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Abstract 
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic 
regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-
associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to 
pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform 
complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have 
immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and 
homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they 
play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases 
and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
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Introduction
In recent years, the incidence of bacterial infectious diseases 
has shown an upward trend because of climate change and 
the aging population, making it a major public health emer-
gency [1, 2]. Cases of multidrug-resistant bacterial infections 
are on the rise and becoming particularly serious and life 
threatening [3, 4]. Antibiotics are the first choice for the treat-
ment of bacterial diseases; however, the emergence and spread 
of drug-resistant bacteria have made the treatment regimen 
limited in hospitalized patients due to the abuse of antibiotics 
[5, 6]. In addition to the administration of antibiotics, im-
munotherapy is another promising regimen for the treatment 
of bacterial diseases [7, 8]. The innate immune system is the 
first line of defense against pathogenic invasion, and it has 
the characteristic of a fast response and plays an important 
role in the inflammatory response to pathogenic infection [9, 
10]. The second line of defense against pathogenic infection 
is the adaptive immune system, which can launch highly spe-
cific and strong immune responses [11, 12]. Because these two 

immune systems have vital roles in anti-infection [13, 14], 
tissue repair [15, 16], and the maintenance of homeostasis 
[17, 18], many researchers have been exploring their appli-
cations in many fields through targeting immune cells [19], 
immune molecules [20], or pathogenic bacteria [21], such as 
immunotherapy [22], infectious disease prevention and con-
trol [23] and disease diagnosis [24].

Innate-like T cells, a type of immune cells that acts as a 
bridge in the immune system, not only have the characteris-
tics of innate immune cells but can also initiate an adaptive 
immune response and accelerate the immune response against 
invaders [25–27]. Mucosal-associated invariant T (MAIT) 
cells, a subpopulation of innate-like T cells discovered in 
1993 [28], were named by Treiner et al.[29], and since then, 
the biological characteristics of MAIT cells and their roles in 
bacterial infectious diseases have been regularly revealed by 
many studies [30–33]. MAIT cells display a semi-invariant 
T-cell receptor (TCR) and can be activated by riboflavin-
related derivatives presented by the highly conserved major 
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histocompatibility complex class I-related molecule, MR1, in 
mammals [29, 34–37], implying that MAIT cells play an im-
portant role in the immune system. Moreover, MAIT cells can 
also be activated by cytokines, such as IL-2, IL-12, and IL-18 
(Fig. 1) [38, 39].

Upon activation, MAIT cells can initiate a rapid immune 
response [40, 41], produce a series of cytokines and cytotoxic 
substances to kill pathogens [42–47], repair impaired tissue 
and maintain homeostasis [48–51], launch adaptive immunity 
[52, 53], and trigger other immune cells to participate in im-
mune defense (Fig. 1) [54]. Meanwhile, activated MAIT cells 
can also cause some adverse consequences, such as cytokine 
storm [55, 56], tissue fibrosis [57, 58], and the initiation and 
metastasis of tumor cells [59, 60]. In this review, we briefly 
summarize the biological characteristics of MAIT cells, focus 
on the roles of MAIT cells in bacterial infectious diseases, and 
finally discuss the therapeutic strategies targeting MAIT cells 
in bacterial infectious diseases and some pending questions 
that need to be addressed.

Biological properties of MAIT cells
Phenotype and tools
MAIT cells are abundant in the peripheral blood (1–10%) and 
liver (15–50%) of humans [61–63], and express an invariant 
TCRα chain (human: Vα7.2-Jα33; mouse: Vα19-Jα33) 
paired with a limited number of TCRβ chains (Vβ2, 13, and 
22 in humans and Vβ6 and 8 in mice) [28, 29, 36] and many 
different markers or receptors correlated with the biology 
of MAIT cells. For example, IL-12R, IL-15R, IL-18R, and 

IL-23R, the cytokine receptors expressed on MAIT cells, are 
correlated with the cytokine-dependent activation of MAIT 
cells [38, 39, 64–66]; CXCR6, CCR2, CCR5, and CCR6, the 
tissue chemokine receptors, make that MAIT cells migrate to 
infected tissues [64, 67].

