Availability of O₂ as a Substrate in the Cytoplasm of Bacteria under Aerobic and Microaerobic Conditions

TANJA ARRAS, JAN SCHIRAWSKI, AND GOTTFRIED UNDEN*

Institut für Mikrobiologie und Weinforschung, Universität Mainz, 55099 Mainz, Germany

Received 5 December 1997/Accepted 17 February 1998

The growth rates of *Pseudomonas putida* KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O_2 tension [pO_2] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O_2 (corresponding to 7 to 8 μ M O_2) (1 bar = 10⁵ Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and microaerobic conditions (about 10 mbar of O_2), the diffusion of O_2 into the cytoplasm occurs at high rates sufficient for catabolic processes. This is in agreement with calculated O_2 diffusion rates. Below 10 mbar of O_2 , oxygen became limiting for the oxygenases, probably due to their high K_m values, but the diffusion of O_2 into the cytoplasm presumably should be sufficiently rapid to maintain ambient oxygen concentrations at oxygen tensions as low as 1 mbar of O_2 . The consequences of this finding for the availability of O_2 as a substrate or as a regulatory signal in the cytoplasm of bacterial cells are discussed.

During aerobic growth, bacteria consume O_2 at high rates. The consumption of O2 by oxidases takes place on the cytoplasmic side of the membrane. Since the diffusion of O₂ across the membrane is rapid, the supply of the oxidases with O_2 is guaranteed even at the very low O2 tensions which are sufficient for aerobic growth (<1 mbar of O₂) (2, 4, 15, 16). Previously, the rate of O₂ diffusion into the cytoplasm of Escherichia coli was calculated from the cell dimensions and the diffusion coefficients and compared to the rates of O₂ consumption (2, 21, 22). It was estimated that at O₂ tensions as low as 0.2 mbar of O_2 (corresponding to 0.2 μ M O_2), the supply of O₂ by diffusion exceeds the consumption by respiration. In agreement with this calculation, in E. coli the fermentation pathways were synthesized and used only at partial O₂ tension (pO_2) values well below 1 mbar of O_2 (3). Thus, O_2 is able to reach the active sites of the oxidases at rates sufficient to support aerobic respiration even at very low O2 tensions.

The O_2 supply of the cytoplasmic space is not known and might be different from that of the membrane where the oxidases are located. From the diffusional parameters and the cell dimensions, it was calculated that the concentrations of O_2 should be the same within and outside the bacteria at O_2 tensions as low as 1 mbar of O_2 (21, 22). Therefore, we aimed for an experimental proof of the availability of O_2 in the bacterial cytoplasm under aerobic and microaerobic conditions.

For the degradation of aromatic compounds like benzoate, oxygenases are required for oxidative cleavage of the aromatic ring (7, 10). Due to the cytoplasmic location of the oxygenases and the need for molecular oxygen as a cosubstrate, the turnover of aromatic compounds depends on the availability of O_2 in the cytoplasm. The rate of metabolism of aromatic compounds therefore provides information on the minimal rate of O_2 diffusion into the cytoplasm. To this end, the relation of

medium was studied. Pseudomonas putida KT2442 degrades benzoate by benzoate-1,2-dioxygenase and catechol-1,2-dioxygenase (ortho pathway), whereas 4-hydroxybenzoate is degraded via 4-hydroxybenzoate monooxygenase and protocatechuate-3,4-dioxygenase (ortho cleavage). 4-Methylbenzoate is metabolized by P. putida mt-2 by toluate-1,2-dioxygenase and catechol-2,3-dioxygenase (meta cleavage) (5, 8). The K_m values for O₂ of the oxygenases ($\geq 7 \mu$ M) (1, 6, 12, 13) are much higher than those of the oxidases ($<0.1 \mu$ M) (4, 15, 16). Therefore, limitation of growth or catabolism by O₂ must be due to the oxygenases, and information on O₂ diffusion into the cytoplasm and the O₂ concentration in the cytoplasm can be drawn from the growth-limiting pO2 values. Here we report on experimental proof of the availability of O_2 in the cytoplasm. This finding also provides a basis for our understanding of the O₂ sensing by cytoplasmic O₂ sensor proteins like FNR (fumarate nitrate reductase regulator) from E. coli (9, 19, 22, 23) and the homologous proteins from *Pseudomonas* (17, 25) which are supposed to react directly with O_2 in the cytoplasm (2, 22, 23).

