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Organalysis: Multifunctional Image Preprocessing
and Analysis Software for Cardiac Organoid Studies

Jathin Pranav Singaraju,1,2 Adheesh Kadiresan,1,2 Rahul Kumar Bhoi, MS,1 Angello Huerta Gomez, MS,1

Zhen Ma, PhD,3,4 and Huaxiao Yang, PhD1

Due to a growing need in visualizing human pluripotent stem cell-derived organoids from recent advancements
in the field, an efficient bulk-processing application is necessary to provide preprocessing and image analysis
services. In this study, we developed Organalysis, a high-accuracy, multifunctional, and accessible application
that meets these needs by providing the functionality of image manipulation and enhancement, organoid area
and intensity calculation, fractal analysis, noise removal, and feature importance computation. The image
manipulation feature includes brightness and contrast adjustment. The area and intensity calculation computes
six values for each image: organoid area, total image area, percentage of the image covered by organoid, the
total intensity of organoid, the total intensity of organoid-by-organoid area, and total intensity of organoid by
total image area. The fractal analysis function computes the fractal dimension value for each image. The noise
removal function removes superfluous marks from the input images, such as bubbles and other unwanted noise.
The feature importance function trains a lasso-regularized linear regression machine learning algorithm to iden-
tify cardiac growth factors that are the strongest determinants for cell differentiation. The batch processing
of this application further builds on existing services like ImageJ to provide a more convenient way to process
multiple images. Collectively, the versatility and preciseness of Organalysis demonstrate novelty, since no other
current imaging software combines the capability of batch processing and the breadth of feature analysis.
Therefore, Organalysis provides unique functions in cardiac organoid research and proves to be invaluable in
regenerative medicine.

Keywords: graphical user interface, image preprocessing and analysis, cardiac organoid, fractal analysis,
feature importance

Impact Statement

Image processing tools such as ImageJ that aid in the analysis of microscope-based organoid imaging are widely applied.
However, there is currently no application that provides a friendly graphical user interface, allows for efficient bulk
processing, and caters specifically to organoid research. ‘‘Organalysis,’’ the software presented in this study, is a ground-
breaking application designed to accelerate organoid image preprocessing and analysis for biomedical researchers.
Organalysis offers a comprehensive solution with high accuracy, multifunctionality, and easy accessibility. It advances the
study of human pluripotent stem cell-derived cardiac organoid development, disease modeling, and drug evaluation by
significantly reducing the time and effort required for analysis.
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Introduction

W ith the recent advancements in human pluripotent
stem cell (hPSC)-derived organoids, numerous char-

acterization techniques have been in considerable devel-
opment for better studying and applying hPSC-derived
organoids in disease modeling and regenerative medicine.1

One of the major characterization approaches for visualizing
the hPSC-derived organoid is microscopic imaging.

Correspondingly, image-processing techniques are nee-
ded for image preprocessing and image analysis. In the area
of organoid analysis, image preprocessing is the process of
manipulating and enhancing microscopic images before
they are analyzed, while image analysis is the process of
extracting useful information from microscopic images for
examination and comparison to determine scientific results
and trends. Image processing of biological samples has
become increasingly critical to further extracting extended
information from hPSC-derived organoid studies. Currently,
various approaches have been applied to analyze organoid
formation and growth,2 track organoid circularity and area,3

and in-focus imaging.4

Each of these reports presents a specific solution to a
problem; however, they lack other key features of micro-
scopic images, such as overall intensity, average intensity
over the area, and fractal dimension (FD) of representing
organoid structure. Moreover, there are potential technical
shortcomings in downsampling for conserving memory,
lack of a simple graphical user interface (GUI), and diffi-
culties in organoid shape fitting. In addition, while the
ImageJ (National Institute of Health [NIH]) software sup-
plies a wide array of image processing tools, including frac-
tal analysis,5 brightness/contrast enhancements, and noise
removal, it has a very convoluted interface, sometimes req-
uiring repetitive clicks to automate a function.

In fact, ImageJ is suited for small-scale, or image-by-
image, processing methods,6 making batch processing with
multiple images extremely time-consuming and inconsistent.
ImageJ, therefore, is less automated and less efficient for
large folders of images collected from high-throughput
hPSC-derived organoid studies with multiple controlling
factors and various pathophysiological phenotypes. To cir-
cumvent these obstacles, a multifunctional, consolidated, and
simplified image preprocessing and analysis software is ur-
gently needed in the hPSC-derived organoid research field.