For our understanding of MAIT cells, the tools used to 
identify MAIT cells have been enriched several times, from 
specific TCRα primers [36] to specific antibodies (anti-Vα7.2 
and anti-CD161) [68] to MR1-Ag (MR1-rRL-6-CH2OH and 
MR1-5-OP-RU) tetramers [69, 70]. Every new generation of 
tools can improve or even overcome the limitations that the 
last one has in identifying MAIT cells, which realizes the more 
accurate identification of MAIT cells. Therefore, the MR1-Ag 
tetramer is currently the optimized tool for identifying human 
and mouse MAIT cells [71, 72]. To overcome the issue that the 
frequency of MAIT cells is extremely low in laboratory mouse 
strains [73], researchers also constructed a transgenic mouse, 
the B6-MAITCAST mouse, in which MAIT cells are abundant, 
as an animal model to study MAIT cells [74]. However, this 
mouse strain is not widely used because of problems with 
transportation and customs clearance. Currently, one feas-
ible solution to this issue is to proliferate MAIT cells by 
vaccinating mice before the experiment. Usually, researchers 
use bacteria with a riboflavin metabolic pathway and their 
lysates [45, 46] or 5-OP-RU with TLR agonist ligands [75] 
as vaccines.

Heterogeneity
MAIT cells have two main characteristics: expression of a 
semi-invariant TCR and restriction by the highly conserved 

Figure 1. Mucosal-associated invariant T (MAIT) cells in bacterial infectious diseases. In bacterial infectious diseases, pathogens or riboflavin 
metabolisms are captured by antigen-presenting cells (APCs), which can activate MAIT cells in a TCR-dependent manner or cytokine (CK)-dependent 
manner. Upon activation, MAIT cells proliferate, secrete abundant cytokines, and then recruit and activate other immune cells, acting as a bridge to link 
innate and adaptive immunity. Activated MAIT cells act as heroes, villains, or both in different bacterial infectious diseases.
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MR1 molecule [76], implying the homogeneity of MAIT 
cells. However, recent studies have indicated that MAIT 
cells are functionally heterogeneous [77, 78]. The secretion 
of cytokines and cytotoxic substances is related to the dis-
tribution of MAIT cells [72, 79]. MAIT cells secrete IL-17 in 
the liver [80], oral [81], and female reproductive tract [82] 
after activation, while MAIT cells mainly secrete IFN-γ and 
TNF in the peripheral blood [47] and intestinal mucosa [83]. 
Moreover, when stimulated by Escherichia coli, MAIT cells 
secrete more cytokines (IFN-γ and IL-22) in the fetal small 
intestine than circulating MAIT cells [84], which may protect 
the newborn from bacterial infection. In addition, the func-
tion of MAIT cells is also related to the context. Although 
MAIT cells are abundant in mucosal tissues, they are not 
activated in healthy conditions, but are only activated after 
pathogenic infections [85–87]. Therefore, the activation of 
MAIT cells is related to the inflammatory factor environment 
[75, 86, 88, 89], indicating that MAIT cell function is context 
dependent. Furthermore, the activation way of MAIT cells is 
related to the time of stimulation [90]. In an in vitro experi-
ment, Klenerman’s team found that when CD8+ T cells were 
cocultured with E. coli infected THP-1 cells, MAIT cells had 
different activation ways at different times: early activation 
was MR1 dependent after 5 hours of coincubation, and late 
activation was dependent on MR1 and IL-12 and IL-18 after 
20 hours of coincubation [90]. In addition, distinct results 
may be obtained from the different species of animal models 
used to study MAIT cell function [91, 92]. Even if the species 
are the same, the way they are modeled could also affect the 
results [93, 94].

Antigens
Initially, researchers found that some bacteria could activate 
MAIT cells [47, 95]. Furthermore, the lysates [96, 97] and me-
tabolites [70, 76, 98] of some bacteria can also activate MAIT 
cells. Moreover, some drugs and drug-like molecules also act 
as agonists or inhibitors of MAIT cell activation [99]. Among 
the metabolites of the bacteria, 5-OP-RU and 5-OE-RU [70], 
the derivatives of vitamin B2 (VB2), are currently known to 
be the two strongest agonists in activating MAIT cells. 6-FP, 
a photodegradation product of VB9, was the first described 
ligand of MR1 and plays an inhibitory role in activating 
MAIT cells [76]. Among drugs, diclofenac and its metabol-
ites, methotrexate and aminopterin can activate MAIT cells 
[99]. Among drug-like molecules, 3-F-SA has a comparable 
ability to 6-FP in inhibiting the activation of MAIT cells [99]. 
Therefore, these drugs or drug-like molecules may also modu-
late the function of MAIT cells in addition to exerting their 
own effects when they are administered to patients.