metabolism of various aromatic compounds to the pO_2 of the

MATERIALS AND METHODS Bacteria and media. P. putida KT2442 and P. putida mt-2(pWWO) were

provided by I. Wagner-Döbler (Braunschweig, Germany) and M. Schlömann (Stuttgart-Hohenheim, Germany) (5, 24). *P. putida* KT2442 was grown in a modified M9 mineral medium (pH adjusted to 7.1) supplemented with a mineral salts solution and with glucose, succinate, benzoate, or 4-hydroxybenzoate (10 mM each) as sources of carbon and energy. The mineral salts solution was a combination of the following: solution 1, containing 25.39 g of MgCl₂, 2.0 g of $CaCO_3$, 4.5 g of $FeSO_4 \cdot 7H_2O$, 0.85 g of $MnSO_4 \cdot H_2O$, 1.44 g of $ZnSO_4 \cdot 7H_2O$, 0.25 g of CuSO₄ \cdot 5H₂O, 0.16 g of CaSO₄ \cdot 0.5H₂O, and 0.02 g of H₃BO₃ dissolved in 51.3 ml of concentrated HCl and with water added to 100 ml; solution 2, containing 360 mM FeSO₄ · 7H₂O; and solution 3, containing 1 M MgSO₄. Solutions 1 and 2 were filter sterilized, and solution 3 was autoclaved. Then 50 ml of solution 1, 2.5 ml of solution 2, 25 ml of solution 3, and 22.5 ml of autoclaved H2O were combined. The medium was supplemented with 0.25 ml of the resulting mineral salts solution per 100 ml. P. putida mt-2(pWWO) was grown in a phosphate-buffered medium (14.0 g of $Na_2HPO_4 \cdot 12H_2O$, 2.0 g of KH₂PO₄ per liter) supplemented with a salts solution (20 ml/liter of medium) containing 2.5 g of Ca(NO₃) · 4H₂O (autoclaved separately) per liter, 0.5 g of Fe(III)NH₄-citrate per liter, 10 g of MgSO₄ · 7H₂O per liter, 50 g of (NH₄)₂SO₄

^{*} Corresponding author. Mailing address: Institut für Mikrobiologie und Weinforschung, Universität Mainz, Becherweg 15, 55099 Mainz, Germany. Phone: 49-6131-393550. Fax: 49-6131-392695. E-mail: unden @mzdmza.zdv.uni-mainz.de.

per liter, and 50 ml of the Pfennig SL6 metal salts solution (14) per liter. The C source for *P. putida* mt-2 was 4-methylbenzoate (10 mM). *E. coli* MC4100 (18) was grown in M9 medium (11) supplemented with an amino acid mixture (20) and glucose (10 mM) or succinate (10 mM).

Growth. *P. putida* was grown at 30°C. Growth under anaerobic conditions was performed in sealed bottles under an atmosphere of nitrogen (2, 3). For aerobic conditions, the bacteria were grown in Erlenmeyer flasks filled to within 10% of the maximal volume under vigorous shaking (3). The medium was inoculated from cultures grown overnight under aerobic conditions in the mineral medium (same C source as that in the main culture) to an A_{578} not higher than 0.06.

Growth in an oxystat. Growth at defined O₂ tensions (pO₂) was performed in an oxystat (chemostat with constant pO₂) (Biostat MD; Braun, Melsungen, Germany) in batch culture (1.5 liters) with constant stirring (400 rpm) (2, 3). The pO₂ value of the medium was measured continuously with an O₂ electrode. The pO₂ was maintained at a constant level by supplying air (valve I) and N₂ (valve II) to the vessel. When the pO₂ fell below 98% of the set value, valve I opened and sterile air was supplied till the set value was reached. The flow of air was increased manually from about 0.16 to 1.6 liters min⁻¹ during growth to compensate for the increasing O₂ consumption. The flow of N₂ (0.1 liters min⁻¹) was decreased or switched off as required. *E. coli* was grown in the oxystat in the supplemented M9 medium as described previously (2, 3). Growth rates were calculated from $\mu = \ln (A_{578,t_2}/A_{578,t_3}) \cdot (t_2 - t_1)^{-1}$, where t_2 and t_1 are the times of measurement and A_{578,t_2} are the absorbance values at 578 nm measured at t_1 and t_2 , respectively.

