 5), including the seven previously
unknown features in the HCC-T dataset (Supplementary Data 1).

Then, we performed an independent test using the sPRM results
of the 15 features on the HCC-R2 cohort (N=23, 12 cases of early
recurrence and 11 cases of late recurrence). Peak areas of precursors
and transitions were exported from Skyline (Supplementary Data 6)
and summed as peptide abundance for the 15 features. As shown in
Fig. 5d, the classifier to predict HCC early recurrence achieved an AUC
value of 0.833 in this independent cohort (HCC-R2), indicating the
generalizability of the 15-feature-based early recurrence classifier.
These results indicate that the aligned MS features may contain more
hidden information than peptides and proteins and thus enable more
accurate stratification of the patients, showing the advantage of the ID-
free alignment.

Discussion

We present a deep learning-based tool DeepRTAlign for RT alignment
in large cohort proteomic and metabolomic data analysis. DeepRTA-
lign is based on the basic information of MS spectra (m/z, RT and
intensity), which can be applied to all the precursor ions in MS data
before identification. We have demonstrated that DeepRTAlign out-
performed other existing alignment tools by aligning more corre-
sponding features without compromising the quantification precision
and determined its generalizability boundary on multiple proteomic
and metabolomic datasets. DeepRTAlign is flexible and robust
with different feature extraction tools, which can help researchers
achieve accurate and reproducible research data. While, since align-
ment has less influence on quantification than feature extraction in
theory, we will try to improve the quantification accuracy by opti-
mizing feature extraction and feature alignment simultaneously in the
future work.

Finally, we applied DeepRTAlign to HCC early recurrence pre-
diction as a real-world example. The results showed that aligned MS
features have more effective information compared with peptides and
proteins. DeepRTAlign is expected to be useful in finding low-
abundant biomarkers, which usually only have low-quality MS/MS
spectra, and may play a key role in proteomics-driven precision
medicine.

Methods

Ethical statement

HCC tissues in HCC-R2 were obtained from patients underwent a
curative-intent liver resection at the Eastern Hepatobiliary Surgery
Hospital in Shanghai between 2012 and 2014. Written informed con-
sent was obtained from all patients. The study was approved by the
ethics committee of the Eastern Hepatobiliary Surgery Hospital in
Shanghai.

Datasets

As shown in Supplementary Table 1, all the datasets used in training
and testing the deep learning model in DeepRTAlign (i.e., one training
set and seven test sets) were collected from the following papers: (1)
The training set HCC-T was from the tumor samples of 101 early-stage
hepatocellular carcinoma (HCC) patients in Jiang et al.’s paper*. The
corresponding non-tumor dataset (HCC-N) was considered as a test set

in this study. (2) Dataset HCC-R was from the tumor samples of 11 HCC
patients who had undergone liver transplantations in ref. 27. (3)
Datasets UPS2-M and UPS2-Y were from ref. 28, and were constructed
by spiking 48 UPS2 standard proteins (Proteomics Dynamic Range
Standard, Sigma-Aldrich) into mouse cell digestion mixture (UPS2-M)
and yeast digestion mixture (UPS2-Y), respectively. The detailed
experimental design is shown in Supplementary Fig. 8. (4) Dataset EC-
H was from ref. 29, which was constructed by spiking E. coli cell
digestion mixture into human cell digestion mixture. (5) Dataset AT
was based on the Arabidopsis thaliana seeds (AT) from ref. 30. (6)
Dataset SC was a single-cell (SC) proteomic dataset including 18 HT22
cells without the treatment of nocodazole from ref. 31.

Further, we tested the generalizability boundary of DeepRTAlign
on the seven test sets and seven other datasets (five metabolomic
datasets and two proteomic datasets). The five metabolomic datasets
include (1) Dataset NCC19, a large-scale plasma analysis of SARS-CoV-2
from ref. 32; (2) Dataset SM1100, comprised standard mixtures con-
sisting of 1100 compounds, from ref. 19; (3) Dataset MM, which was
from the Mus musculus samples in ref. 33; (4) Dataset SO, which was
from soil samples in ref. 34; (5) Dataset GUS, which was about global
untargeted serum metabolomic samples from ref. 35. The two pro-
teomic datasets are (1) Dataset MI, which was about mouse intestinal
proteomes, from ref. 36; (2) Dataset CD, which was obtained from the
gut microbiota of patients with Crohn’s disease in ref. 37.