In this study, we established a multifunctional applica-
tion, named ‘‘Organalysis,’’ for batch preprocessing and
analyzing fluorescent images from hPSC-derived cardiac
organoids. In Organalysis, users control all the processes
at once with fewer clicks through a user-friendly GUI.
Currently, there is no automated software that includes such
functions, targeted at handling batch processing. In addition,
Organalysis consists of the feature importance function,
which becomes critical to understanding the effect of dif-
ferentiation factors on the hPSC-derived cardiac organoid
formation.

This novel platform incorporates new algorithms with
more efficacy into a consolidated environment, enabling
users to employ our application with ease and accuracy.
Herein, we primarily use the fluorescence images of hPSC-
derived cardiac organoids with the same protocol set up in
our recent publication7 to test and evaluate our plat-

form. According to this publication, hPSC-derived cardiac
organoids are made up of three main fluorescence-labeled
cardiovascular cell types: smooth muscle cells, cardiomyo-
cytes, and endothelial cells, which were live-cell imaged in
blue (Cyan Fluorescent Protein [CFP]), green (Green Fluor-
escent Protein [GFP]), and red/orange (Red Fluorescent Pro-
tein/Monomeric Orange Protein [RFP/mOr]), respectively.

Materials and Methods

Platform design

The flowchart, as shown in Figure 1, depicts the process
from inputting raw fluorescence microscopic images to
image preprocessing, analysis, and validation with the five
included functions for hPSC-derived organoids. The Orga-
nalysis application, built from Python, is intended to provide
a simple, user-handy platform, as shown in Supplementary
Figure S1. The design was intuitive, reducing the total num-
ber of clicks to the process of designated functions. Each
function also runs through multiple images at once, stream-
lining the human-to-program interaction. The frontend (user
interface) and backend (functional operations) are both
natively programmed through Python’s Tkinter package, a
Python extension to the Tk GUI framework.8

The GUI framework was then downloaded as standalone
software by Python’s PyInstaller package. Organalysis com-
prises a total of five functions in three categories: pre-
processing, analysis, and comparison. The preprocessing
functions include brightness/contrast adjustments and noise
removal. The analysis functions include area/intensity mea-
surements and fractal analysis. The comparison function
includes the feature importance function for determining
the various conditions seen in the images of organoids. By
employing specific algorithms to determine information
about the organoid, this software is especially useful in rapid
experimentation methods. In our study, the application pro-
cessed the hPSC-derived cardiac organoid data (CFP, GFP,
and RFP/mOr images) and generated an Excel report and/or
a folder of updated images depending on the function.

Preprocessing functions

Brightness and contrast adjustment. The brightness and
contrast enhancement feature uses OpenCV’s convert-
ScaleAbs function9 to supply an interface for adjusting the
brightness and contrast of all images in one folder. The
interface allows the user to traverse a folder of images and
adjust the brightness and contrast of each image. With
the first click, the user opens the folder with all the fluor-
escently colored organoid images. The second click places
the images onto the screen, allowing the user to toggle
between the images.

When the user finds a raw image, the brightness and
contrast values are manipulated to better augment the fea-
tures: the user enters in decimal-precise numbers for the
contrast (alpha) value, which ranges from 1.0 to 3.0, and the
brightness (beta) value, which ranges from a 0.0 to 100.0.
With the third click, the user visualizes the changes made
to the image and determines the best parameters to enter in
the text fields. The user can either press ‘‘one’’ to update just
that image, or press ‘‘all’’ to update every image in the
folder.
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Finally, once the necessary images are changed, the user
could click ‘‘process’’ to finish the function and download
the folder of updated images. This function utilizes alpha, a
multiplicative scale factor, and beta, an additive scale factor,
parameters to manipulate the brightness and contrast of an
image. The formula to update a pixel’s value based on the
alpha and beta parameters is given below:

Updated Pixel Value¼Original Pixel Value � alphaþ beta

Noise removal. The noise removal function uses
OpenCV to remove unwanted artifacts and noise from a
microscope image of an organoid. First, the function
sharpens the image using the OpenCV package in Python.
It then uses a threshold on the image to identify the mor-
phology and amplify the features of the image. The function
then finds the blobs in the image and employs the contour
detection algorithm from OpenCV.10 Next, if specified
pixels in the image are identified by the contour, the func-
tion retains their values. If specified pixels in the image are
not identified, it turns their color to black (zero intensity).
This technique turns the noise pixels into black pixels so
that only the central organoid is represented. Finally, the
modified image with removed noise is saved to a new folder.
Each image in the original folder is processed and saved in a
comparable way.