Analytical procedures. Substrates (glucose, succinate, benzoate, 4-hydroxybenzoate, and 4-methylbenzoate) and products (catechol, protocatechuate) were determined from the supernatants of the cultures after removal of the bacteria by centrifugation. The substances were analyzed by high-performance liquid chromatography (HPLC) on an Aminex HPX87H column (300 by 7.8 mm; Bio-Rad) with 6.5 mM H₂SO₄ as the eluent (flow rate, 0.55 ml min⁻¹) as described previously (20). The following substrates and products were determined and quantified with standard solutions by a refractive index and by a UV light detector (215 nm): glucose, glycerol, acetate, ethanol, formate, pyruvate, fumarate, succinate, and lactate. Benzoate (retention time $[R_t] = 68 \text{ min}$), 4-hydroxybenzoate ($R_t = 51 \text{ min}$), catechol ($R_t = 32.0 \text{ min}$), and protocatechuate ($R_t =$ 33.3 min) were identified by the R_t values of authentic substances, and the ratio of the refractive index/UV absorption at 215 nm was used to confirm the identities.

RESULTS AND DISCUSSION

Growth of *P. putida* on aromatic compounds at limiting pO_2 . *P. putida* was grown on nonaromatic and aromatic substrates like glucose, succinate, and benzoate in an oxystat at defined pO_2 values. In the oxystat, the set pO_2 values could be maintained constant for the duration of the growth experiment. With glucose or succinate as the substrate, the growth behavior changed only when the pO_2 fell below 10 mbar of O_2 (corresponding to about 10 μ M O_2). At lower pO_2 values, the growth rate and final cell density decreased, and under anaerobic conditions, no growth was observed. With benzoate or 4-hydroxybenzoate as the substrate, under aerobic conditions (212 mbar of O_2 ; air saturation), growth of *P. putida* (Fig. 1A) was similar to that on glucose or succinate. However, with decreasing pO_2 values, growth rate and yield decreased significantly.

In Fig. 1B, the rate constants for growth on aromatic and nonaromatic substrates are plotted versus the pO₂ values. With glucose and succinate, growth of P. putida commenced at very low pO_2 values and showed a saturation curve with increasing pO₂. With the aromatic substrates benzoate and 4-hydroxybenzoate, growth started only at pO_2 values above 4.2 mbar. With 4-methylbenzoate, the O₂ requirement was even higher (data not shown). The maximal growth rates for succinate and benzoate corresponded to doubling times of 46 and 51 min, respectively. When E. coli was grown on succinate or glucose, the growth rates increased immediately from 0 mbar, similar to the growth rates of *P. putida* on the same substrates (data not shown). For growth on glucose, however, the growth rates did not drop to zero at 0 mbar of O2 due to the presence of fermentative growth. Thus, the growth rate at 0 mbar of O_2 (μ = 0.011 min⁻¹) was about half that of *E. coli* grown under aerobic conditions on glucose ($\mu = 0.020 \text{ min}^-$

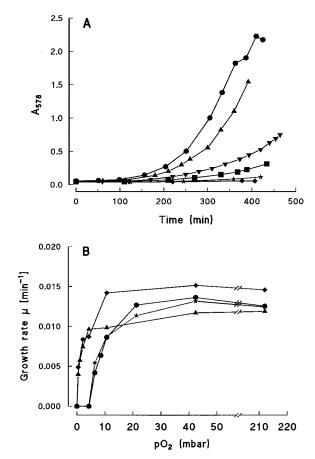


FIG. 1. Growth (A) and growth rates (B) of *P. putida* KT2442 grown in an oxystat on aromatic and nonaromatic substrates as a function of pO₂. (A) Growth with benzoate in the oxystat at different pO₂ values. Growth was performed in the mineral medium with 10 mM benzoate at 212 (\bullet), 21 (\bullet), 8 (∇), 6 (\blacksquare), 4 (\bigstar), and 0 (\bullet) mbar of O₂. (B) The rate constants for growth (μ) were determined from the growth curves shown in panel A. Substrates (10 mM each) for growth: benzoate (\bullet), 4-hydroxybenzoate (\bigstar), glucose (\bullet), and succinate (\blacktriangle).