In this work, we generated six additional datasets (Supplementary
Table 1): Dataset HCC-R2 was generated from the tumor samples of 23
HCC patients using parallel reaction monitoring (PRM). It was used to
validate the 15-feature-based classifier for predicting HCC early
recurrence (Methods). Dataset Benchmark-FC was a mixture of Human
embryonic kidney (HEK) 293 T samples and E. coli samples with known
fold changes. In this dataset, 10 ng, 15ng, 20 ng, and 25 ng of E. coli
samples were spiked into 200 ng of HEK 293 T samples, respectively.
Each group contained 3 replicates. It was used for quantification
accuracy evaluation. Dataset Benchmark-QC-H consisted of pure HEK
293 T with three replicates, and dataset Benchmark-QC-E consisted of
pure E. coli with three replicates. Both datasets were used to evaluate
the QC module in DeepRTAlign. Dataset Benchmark-RT contained two
HEK 293 T samples with different RT gradients (60 min and 120 min),
which were used for evaluating the performance of DeepRTAlign on
different LC conditions. Benchmark-MV was a benchmark dataset
containing different proportions of HEK 293 T and E. coli samples from
six Orbitrap Exploris 480 instruments.

Proteomic sample preparation

HCC tissues in HCC-R2 were obtained from patients underwent a
curative-intent liver resection at the Eastern Hepatobiliary Surgery
Hospital in Shanghai between 2012 and 2014. Written informed con-
sent was obtained from all patients. The study was approved by the
ethics committee of the Eastern Hepatobiliary Surgery Hospital in
Shanghai. Filter-aided sample preparation was employed for tissue
sample pretreatment. A 500 pg aliquot of liver proteins was diluted to
500 pL with a UA solution containing 8 M urea in 100 mM Tris-HCI (pH
8.5). Following centrifugation on a 30-kDa filter for 20 min, 200 pL of
UA solution containing 10 mM DTT was added and the reaction was
allowed to proceed at 37 °C for 4 h. After removal of the solution, a UA
solution containing 50 mM iodoacetamide (IAA) was introduced and
let react in the dark at room temperature for 30 min. The ultra-fraction
tubes were then washed thoroughly with 200 pL of UA three times and
200 pL of 50 mM ammonium bicarbonate (ABC) three times. Next,
100 pL of ABC containing 0.1 pg/pL trypsin was added and let incubate
at 37 °C for 12 h. The filter tubes were then washed twice with 100 pL of
ABC via centrifugation, and flow-through fractions were pooled. Pep-
tide concentration was determined using a NanoDrop One at 280 nm.
Peptide mixtures were dried in a SpeedVac and stored at -80°C
before use.

Nature Communications | (2023)14:8188



Article

https://doi.org/10.1038/s41467-023-43909-5

HEK 293 T cells (National Infrastructure Cell Line Resource) were
cultured and harvested according to established protocols®®: HEK
293 T cells were cultured in Dulbecco’s Modified Eagle Medium med-
ium supplemented with 10% (v/v) fetal bovine serum and Penicillin/
Streptomycin (1:1000) under conditions of 37°C and 5% CO,. HEK
293 T cells were harvested post-treatment with trypsin and subjected
to multiple washing procedures with 1X phosphate buffered saline.
E. coli (DH5a) cell lysate was purchased from MCLAB (ECCL-100). Both
HEK 293 T cells and E. coli cell lysate were then treated by the same in-
solution digestion method to obtain peptides. First, lysis buffer con-
taining 10% sodium deoxycholate (DOC), 1M tris HCI (pH=8.8),
100mM tris (2-carboxyethyl) phosphine (TCEP) and 400 mM
2-Chloroacetamide (CAA) was added to the solutions. Solutions were
heated at 95 °C for 5min on a ThermoMixer (Eppendorf) and cooled
down on ice for 5 min. Next, solutions were sonicated (Ningbo scientz,
25% energy, 30 s) on ice-water. Subsequently, proteins were digested
overnight with 1:25 (w/w) MS-grade trypsin (Promega, V5280) at 37 °C.
Finally, digested peptides were desalted using C18 solid-phase
extraction column (Waters), dried in SpeedVac, and stored at -20 °C
before nanoLC-MS analysis. The concentration of the peptides was
determined using a NanoDrop One at a wavelength of 280 nm.