Analysis functions

Area and intensity calculations. In this function, pixel-
based methods are used to calculate six data types (organoid

area, total image area, percentage of the image covered
by organoid, total intensity of organoid, total intensity of
organoid-by-organoid area, and total intensity of organoid
by total image area). The function iterates over the number
of images in the original folder and creates a spreadsheet
with six columns per image.

For each image, the function standardizes the image
based on user input and then applies an Otsu thresholding
algorithm with OpenCV.11 The Otsu thresholding algorithm
automatically calculates standardized threshold value based
on the given image to find the contour of the organoid.
It then counts the total number of pixels inside that contour
and determines the values for the six datasets. The formulas
for the percentage of organoid coverage, the total intensity
of organoid-by-organoid area, and the total intensity of orga-
noid by total image area are shown below.

Percentage of Organoid Coverage

¼ Total Area of Organoid

Total Area of Image

Total Intensity of Organoid by Organoid Area

¼ Total Intensity of Organoid

Pixel Area of Organoid

Total Intensity of Organoid by Total Image Area

¼ Total Intensity of Organoid

Total Area of Image

FIG. 1. Roadmap of cardiac organoid image preprocessing and analysis functions from (a) obtaining the raw images;
(b) preprocessing those images using the brightness/contrast adjustment and noise removal features; (c) analyzing and
validating those images using the area/intensity calculation algorithm and the fractal analysis function; (d) comparing all the
results with the feature importance function to understand the organoid intricacies; and (e) representation of GUI with all the
functions comprised within the platform. GUI, graphical user interface. Color images are available online.
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Fractal analysis

The fractal analysis function is developed based on open-
source code.12 The function processes a folder of images
and outputs the FDs in a spreadsheet. Initially, this function
binarizes the image by thresholding and maintaining its minute
details. The algorithm then splits the pixel into rectangular
bins. Next, it determines the number of bins that have at least
one bright pixel. This process is repeated with varying bin
scales, where the scale of bins refers to the fineness of image
subdivisions. The scale of bins (inversely proportional to the
bin size) s and the number of bright bins n are transformed
logarithmically. Finally, the function computes the slope of the
n versus s line of best fit to find the fractal value for the image.
In addition to writing the fractal value to a spreadsheet, the FD
(white pixelated) image is also added into the folder.

Fractal Dimension FDð Þ ¼ slope n, sð Þ, scale of bins, s,
and number of bright bins, n.

Comparison function

Feature importance. The feature importance function in
the software is performed based on a lasso-regularized linear
regression model that is trained on the provided data. Fea-
ture importance values are calculated based on permutation
importance values using Scikit-Learn.13

The function requires input data in the form of a Comma-
Separated Values (CSV) file. By default, this file represents
the treatments applied to a rectangular plate with 48 speci-
mens (6 rows by 8 columns). The input CSV’s dimensions
follow this format: each row in the CSV represents one
column of wells in the organoid plates. Each column of the
CSV represents one treatment applied to the organoids. The
values in each CSV cell (row and column) reflect whether a
particular treatment (specified by the column) was applied to
a particular column of wells in the plate (specified by the
row). The value in the CSV cell is either a binary (0 or 1),
representing either a present or absent treatment, or a dec-
imal number between 0 and 1, representing the quantity or
volume of an organoid differentiation factor.

The function outputs the relative importance of each
treatment, with higher numbers representing a larger sig-
nificance of the treatment. The outputs include two formats:
a PNG file providing a graphical ranked view of the impor-
tance of each treatment, and a CSV file providing the spe-
cific feature importance values of each treatment.