 $pO_{0.5}$ values for growth on aromatic substrates are higher than those for growth on nonaromatic substrates. For *P. putida*, from the relation of the growth rates to the pO_2 values, the $pO_{0.5}$ values for the substrates can be determined. The $pO_{0.5}$ value corresponds to the pO_2 value yielding half-maximal growth rates (2, 3). The measured $pO_{0.5}$ values can be classified into two groups. For growth of *P. putida* and *E. coli* on glucose and succinate, low values ($pO_{0.5} \le 2$ mbar of O_2) were found. For growth on aromatic compounds, the $pO_{0.5}$ values were distinctly higher and corresponded to about 8 mbar for growth on 4-methylbenzoate.

Excretion of intermediates under O₂ limitation. The growth medium was analyzed for products or intermediates excreted by the bacteria during growth in the oxystat at different pO_2 values (Fig. 2). The medium was analyzed by HPLC for the presence of organic acids, alcohols, sugars, and aromatic compounds, in particular for intermediates of the respective metabolic routes. During growth at high oxygen tensions, all types of substrates were completely oxidized by *P. putida* and no organic end products were detected in significant amounts (>0.05 mol/mol of substrate). From glucose and succinate, no end products were excreted even at decreased oxygen tensions,

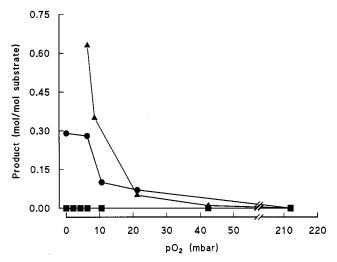


FIG. 2. Products in the culture medium of *P. putida* KT2442 excreted after growth at various pO_2 values in the oxystat: catechol (\blacktriangle) excreted during growth on benzoate (10 mM), protocatechuate ($\textcircled{\bullet}$) excreted during growth on 4-hydroxybenzoate, and end products ($\textcircled{\bullet}$) from succinate and glucose. For end products tested, see Materials and Methods.

indicating complete oxidation. When P. putida KT2442, however, was grown on benzoate, a product was found in the medium at oxygen tensions below 20 mbar which was identified as catechol. Catechol is an intermediate of the ortho cleavage pathway of benzoate. Up to 0.65 mol of catechol per mol of benzoate was measured, indicating a severe limitation in the ortho cleavage pathway resulting in the excretion of the intermediate without complete oxidation. During growth on 4-hydroxybenzoate, protocatechuate was excreted in large amounts (0.28 mol/mol of 4-hydroxybenzoate) at oxygen tensions below 20 mbar. Obviously, limitation of protocatechuate-3,4-dioxygenase activity (6) by low O_2 tensions causes accumulation and excretion of the intermediate protocatechuate. Therefore, in both pathways, central steps, i.e., the dioxygenases reacting on catechol and protocatechuate, are limiting under microaerobic conditions.

Availability of O_2 as an intracellular substrate for aromatic substrate degradation. The data can be used to roughly estimate the rate of O_2 diffusion into the cells required for this process. The rate of O_2 consumption by the oxygenases in the cell interior (ν_{O_2in}) is twice the rate of benzoate metabolism ($\nu_{benzoate}$) (Table 1) corresponding to 0.22 mmol of benzoate \cdot min⁻¹ \cdot g (dry weight)⁻¹ and 0.44 mmol of $O_2 \cdot \min^{-1} \cdot$ g (dry

FIG. 3. Growth rate, O_2 consumption by dioxygenases, and maximal rate of O_2 diffusion into the bacteria (*P. putida* KT2442) as a function of the pO_2 in the medium during growth on benzoate. The growth rate was determined as described in the legend to Fig. 1. The O_2 consumption by the dioxygenases was calculated from μ and from the molar growth yield on benzoate ($Y_{benzoate}$) under the respective conditions as shown in Table 1. The rate of diffusion into the bacteria was calculated as a function of external oxygen concentration (with the internal concentration set at zero). For the calculation, the diffusion coefficients of O_2 in water, phospholipid, and cytoplasm and the cell dimensions were used (2, 22).

weight)⁻¹. The calculated rate of O_2 diffusion into the cells under aerobic conditions, 360 mmol of $O_2 \cdot \min^{-1} \cdot g$ (dry weight)⁻¹ (Table 1), exceeds the rate of intracellular O_2 consumption by the oxygenases by 3 orders of magnitude.