Targeted LC-MS/MS analysis (dataset HCC-R2)

NanoLC-MS experiments were performed using Vanquish Neo system
interfaced with an Orbitrap Exploris 480 mass spectrometer (Thermo
Fisher Scientific, USA) operated in scheduled parallel-reaction-
monitoring (sPRM). Peptide samples were separated on homemade
capillary columns (100 pm i.d. x 30 cm) with integrated spray tips. The
columns were packed with 1.9 pm/120 A ReproSil-Pur C18 resins (Dr.
Maisch GmbH, Germany), and all columns were heated at 55°C. In
sPRM mode, 500 ng of HCC peptide sample was injected each time,
and a bit 1x iRT kit (Biognosys) was spiked in each sample for retention
time calibration in Skyline analysis.

Mobile phases A and B were water and 80%/20% acetonitrile
(ACN)/water (v/v) with 0.1% FA (v/v), respectively. The flow rate was
300 nL/min across the total gradients. The segmented 190-min gra-
dient used in PRM mode is the following: 3%-8% (v/v) buffer B in
4.5 min, 8%-30% (v/v) buffer B for 168 min, 30%-40% (v/v) buffer B for
7.5 min, followed by a 2 min wash from 40% to 95% (v/v) buffer B. In the
end, 95% (v/v) buffer B was kept for 8 min. After the gradient, a 20 min
wash from 3% to 95% (v/v) buffer B was performed to minimize
potential carryover. Scheduled PRM parameters were as follows: Full
scan (MS1) from m/z 335 to 1 120 was acquired at the resolution of
120, 000. The automatic gain control (AGC) target was 1E6, and the
maximum injection time (maxIT) was set to 200 ms. A subset of the top
200 MS features, the 15 features and other 34 features (a total of 49
features), were selected as targeted precursors in the mass list table
(Supplementary Data 3) for further MS/MS scans. Targeted precursors
were isolated through a window of 1.2 Th. The MS2 scans were
acquired at a resolution of 120, 000 with an AGC setting of 4ES, a
maxIT of 200 ms, and a normalized collision energy (NCE) of 28%.

Nano-flow LC-MS/MS analysis of HEK 293 T and E. coli mixtures
(dataset Benchmark-FC)

The Vanquish Neo system, Orbitrap Exploris 480 mass spectrometer,
mobile phases, and capillary columns were the same as described
above for targeted LC-MS/MS analysis. The flow rate was 300 nL/min,
except that 500 nL/min was applied in the first 1.5min of the total
gradient. The gradient used in nano-flow LC-MS/MS analysis of HEK
293 T and E.coli mixtures is: 3%-8% (v/v) buffer B in 1.5 min, 8%-30% (v/
v) buffer B for 55 min, 30%-40% (v/v) buffer B for 3.5 min, followed by a
1.5 min wash from 40% to 95% (v/v) buffer B, and 95% (v/v) buffer B was
kept for 18.5 min at the end. DDA parameters were as follows: Full MS
scans over the m/z range of 350-1500 were performed at a resolution
of 60,000. The AGC target was set to 3E6, and the maximum injection

time was 45 ms. MS/MS acquisition was performed in top speed mode
with a 1.5-s cycle time. The resolved fragments were scanned at a mass
resolution of 15,000 and an AGC target value of 3ES. The threshold to
trigger MS2 scans was 5E3, and the maxIT was 22 ms. lons with charge
states of 2-6 were sequentially fragmented by higher-energy collision
dissociation (HCD) with an NCE of 28%. The isolation window was 1.6
Th, and the dynamic exclusion time was set to 40s. 200 ng of HEK
293 T peptides spiked with 10, 15, 20, or 25 ng of E. coli peptides was
loaded in each run, and 0.5 pL of 2.5x iRT kit was spiked in each sample.
Each group contains three technical replicates.

Micro-flow LC-MS/MS analysis of pure HEK 293 T or E. coli
(datasets Benchmark-QC-H and Benchmark-QC-E)