Activation
The first described activation manner of MAIT cells is MR1-
dependent manner through the MR1-TCR axis in bacterial in-
fectious diseases [47, 76, 95]. In addition, MAIT cells can also 
be activated in a cytokine-dependent manner through IL-18 
with IL-12, IL-15, and/or interferon α/β (Fig. 1) [38, 39, 100], 
which is mainly present in viral diseases [39], autoimmune dis-
eases [58], and the diseases caused by bacteria without a ribo-
flavin biosynthesis pathway [55]. Unsurprisingly, these two 
activation manners of MAIT cells are not mutually exclusive 
in diseases caused by some bacteria, such as Mycobacterium 
bovis [44] and E. coli [101], which can activate MAIT cells in 
a TCR- and cytokine-dependent manner. Through intranasal 

inoculation with riboflavin-deficient Salmonella typhimurium 
and/or 5-OP-OU, Chen et al. found that only inoculation with 
both could trigger the activation and accumulation of MAIT 
cells [75], indicating that the activation and accumulation of 
MAIT cells in vivo require the participation of both antigens 
and cytokines. Moreover, compared to the single manner 
of activation, the dual-dependent mechanism can achieve a 
stronger and more sustained activation of MAIT cells and en-
hance their cytotoxic effect [100]. Apart from antigens and/
or cytokines, the activation of MAIT cells also requires sec-
ondary signals. Consistent with conventional T cells, ICOS/
ICOS-L signaling is also involved in the activation and 
RORγt expression of MAIT cells [102]. In addition, OX40/
OX40L signaling can promote the activation and prolifer-
ation of MAIT cells and then the production of IL-9—which 
is correlated with the severity of Helicobacter pylori-induced 
gastritis—by activated MAIT cells during H. pylori infec-
tion [103]. Upon activation, MAIT cells upregulate the ex-
pression of CD25 and CD69, secrete type 1 cytokines (IFN-γ 
and TNF-α) and/or type 17 cytokines (IL-17 and IL-22), and 
produce GzmB and perforin [31, 43, 45, 61, 104, 105]. These 
cytokines can protect the host against infection [45, 47] but 
can also aggravate some diseases [89, 106].

Roles of MAIT cells in bacterial infectious 
diseases
Protection
The first confirmed role of MAIT cells was their antibac-
terial function reported in 2010 [47, 95]. Subsequently, a 
growing number of studies suggest that mouse and human 
MAIT cells can play a protective role in infectious diseases 
caused by bacteria, such as Streptococcus pneumoniae [107], 
Klebsiella pneumoniae [108], Francisella tularensis [46, 109], 
and Legionella longbeachae [45]. In bacterial infectious dis-
eases, MAIT cells perform antibacterial functions not only 
by secreting cytotoxic substances but also by recruiting and 
activating other immune cells [42, 54, 110, 111]. Furthermore, 
MAIT cells have a positive significance in the treatment of 
drug-resistant bacteria through secreting GzmB, perforin, and 
granulysin in an in vitro experiment conducted using human 
PBMCs [33, 112]. Moreover, an ex vivo study showed that 
human MAIT cells can act as an effector arm of humoral 
immunity against bacteria via IgG-mediated opsonization, 
which markedly enhances the capacity of APCs to phago-
cytize the target pathogen and present antigen via MR1, ul-
timately prompting MAIT cells to mount a strong and fast 
response against pathogenic infection in patients [113].

Apart from anti-bacterial properties, MAIT cells may also 
play a role in controlling tissue repair and homeostasis (Fig. 
1) [48–51, 114, 115]. Salou et al. first proposed the hypoth-
esis that MAIT cells are implicated in tissue repair [32], which 
was then proven by Constantinides et al. [51], Lamichhane 
et al. [50], Leng et al. [48], and Hinks et al. [49]. MAIT cells 
can express multiple genes that are related to tissue repair 
and wound healing [48–51] and possess a similar transcrip-
tional profile as γδ T cells [116, 117] and H2-M3-restricted 
CD8+ T cells [49, 118], implying the tissue repair function 
of MAIT cells. Indeed, Leng et al. found that culture super-
natants obtained from E. coli-stimulated human CD8+ MAIT 
cells could significantly promote the wound closure of the 
monolayer of colonic Caco2 cells, and this phenomenon was 
inhibited by an anti-MR1-blocking antibody [48]. Moreover, 
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using experimental mouse models, Constantinides et al. found 
that the epidermal tongue length of the MAIT-sufficient Tcrd−/− 
mice topically associated with Staphylococcus epidermidis or 
the WT mice topically administered with 5-OP-RU was sig-
nificantly longer than those observed in the MAIT-deficient 
Mr1−/− Tcrd−/− mice with no S. epidermidis applied or the mice 
with no 5-OP-RU treatment, respectively [51].