Plotting the rates of growth on benzoate as a function of the pO2 shows that diffusion of O2 is not limiting under aerobic or microaerobic conditions (Fig. 3): growth is limited apparently only at pO₂ values below 10 mbar of O₂. The growth limitation coincides with the excretion of the oxygenase substrates catechol and protocatechuate, demonstrating that oxygenation is the growth-limiting step. At 10 mbar of O_2 , the calculated diffusion is still higher by 2 orders of magnitude than the O_2 consumption by the oxygenases (Fig. 3). Therefore, the decrease in the growth rate is presumably not caused by limiting O_2 diffusion but by the high K_m value (20 μ M) of the oxygenase (Table 1). Thus, at pO_2 values as low as 10 mbar, there is substantial O_2 present in the cytoplasm. The high K_m values of the oxygenases prevented an analysis of the situation at lower pO_2 values. The calculation of the diffusion rates for O_2 , however, also suggests that at distinctly lower oxygen tensions,

TABLE 1. Metabolic and energetic parameters for growth of P. putida on benzoate

Parameter ^a or data	Value	Reference or source
Experimental parameters		
Maximal growth rate on benzoate (μ_{max}) (min ⁻¹)	0.0136	Fig. 1B
Molar growth yield on benzoate $(Y_{benzoate})$ [g (dw) \cdot mol ⁻¹]	62	Fig. 1A
$pO_{0.5}$ for half-maximal growth rate (μM)	8.2	This work
K_m (catechol-1,2-dioxygenase) (μ M O ₂)	20	1, 12
Calculated data [mmol \cdot g (dw) ⁻¹]		
Benzoate consumption at μ_{max} ($\nu_{benzoate}$)	0.22	$\nu_{\text{benzoate}} = \mu/Y_{\text{benzoate}}$
Intracellular O ₂ consumption (oxygenases, $\nu_{O_{2}in}$)	0.44	$\nu_{\text{O_2in}} = 2 \cdot \nu_{\text{benzoate}}$
Intracellular O ₂ consumption (oxygenases plus oxidases, $\nu_{O_{2in}, t}$)	1.65	$\nu_{\text{O}_{2\text{in}}} = 2 \cdot \nu_{\text{benzoate}} \\ \nu_{\text{O}_{2\text{in}, t}} = 7.5 \cdot \nu_{\text{benzoate}} \\ 2, 21$
Maximal rate of O_2 diffusion into <i>P. putida</i> cells	360	2, 21

^a g (dw), grams (dry weight).

^b Based on the growth reaction (1 benzoate + $7.5O_2 \rightarrow 7CO_2 + 3H_2O$).

down to 1 mbar of O_2 , the intracellular pO_2 equals the extracellular pO_2 (2, 21, 22). The O_2 present under aerobic and microaerobic conditions most likely is also used as the signal for O_2 sensor-regulator proteins like FNR from *E. coli* (9, 22) and homologous proteins from *Pseudomonas* strains (17, 25) which are thought to react directly with O_2 in the cytoplasm (2, 23). The regulatory $pO_{0.5}$ which causes a switch from active (anaerobic) to inactive (aerobic) FNR is in the range of 1 to 5 mbar of O_2 in the external medium for many target genes, which is in good agreement with the results found in the present work.

ACKNOWLEDGMENTS

We are grateful to Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, to D. Vlad for HPLC analysis, and to I. Wagner-Döbler (Braunschweig, Germany) and M. Schlömann (Stuttgart-Hohenheim, Germany) for supplying strains.