A Dionex UltiMate 3000 Rapid Separation LC (RSLC) system was
online coupled to an Orbitrap Exploris 480 mass spectrometer
(Thermo Fisher Scientific) with an OptaMax NG Atmospheric Pressure
lonization Source (H-ESI mode). Commercially available Thermo
Fisher Scientific Acclaim PepMap 100 C18 LC columns (1 mm ID x 150
mm, 2 pm particle size, catalog number 164711) were used for peptide
separations. The column temperature was maintained at 55 °C using
the integrated column oven in the LC system. Flow rate of 50 pL/min
was used to deliver the segmented gradient, and mobile phases A and
B were water and ACN with 0.1% FA (v/v), respectively. The segmented
gradient is: 0.5%-5% (v/v) buffer B in 0.5 min, 5%-32% (v/v) buffer B for
60 min, 32%-95% (v/v) buffer B for 0.2 min. In the end, 95% (v/v) buffer
B was kept for 2.5 min. After the gradient, columns were equilibrated
0.5% B for 1.8 min before the next injection. DDA data were acquired
using the following parameters: Full scans were acquired in Orbitrap at
a resolution of 60,000 (m/z 200) and AGC value of 3E6. The isolation
window was 1.3 Th and m/z range was 350-1550 in full scans. The top
30 precursors found in full scans were selected for fragmentation. MS/
MS scans were acquired with 28% normalized collision energy in HCD
mode at a resolution of 15,000 (m/z 200), charge states of 2-6 and
minimum intensity of 1000. AGC target value for fragment spectra was
set to 1.5ES. For MS2 spectra, the maxIT was set to 30 ms, and dynamic
exclusion time was set to 30s. 10 pg of HEK 293 T or E. coli tryptic
peptides were loaded each time and the DDA data were collected from
three Orbitrap Exploris 480 mass spectrometers with the same
settings.

Micro-flow LC-MS/MS analysis of HEK 293 T and E. coli mixtures
(dataset Benchmark-MV)

The LC and MS parameters were the same as described in the above
section “Micro-flow LC-MS/MS analysis of pure HEK 293 T or E. coli”.
Four samples were prepared: HEK 293 T peptides (73%, 91%, 97% and
99%) offset by varied proportions (27%, 9%, 3% and 1%) of E. coli pep-
tides. 10 pg of HEK 293 T and E. coli peptide mixtures were loaded each
time, and the DDA data were collected for each of the four samples from
six Orbitrap Exploris 480 mass spectrometers with the same settings.

Nano-flow LC-MS/MS analysis of HEK 293 T digest (dataset
Benchmark-RT)

The Dionex UltiMate 3000 system, Orbitrap Exploris 480 mass spec-
trometer and mobile phases, were the same as described above for
micro-flow LC-MS/MS analysis but operated in nano-flow mode. DDA
parameters were the same as described in Nano-flow LC-MS/MS ana-
lysis of HEK 293 T and E. coli mixtures except that NCE was set to 30%
instead of 28%. Homemade capillary columns (100 pm i.d. x 20 cm)
with integrated spray tips were applied for LC separation. Two differ-
ent gradients (60 and 120 min active gradients) were used with flow
rate of 250 nL/min. Samples were loaded into capillary columns in
15 min at 700 nL/min, followed by flow rate decreased to 250 nL/min
in 4.5min. The active 60 min gradient is: 0.5%-6.4% (v/v) buffer
B in 2 min, 6.4%-24% (v/v) buffer B for 55 min, 24%-32% (v/v) buffer
B for 3.5min. In the end, 32% (v/v) buffer B was increased to 95% in
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1.5 min and kept for 5 min. The active 120 min gradient is the same as
the active 60 min gradient, except that 6.4% buffer B increased to 24%
(v/v) in 115 min. 1 pg of HEK 293 T digest was injected in each run.

PRM data analysis

PRM raw data were firstly searched against the human UniProt FASTA
database (downloaded on September 27, 2018) using PD 2.5 software
with the Sequest HT search engine to identify peptide sequences.
Trypsin was selected as the proteolytic enzyme, and missed cleavage
sites were allowed up to two. Cysteine carbamidomethylation was set
as the static modification. The oxidation of M and acetylation of the
protein N-terminal were set as the dynamic modifications. The pre-
cursor mass tolerance was set to 10 ppm, and the fragment mass tol-
erance was 0.02Da. The FDRs of the peptide-spectrum matches
(PSMs) and proteins were set to less than 1%.