Because of their anti-infectious properties, MAIT cells can 
also be used as the target of vaccines or vaccine adjuvants to 
enhance MAIT cell-mediated protection against subsequent 
infections [26, 45, 102, 109, 119, 120]. MAIT cells that are 
enriched in the mucosa with a capacity against bacterial in-
fections [29, 32, 104] can participate in adaptive immune re-
sponses [26, 120–122], form a stable memory-like MAIT-1 
cell population in a mouse model infected with F. tularensis 
[109] and be boosted when mice are vaccinated with 5-OP-RU 
in association with different TLR agonists [75]. These prop-
erties imply that a MAIT cell-targeting vaccine can be used 
to boost host resistance by augmenting MAIT cell-mediated 
immunity. Indeed, multiple studies have proven the potential 
effects of MAIT cell-targeting vaccines in defending against 
bacterial infections. The first inspiring study investigating 
the role of 5-OP-RU as a “vaccine” was reported by Wang 
et al. [45]. They found that the mice boosted by 5-OP-RU 
in combination with the TLR agonist CpG or Pam2Lys had 
more lung MAIT cells than the naïve mice, and upon L. 
longbeachae challenge, the bacterial burden was significantly 
lower in the boosted WT mice than in the boosted MR1−/− 
mice, suggesting that 5-OP-RU inoculation promotes MAIT 
cell proliferation and then enhances host defense against bac-
terial infections. Furthermore, consistent with 5-OP-RU plus 
a TLR agonist, Wang et al. found that in a vaccinated mouse 
model 5-OP-RU plus IL-23 could also enhance host immunity 
to clear L. longbeachae [102]. Moreover, 5-OP-RU may also 
be used as a mucosal adjuvant to enhance bacterial vaccine 
efficacy through MAIT cell-mediated B-cell help [26, 120, 
121]. Jensen et al. investigated the ability of 5-OP-RU as the 
adjuvant of a Vibrio cholerae O1 polysaccharide conjugate 
vaccine in a mouse model and found that mice could produce 
a higher level of mucosal IgG antibodies in the 5-A-RU plus 
methylglyoxal group than in the methylglyoxal alone group, 
protecting vaccinated mice from subsequent V. cholera chal-
lenge [120].

MAIT cells, as an innate-like T-cell subpopulation, can 
bridge innate and adaptive immunity. After activation by bac-
teria, MAIT cells secrete multiple cytokines to crosstalk with 
monocytes, dendritic cells (DCs), B cells, and neutrophils and 
then mount and/or fine tune immune responses [26, 54, 123, 
124]. Mouse MAIT cells activated by F. tularensis LVS can 
promote the early production of pulmonary GM-CSF, which 
is necessary for the differentiation of inflammatory monocytes 
into monocyte-derived DCs (Mo-DCs), and Mo-DCs trigger 
the activation and accumulation of CD4+ T cells in the lungs 
[54]. In addition, human MAIT cells activated by the cognate 
Ag 5-A-RU/MG can upregulate the expression of CD40L and 
induce CD40L- and MR1-dependent DC maturation, and 
DCs then upregulate IL-12 expression, which in turn promotes 
MAIT cell activation and provides help to efficiently prime 
CTLs [123]. Microbe-activated human MAIT cells can pro-
mote plasmablast formation and antibody production by se-
creting B-cell stimulatory factors in in vitro experiments [121]. 
Furthermore, Jensen et al. reported that the adaptive transfer 
of CXCR5+ T follicular helper-like MAIT cells into αβ T-cell 

deficient mice enhances host humoral immune responses to V. 
cholerae by expressing B-cell helper cytokines (IL-21, IL-10, 
and BAFF), indicating a protective role of mouse MAIT cells 
against V. cholerae infection [26]. Moreover, the mutual re-
striction between MAIT cells and neutrophils may be present 
in humans to balance immune responses [124]. Although acti-
vated MAIT cells can recruit neutrophils to augment immune 
responses [50], strongly activated MAIT cells induce neutro-
phil death by producing a high level of TNF-α; in turn, neutro-
phils inhibit the overactivation of MAIT cells in a cell-contact 
and ROS-dependent manner [124], suggesting a negative regu-
latory feedback mechanism to protect the host from excessive 
inflammation and respond to bacterial infection.