REFERENCES

- 1. Barman, T. E. 1969. Enzyme handbook, vol. 1, p. 237–238. Springer-Verlag KG, Berlin, Germany.
- Becker, S., G. Holighaus, T. Gabrielczyk, and G. Unden. 1996. O₂ as the regulatory signal for FNR-dependent gene regulation in *Escherichia coli*. J. Bacteriol. 178:4515–4521.
- Becker, S., D. Vlad, S. Schuster, P. Pfeiffer, and G. Unden. 1997. Regulatory O₂ tensions for the synthesis of fermentation products in *Escherichia coli* and relation to aerobic respiration. Arch. Microbiol. 168:290–296.
- D'mello, R., S. Hill, and R. K. Poole. 1996. The cytpochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142:755–763.
- Franklin, F. C. H., M. Bagdasarin, M. M. Bagdasarin, and K. N. Timmis. 1981. Molecular and functional analysis of the TOL plasmid pWWO from *Pseudomonas putida* and cloning of genes for the entire regulated aromatic ring *meta* cleavage pathway. Proc. Natl. Acad. Sci. USA 78:7458–7462.
- Fujisawa, H. 1970. Protocatechuate 3,4-dioxygenase (*Pseudomonas*). Methods Enzymol. 17A:526–529.
- Harayama, S., and M. Kok. 1992. Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46:565–601.
- Heuer, H., D. F. Dwyer, K. N. Timmis, and I. Wagner-Döbler. 1995. Efficacy in aquatic microcosms of a genetically engineered pseudomonad applicable for bioremediation. Microb. Ecol. 29:203–220.
- Lazazzera, B. A., H. Beinert, N. Khoroshilova, M. C. Kennedy, and P. J. Kiley. 1996. DNA-binding and dimerization of the Fe-S-containing FNR

protein from *Escherichia coli* are regulated by oxygen. J. Biol. Chem. 271: 2762–2768.

- Mason, J. R., and R. Cammack. 1992. The electron transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 46:277–305.
- Miller, J. H. 1992. A short course in bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Nakazawa, T., and A. Nakazawa. 1970. Pyrocatechase (*Pseudomonas*). Methods Enzymol. 17A:518–522.
- Nozaki, M. 1970. Metapyrocatechase (*Pseudomonas*). Methods Enzymol. Vol 17A:522–525.
- Pfennig, N., and K. D. Lippert. 1966. Über das Vitamin B₁₂-Bedürfnis phototropher Schwefelbakterien. Arch. Microbiol. 55:245–256.
- Preisig, O., R. Zuffrey, L. Thöny-Meyer, C. A. Appleby, and H. Hennecke. 1996. A high-affinity *cbb3*-type cytochrome oxidase terminates the symbiosisspecific respiratory chain of *Bradyrhizobium japonicum*. J. Bacteriol. 178: 1532–1538.
- Rice, C. W., and W. P. Hempfling. 1978. Oxygen-limited continuous culture and respiratory energy conservation in *Escherichia coli*. J. Bacteriol. 134:115– 124.
- Sawers, R. G. 1991. Identification and molecular characterization of a transcriptional regulator from *Pseudomonas aeruginosa* PAO1 exhibiting structural and functional similarity to the FNR protein of *Escherichia coli*. Mol. Microbiol. 5:1469–1481.
- Silhavy, T. J., M. Berman, and L. W. Enquist. 1984. Experiments with gene fusions. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Spiro, S., and J. R. Guest. 1990. FNR and its role in oxygen-regulated gene expression in *Escherichia coli*. FEMS Microbiol. Rev. 75:399–428.
- Tran, Q. H., J. Bongaerts, D. Vlad, and G. Unden. 1997. Requirement for the proton-pumping NADH dehydrogenase I of *Escherichia coli* in NADH—sfumarate respiration and bioenergetic implications. Eur. J. Biochem. 244:155–160.
- Unden, G., S. Becker, J. Bongaerts, J. Schirawski, and S. Six. 1994. Oxygen regulated gene expression in facultatively anaerobic bacteria. Antonie Leeuwenhoek 66:3–23.
- Unden, G., S. Becker, J. Bongaerts, G. Holighaus, J. Schirawski, and S. Six. 1995. O₂-sensing and O₂-dependent gene regulation in facultatively anaerobic bacteria. Arch. Microbiol. 164:81–90.
- Unden, G., and J. Schirawski. 1997. The oxygen-responsive transcriptional regulator FNR of *Escherichia coli*: the search for signals and reactions. Mol. Microbiol. 25:205–210.
- Wagner-Döbler, I., R. Pipke, K. N. Timmis, and D. F. Dwyer. 1992. Evaluation of aquatic sediment microcosms and their use in assessing effects on introduced microorganisms on ecosystem parameters. Appl. Environ. Microbiol. 58:1249–1258.
- Zimmermann, A., C. Reimmann, M. Galimand, and D. Haas. 1991. Anaerobic growth and cyanide synthesis of *Pseudomonas aeruginosa* depend on *anr*, a regulatory gene homologous with *fnr* of *Escherichia coli*. Mol. Microbiol. 5:1483–1490.