PRM data files were further analyzed using Skyline v22.2. A
merged spectral library was generated in Skyline from MSF files of PD
results and used as the reference library. An iRT database was gener-
ated along with the merged library for RT prediction, and peptide
peaks were filtered to within 5 min of the predicted RT. The digestion
enzyme was set to trypsin. Precursor charges 2 to 7 and ion charges 1 to
3 were allowed. lon match tolerance was set to 0.02 Th for the selec-
tion of fragment ions from the spectral library. Raw data files were
imported into Skyline for automated peak detection using “targeted”
MS/MS filtering mode with the mass analyzer set to Orbitrap. For those
identified 52 precursors from 48 MS features, auto-picked peaks in
Skyline were further filtered manually to fulfill the following criteria:
dotp values>0.7, mass error within 5ppm, detection of at least 5
fragments, and consistent RT across all 23 HCC samples. Peptides in a
few samples that did not meet these criteria were considered unde-
tected, and their peak areas in those samples were assigned a value of
0. Peptide abundance values of the 15 features were exported from
Skyline. Peptide abundance was obtained by summing the peak area of
both precursor ions and selected fragment ions.

DDA data analysis

MSFragger v3.7 (in FragPipe v19.1), Mascot v2.8.1, MaxQuant v1.6, and
PD 2.5 were used for DDA data analysis. HCC-T, HCC-N and HCC-R
datasets were searched against the human UniProt FASTA database
(downloaded on September 27, 2018). UPS2-M dataset was searched
against the mouse UniProt FASTA database (downloaded on Novem-
ber 4, 2015). UPS2-Y dataset was searched against the yeast UniProt
FASTA database (downloaded on June 15, 2021). EC-H dataset was
searched against the FASTA database provided in PRIDE (https://www.
ebi.ac.uk/pride/archive/projects/PXD003881). AT dataset was sear-
ched against the mouse-ear cress UniProt FASTA database (down-
loaded on August 2, 2021).

In MSFragger, the digestion enzyme was set to trypsin. Precursor
mass tolerance and fragment mass tolerance were 20 ppm, peptide
length was limited to 7-50. In MaxQuant, precursor mass tolerance and
fragment mass tolerance are 20 ppm, min peptide length is 7. In Mascot,
precursor mass tolerance is 20 ppm, and fragment mass tolerance is
0.05 Da. For database searching of HEK 293 T DDA data collected in two
gradients, PD 2.5 settings are the same as used for SPRM data. For all the
tools, fixed and variable modifications, digestion enzyme, and FDR
rate were the same as described above for PD 2.5 settings of sPRM data.
The other parameters were set to default in these tools.

DIA data analysis

DIA-NN v1.8 was used for DIA data analysis. Dataset SC were searched
against the FASTA database provided in PRIDE (https://www.ebi.ac.uk/
pride/archive/projects/PXD025634). The digestion enzyme was set to
trypsin, missed cleavage was 1, peptide length range was 7-30, and
precursor charge range was 1-4. Cysteine carbamidomethylation was
set as the fixed modification, while the protein N-terminal were set as

the variable modification. The other parameters were the default set-
tings in DIA-NN.

Machine learning models for evaluation

To make a systematical evaluation of our DNN model’s performance,
we compared it with several popular machine learning methods, i.e.,
random forests (RF), k-nearest neighbors (KNN), support vector
machine (SVM) and logistic regression (LR). When compared DNN with
these machine learning methods, the inputs were exactly the same, i.e.,
the features after coarse alignment step. The parameters for each
machine learning method were optimized based on the 10-fold cross
validation results of the training set HCC-T (Supplementary Tables 9,
10 and Supplementary Data 7, 8). The parameters of the RF model are
number of estimators 50, and max depth 50. For KNN, the k is set to 5.
For SVM, the kernel function is set to’poly’ (gamma ="auto’, C=1, and
degree =3). For LR, the penalty is L2 and the solver is 'Ibfgs'. All the
other parameters are default values in scikit-learn v0.21.3. In total, we
trained four machine learning models (named as RF, KNN, SVM and LR)
as references in this study.

Tools for alignment comparison

As shown in Supplementary Table 7, the existing alignment tools can
be classified into three types based on the input information required.
The representative tools in each type were compared with DeepRTA-
lign in this study.

First, two existing popular alignment tools (MZmine 2 and
OpenMS) were used for alignment comparison because these two
tools showed the best precision and recall in refs. 11, 39. The recom-
mended parameters in the official user manuals of MZmine 2 and
OpenMS were used. For MZmine 2, the ADAP-LC workflow was used.
For OpenMS, we used FeatureFinderCentroided for feature extraction
and MapAlignerPoseClustering for feature alignment. After alignment,
we used FeatureLinkerUnlabeled and TextExporter to obtain the
results. When comparing with MZmine 2 or OpenMS, we considered
the Mascot identification results corresponding to MZmine 2 or
OpenMS features (mass tolerance: +10 ppm, restrict the RT of a pep-
tide to be within the RT range of the corresponding precursor feature)
as the ground truth, respectively.