Pathology
Although many studies have reported the protective func-
tion of MAIT cells against bacterial infections, their patho-
genic role exists in some settings (Supplementary Table S1). 
Upon activation by superantigens (SAgs), human MAIT cells 
launch a robust proinflammatory cytokine response by pro-
ducing large amounts of IFN-γ and TNF-α, which may lead 
to a systemic cytokine storm and could be life-threatening for 
the host [55, 56]. Moreover, in a H. pylori infection model, 
D’souza et al. found that 5-OP-RU-treated mice displayed 
more serious gastric pathology than mice without MAIT cell 
expansion, suggesting that MAIT cells may be implicated in 
the pathological process of gastritis caused by H. pylori [89]. 
This mechanism may be related to MAIT cell-secreted IFN-γ, 
TNF-α, and IL-17A [89, 125].

Recently, several reports demonstrated that MAIT cells 
are involved in tissue repair and homeostasis when activated 
by commensal bacteria or pathogenic bacteria, which is a 
novel role of MAIT cells in maintaining host health [48–51]. 
However, it has also been reported that MAIT cells executing 
an improper tissue repair function may lead to tissue fibrosis 
in the liver [57, 58] and kidney [126] and may also promote 
tumor growth by expressing tissue repair- and/or angiogenesis-
related genes [41, 114]. In patients with alcoholic liver dis-
eases, if intestinal barrier integrity is damaged, liver MAIT 
cells can be activated by bacteria from the gut and then se-
crete cytokines and cytotoxic substances [127, 128], aggra-
vating liver inflammation and fibrosis [129, 130]. In addition, 
MR1 can be expressed in many cells [131], which means that 
they can activate MAIT cells using agonist ligands. Although 
MAIT cell antigens in cancer have not yet been identified, the 
existence of bacteria inside or on the surface of the tumor has 
been verified [132]; therefore, bacterial antigens presented by 
tumor cells can activate and recruit MAIT cells, which has 
been proven to have protumor effects [59, 133].

Researchers also found that MAIT cells could suppress 
host immune responses by communicating with other im-
mune cells in certain bacterial infectious diseases [42, 54, 
110, 111]. Sakai et al. found that in an experimental mouse 
model, the activated MAIT cells of mice vaccinated with 
5-OP-RU + CpG inhibited CCR2+Ly6C+ myeloid cells traf-
ficking into the mLNs in a TGF-β-dependent manner, which 
delayed the priming of Mycobacterium tuberculosis-specific 
CD4+ T cells and affected the adaptive immune response [93]. 
Moreover, in the S. typhimurium BRD509 or Pam2Cys plus 
5-OP-RU preprimed mouse model, activated MAIT cells re-
cruited immune cells, including neutrophils, macrophages, 
eosinophils, and dendritic cells, into the H. pylori-infected gas-
tric mucosa, which aggravated gastritis [89, 134]. In addition, 

http://academic.oup.com/cei/article-lookup/doi/10.1093/cei/uxad102#supplementary-data
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in some tissues, MAIT cells can recruit neutrophils into the 
infected site through the secretion of IL-17 [135, 136]. These 
recruited neutrophils may exacerbate tissue inflammation by 
secreting a panel of cytokines and cytotoxic substances [137, 
138]. Importantly, in research on tumor immunology, MAIT 
cells can suppress the anti-tumor function of NK cells and en-
hance the permeability of the tissue mucosal and/or vascular 
barrier [59, 139], which results in the translocation of flora 
[140], aggravates the inflammatory response, and promotes 
tumor metastasis.

MAIT cell-targeting strategies for antibacterial 
therapy
As a subpopulation of innate-like T cells, MAIT cells can 
launch a rapid, non-specific innate immune response and 
mount a specific adaptive immune response upon activation, 
endowing them with a versatile function in antibacterial in-
fectious diseases [25, 54]. Noteworthily, the function(s) of 
MAIT cells in bacterial diseases must be taken into consid-
eration when MAIT cell-targeting strategies are used to treat 
these diseases [45, 61, 89].