Experiments

hPSC-derived cardiac organoid differentiation

All experiments, methods, and protocols for this study
were approved by the University of North Texas Institu-
tional Biosafety Committee (IBC). The differentiation pro-
tocol of hPSC-derived cardiac organoids followed our
recent publication7 with treatments of 6 mM CHIR-99021
(CHIR; Selleck Chemicals) from days 0 to 2 and 5mM IWR-1
(IWR; Selleck Chemicals) from days 3 to 5 in RPMI + B27
minus insulin culture medium, and then continued differen-
tiation in RPMI + B27 up to day 16.

hPSC-derived cardiac organoid imaging

All the fluorescence organoid images in the range of
256 · 256 to 2048 · 2048 in pixels were taken by the Key-

ence All-In-One Fluorescence Microscope BZ-X810 with a
10 · objective at GFP, RFP/mOr, and 4¢,6-diamidino-2-
phenylindole channels.

hPSC-derived cardiac organoid analysis

All image-analysis functions presented in this study were
performed using the Organalysis application. The specific
parameters measured using Organalysis are thoroughly
described in the Materials and Methods section. For com-
parative reasons, ImageJ was utilized for organoid image
analysis in area and intensity calculation and fractal analysis
on the same images used in Organalysis.

Results

Brightness and contrast adjustments

The brightness and contrast function were performed on
three channels (blue-CFP, green-GPF, and red/orange-mOr)
on the scales of 0.0–100.0 for brightness and 1.0–3.0
for contrast, as shown in Figure 2a–c. After the adjustment
of contrast and brightness, the corresponding organoid
intensities per pixel were measured and documented in
Figure 2d–f. Therefore, our application can process images
in bulk, as demonstrated in Supplementary Figure S2, with
the same scale of brightness and contrast for further quan-
tified analysis.

Noise removal

In our study, most organoid images, specifically those
characterized by the CFP channel, contained errors that
resulted from random objects floating in the culture medium
such as air bubbles and small fibers. We ran these images
through our noise removal function, which employed a
machine-identified contour that recognized the hPSC-
derived cardiac organoids and subsequently removed the
unnecessary background noise, as shown in Figure 3a–c.
More examples can be found in Supplementary Figure S3.
On the CFP images that had noise, our algorithm removed
that noise almost 92% of the time (Fig. 3d). On the CFP
images that did not have noise, our algorithm did not detect
any noise around 94% of the time (Fig. 3e).

Area and intensity calculations

The area/intensity function calculated six different values
(organoid area, total image area, percentage of the image
covered by organoid, total intensity of organoid, total inten-
sity of organoid-by-organoid area, and total intensity of orga-
noid by total image area) for each image that ran through
the algorithm. Each image was measured and compared
between ImageJ and Organalysis. This application calcu-
lated the area/intensity values by employing the Otsu
thresholding algorithm, which was also used as ImageJ
package.

As shown in Figure 4a, we compared the images’ ‘‘total
intensity of organoid-by-organoid area’’ values by splitting
the dataset into green, red, and blue channels. Each channel
is processed through a grayscale filter (Fig. 4b) before being
applied to the algorithm, which could summarize the data in
a spreadsheet (Fig. 4c). Similarly, we measured more hPSC-
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FIG. 2. The function of brightness/contrast adjustment. (a–c) Fluorescence images of three cell types labeled in CFP,
GFP, and mOr, respectively, through the brightness and contrast adjustment by tuning the alpha and beta filters from 0 to
100 and 1 to 3, respectively. Scale bar: 1000 mm. (d–f) Corresponding measurements of organoid intensity per pixel upon
the brightness and contrast adjustments. CFP, cyan fluorescent protein; GFP, green fluorescent protein; mOr, monomeric
orange protein. Color images are available online.

FIG. 3. The function of
the noise removal feature.
(a) The selected image con-
verted to a grayscale image
through thresholding. Scale
bar: 1000 mm. (b) The image
runs through a contour-
detection algorithm to
identify the edges of the
organoid. (c) Every pixel
outside the contour set to
black (0, 0, 0). (d) Accuracy
of the noise removal tech-
nique on CFP images with
noise displayed. (e) Accu-
racy of the noise removal
technique on CFP images
without noise displayed.
N = 46 images preprocessed.
Color images are available
online.
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derived cardiac organoids on days 9 and 13, and the results
of the measurement are demonstrated in Supplementary
Figure S4a. The percentage errors of the measurements of
Organalysis (the ImageJ measurement was taken as the
exact value) in the three channels are in the range of 0.03–
1.3% (Supplementary Fig. S4b).