The precision formula is:

. 1 XA NGy
Precision=—-% ——= 1)
N kz=1 Ak
The recall formula is:
1 L A N Gy
Recall= - ———— )
N kZ1 |G|

N is the sample pair number. A is a set containing all the aligned
feature pairs in the k¢, sample pair. G is a set containing all the ground
truth of the k¢, sample pair. | X| indicates the number of elements in
the set X.

Second, Quandenser’, an alignment method that requires MS/MS
information, was also compared with DeepRTAlign on dataset
Benchmark-FC. The peptide identification results (MSFragger) were
considered as our ground truth.

Third, we compared DeepRTAlign with MaxQuant, MSFragger and
DIA-NN for DDA and DIA data analysis, respectively. For DDA data
(Benchmark-FC), the peptide identification results (MaxQuant or
MSFragger) were considered as the ground truth. For DIA data, we used
a single-cell proteomic dataset obtained from 18 HT22 cells without
nocodazole treated in ref. 31. All the parameters were kept the same as
described in Li et al. We used Dinosaur to extract MS features in each
cell and DeepRTAlign to align the features in all 18 cells, compared with
the aligned results of DIA-NN with and without MBR function.
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Dataset simulation for generalizability evaluation

We further generated 24 simulated datasets with different RT shifts
(considered as noise) for each real-world dataset. Here is the dataset
simulation procedure. (1) All the features are extracted in each dataset
using OpenMS to form an original feature list. Features with charges
2-6 are considered for proteomic data, and features with charges 1-6
are considered for metabolomic data. (2) An RT shift based on a nor-
mal distribution with increasing standard deviations (6=0, 0.1, 0.3,
0.5,0.7,1, 3, 5) for each mean value (u=0, 5 and 10 min) are added in
each feature to form a new feature list by modifying the featureXML
file generated by OpenMS. (3) The new feature list with artificial RT
shifts is aligned to the original feature list by DeepRTAlign and
OpenMS. In theory, each feature with an RT shift in the new feature list
should be aligned with the same feature in the original list. (4) The
precision and recall values were calculated to evaluate the general-
izability boundary of DeepRTAlign.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Datasets HCC-T and HCC-N can be downloaded from the iProX
database*® under accession number IPX0000937000 or PXD006512.
Datasets UPS2-M and UPS2-Y can be downloaded from the iProX
database under the accession number IPX00075500 or PXD008428.
Datasets HCC-R, EC-H, AT, SC, Ml and CD can be downloaded from
the PRIDE database* under the accession numbers PXD022881,
PXD003881, PXD027546, PXD025634, PXD002838 and PXD002882,
respectively. Datasets NCC19, SM1100, MM, SO and GUS can be
downloaded from the MetaboLights database** under the accession
numbers MTBLS1866, MTBLS733, MTBLS5430, MTBLS492 and
MTBLS650, respectively. Datasets HCC-R2, Benchmark-FC, Bench-
mark-QC-H, Benchmark-QC-E, Benchmark-RT and Benchmark-MV
can be downloaded from the iProX database under the accession
numbers IPX0006622000, IPX0006638000, IPX0006819000,
IPX0006819000, IPX0006820000 and IPX0007319000, respec-
tively. All other relevant data supporting the key findings of this
study are available within the article or the Supplementary Infor-
mation files. Source data are provided with this paper.

Code availability

All the codes are programmed in Python v3.7.4. Numpy v1.16.4 is used
to preprocess data. SciPy v1.6.2 is used for statistical methods. Pytorch
framework v1.8.0 is used to implement the DNN model, and scikit-
learn framework v0.21.3 is used to implement other machine learning
algorithms. Mrmr-selection v0.2.3 is used for mRMR algorithm. All the
source codes of DeepRTAlign (including the feature extraction tool
XICFinder) are freely available from GitHub (https://github.com/
PHOENIXcenter/deeprtalign) under GNU General Public License ver-
sion 3.0. Other tools used in the study are MSFragger v3.7 (in FragPipe
v19.1), Mascot v2.8.1, MaxQuant v1.6, MZmine 2 v2.53, OpenMS v2.6.0,
Quandenser v0.03. DeepRTAlign is freely available on Zenodo (https://
zenodo.org/record/10140300)*.
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