Given the excellent protective role of MAIT cells in bac-
terial infectious diseases, MAIT cells can be considered a 
therapeutic target through priming and expanding them by 
using agonist ligands or vaccine strains [93, 120, 141, 142]. 
First, MAIT cells display a good protective effect against in-
fections by intractable bacteria, such as superbacteria [112]. 
Second, MAIT cells can also be used as the target of vaccine 
adjuvants to enhance bacterial vaccine efficacy [26, 45, 120]. 
Third, based on the immune checkpoints expressed on the 
surface of MAIT cells [111, 143, 144], MAIT cells can also 
act as targets to treat infectious diseases [145, 146]. PD-1, a 
well-known immune checkpoint [147], is also expressed on 
MAIT cells [88, 144, 145]. In patients with active tubercu-
losis, the expression of PD-1 on MAIT cells in pleural effusion 
was high and correlated with the deficiency of IFN-γ [144], 
and the secretion of IFN-γ was restored to exert anti-bacterial 
effects by using purified PD-1 antibody, implying that PD-1 
might be a new therapeutic target of bacterial infectious dis-
eases [144].

Given that MAIT cells also play a pathological role in some 
diseases, inhibiting MAIT cell activation or neutralizing the 
cytokines and cytotoxic substances secreted by MAIT cells 
may also be a new therapeutic strategy. Superantigens that are 
expressed by some bacteria can activate MAIT cells and cause 
a cytokine storm [55, 56]. The inhibitor ligands of MAIT cells, 
such as 6-FP [148] and Ac-6-FP [149], can be taken into con-
sideration in the treatment of diseases. This strategy has been 
studied in the treatment of tumors [59], inflammatory bowel 
disease [150], and so on. In addition, Barber’s team found 
that the activation of MAIT cells delayed the priming of Mtb-
specific CD4+ T cells, which indicates that using an inhibitor 
ligand may be a candidate strategy for tuberculosis treatment 
[93]. Furthermore, in patients infected with H. pylori [89], 
IL-17A neutralizing antibody may be a good choice to alle-
viate the pathological responses caused by MAIT cells, such 
as gastric mucosal injury and gastritis.

Concluding remarks
Since MAIT cells were first discovered in 1993, they have be-
come a star player in the field of T-cell immunity due to their 

nonredundant functions in the immune system. In the past 
several decades, the enigmatic veils of MAIT cells in pheno-
type, antigen, activation, and development have been re-
vealed. MAIT cells are a double-edged sword, unfortunately, 
and how to avoid their pathogenicity when using the pro-
tective role of MAIT cells is the most important aspect of 
MAIT cell research.

Although the role of MAIT cells in some diseases has been 
clarified, further studies are needed to comprehensively elu-
cidate the functions of MAIT cells in bacterial infectious dis-
eases. First, based on their location, MAIT cells are divided 
into two categories, peripheral blood-circulatory MAIT cells 
and tissue-resident MAIT cells. However, the relationship 
between these two groups and whether the conclusions can 
be extended to each other are not clear. It has been reported 
that the number and molecular phenotype of MAIT cells in 
peripheral blood are different from those of tissue-resident 
MAIT cells, and their responses to pathogenic bacteria are 
also different [72, 79]; therefore, further studies are needed 
to investigate these two groups of MAIT cells. Second, al-
though there is abundant commensal flora in the gastrointes-
tinal tract, some of these bacteria have a riboflavin metabolic 
pathway that can produce riboflavin metabolic derivatives 
that activate MAIT cells. In an in vivo environment, MAIT 
cells are not continuously activated to produce excessive cyto-
kines, but only when they are infected by pathogenic bac-
teria are MAIT cells activated to exert antibacterial effects 
[87]. However, the definite mechanism of this condition is still 
unclear. Third, the current studies on the antibacterial func-
tion of human MAIT cells have mainly focused on PBMC-
derived MAIT cells. The role and mechanism of MAIT cells 
in response to bacterial infectious diseases in humans are still 
not clear, which is not conducive to the clinical application 
of MAIT cells. Based on the existing conclusions, we found 
that the number of MAIT cells in the infection site is often 
increased and that the increased MAIT cells can secrete anti-
bacterial cytokines; therefore, MAIT cells can be used as a 
new target for antibacterial therapy [42, 45, 93, 108].

For bacterial infectious diseases, treatment is still a major 
challenge due to the abuse of antibiotics, climate change, and 
rising population mobility. In addition to the development of 
new antibiotics, immunotherapy is another promising can-
didate for the treatment of bacterial diseases. Many studies 
have suggested that MAIT cells can play important roles in 
bacterial infectious diseases. However, MAIT cells not only 
act as heroes but also as villains in some diseases. Therefore, 
clarifying the functions of MAIT cells in the progression of 
diseases and formulating a personalized therapeutic scheme is 
a crucial step for the application of MAIT cell-targeting im-
munotherapies in the clinic.
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