Fractal analysis

We followed the classical procedures of fractal analysis.
First, the algorithm binarized the Red-Green-Blue images
(Fig. 5a). Then, logarithmically distributed boxes were
created on the image (Fig. 5b), and linear regression was
performed on the boxes with at least one non-black pixel
(Fig. 5c). Figure 5d shows the FD values of organoid images
automatically measured by Organalysis, while Figure 5e
shows the FDs of the same organoid images manually
measured by the ImageJ plugin FracLac.

A linear regression chart comparing ImageJ values to
organoid application values was created and is shown in
Figure 5f: the R2 value was equal to around 0.8206. This
means that the values from ImageJ and Organalysis, res-
pectively, were well correlated and followed a similar best-
fit line. On the other hand, the individual fractal values
output by ImageJ were slightly higher than those output by
the organoid application. This discrepancy can be attrib-
uted to a difference in performing the methods to obtain
values, that is, a minute variation in the logarithmic

threshold, while converting to grayscale. Regardless, the
efficiency of Organalysis offsets the contrast in fractal
values.

Feature importance

In the feature importance function, a feature spreadsheet
was created (Fig. 6a) for various differentiation factors of
hPSC-derived cardiac organoids from our recently published
results.7 Those differentiation factors include both small
molecules and growth factors for deriving the vascularized
cardiac organoid from hPSCs. Based on the intensity values
for each image in Figure 6b and the input spreadsheet,
which contained the respective differentiation treatments
and their combinations (1 for with and 0 for without), the
Lasso-regularized linear regression (Fig. 6c) machine-
learning algorithm was trained to output a chart based on its
prediction of the differentiation outcomes.

Based on the outputted graphs for each color that repre-
sents different cell types, the feature importance function
primarily identified PDGFbb-2.5 nM, PDGFbb-10 nM,
VEGF-50 nM, Ang2–50 nM, and SB-10 mM as the top five
determinators for the formation of CFP-TAGLN-SMC in
the hPSC-derived cardiac organoids (Fig. 6d), while the
SB-10 mM, VEGF-50 nM, CHIR, and Ang1&2–50 nM were
more relevant to the GFP-TNNT2-CM differentiation
(Fig. 6e). Similarly, these smooth muscle cell-relevant
differentiation factors were shared mostly with the

FIG. 4. The function of the
area and intensity measure-
ment. (a, b) The function it-
erates through all images in
the folder, thresholding the
images to grayscale. The
method takes measurements
by going left-to-right and
top-to-bottom, counting
pixel-by-pixel. Scale bar:
1000mm. (c) Function-
performed calculations saved
into a spreadsheet with in-
formation that can be used
for comparison and analysis.
Color images are available
online.

IMAGE PROCESSING SOFTWARE FOR CARDIAC ORGANOID STUDIES 577



FIG. 5. The function of fractal analysis of hPSC-derived cardiac organoids. (a) GFP images loaded from the folder and
converted into binarized images. Scale bar: 1000 mm. (b) Transformed images split up into boxes with 10 logarithmically
distributed box sizes. Each box is defined by the number of bright pixels it contains. (c) Linear regression identifying the
slope between the number of boxes with at least one bright pixel and the scale of the boxes. Both variables transformed
logarithmically. (d) Bar graph representing FD measured by Organalysis. (e) Bar graph representing FD measured by
ImageJ plugin FracLac using the same set of images. (f) Correlation of FD measurements by Organalysis and ImageJ. FD,
fractal dimension; hPSC, human pluripotent stem cell. Color images are available online.

‰

FIG. 6. The function of feature importance analysis. (a) The CSV spreadsheet describing the drug treatments as features
applied in each column. (b) Images by calculating the intensity of organoid image at each channel (CFP, GPF, and mOr).
(c) Lasso-regularized linear regression with each drug treatment as the feature and the intensity of the specimen as the
target. (d–f) Feature importance in the bar charts of CFP, GFP, and mOr images with targeted features, respectively. Color
images are available online.
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endothelial cell-relevant differentiation factors indicated by
the mOr-VE-Cadherin reporter (Fig. 6f).

Discussion

In this article, we have developed a GUI-based multi-
functional, consolidated, and simplified organoid image
preprocessing and analysis software called ‘‘Organalysis.’’
This multifunctional application enables both preprocessing
and analysis of fluorescent images from hPSC-derived car-
diac organoids with multiple functions by iterating through
all images in a folder at once, simplifying the user inter-
face and reducing the number of clicks needed to process
images. Currently, there is no automated software that
comprises such functions, targeted at handling multiple
organoid images at once. Although similar functions have
been developed such as structural imaging, noise reduc-
tion, and adjustment thresholding,14–16 our novel software
incorporates new algorithms with high efficacy into a con-
solidated environment, enabling its application to hPSC-
derived cardiac organoids with ease and accuracy in
the functions of brightness and contrast, noise removal,
area and intensity measurement, fractal analysis, and feature
importance.

Adjusting specific filters within an image allowed for
overall enhancements. For example, a darker image with
lower contrast would be hard to analyze because it had
features that are inadequately represented. On the other
hand, a brighter image with higher contrast would be much
easier to examine because the features are intensified. Our
technique allowed for multiple images to be iterated through
at once. Because of the application’s simplicity, processing
the images through the filters can prove to be invaluable in
saving time and creating better data from subsequent image
analysis.17

When taking images under a microscope, artifacts such as
bubbles in the well plate may induce inconsistency across
the images.18 To address this issue, the noise removal tool
proved significantly useful in increasing the accuracy of
specific measurements. However, image-by-image noise
removal is a time-consuming task. Therefore, automated
noise removal can make this process much faster and easier.
In this application, the automatic noise removal function
enhances the quality of the image by employing a contour
detection algorithm. This tool processes all the images in a
folder at once and requires minimal clicks. This noise remo-
val tool is highly effective in updating images for better
results from other functions. Images preprocessed through
this tool will be used in further machine-learning analysis
and other automated techniques to obtain more accurate
measurements of organoid images.19

The brightness and contrast-adjusted and noise-removed
images were further measured by the fluorescence area and
intensity to quantify different cell groups in the cardiac
organoids. The area and intensity measurement tool in
Organalysis processes all the images in one folder and
finds the corresponding values based on pixel measure-
ments. This tool is especially useful in characterizing the
growth of organoids over a certain period. By analyzing
the spreadsheet created by this function, it is easier to
compare cardiac organoids side-by-side for optimizing
organoid differentiation based on various conditions.

This spreadsheet can be further employed in numerous
analysis methods concerning the development of cardiac
organoids. By understanding the numerical significance of
each value, it can become easier to identify the optimal
factors for the formation of hPSC-derived cardiac organoids.
The area and intensity measurement tool provides a solid
and high-throughput method to iterate through all the ima-
ges in a folder with minimalized clicks, higher accuracy,
and greater efficiency.

Moreover, the complexity of hPSC-derived cardiac
organoids can be analyzed by fractal analysis. For example,
the network of cardiomyocytes in the hPSC-derived cardiac
organoids can be analyzed by fractal analysis with FD to
indicate the process of cardiac organoid differentiation and
development. This complex cardiac structure of hPSC car-
diomyocytes could be correlated to certain growth factors
applied to the hPSC differentiation.20 Specifically, the FDs
can be calculated at once based on the various scales of
microscopic organoid images.21 More importantly, our plat-
form shows a highly correlated trend of FD measured by
the ImageJ Macro. The FD will increase with the increase
of complexity of the structure inside an organoid. By com-
bining these tools, differentiation factors affecting the
development of complex organoid formation can be further
explored.

To validate the Organalysis performance, we compared
the data obtained from Organalysis to the data obtained
from the same images from ImageJ. We found high con-
sistency between Organalysis and ImageJ in the measure-
ments of area, intensity, and FD from the same images.
Thus, Organanlysis has an equivalent accuracy to ImageJ in
organoid image analysis, but increases the efficiency and
throughput.

Finally, the relationship between various differentiation
factors and hPSC-derived cardiac organoid development
was analyzed by the feature importance function, which
revealed the features of a model that has the most impact on
a target.22 In the application, the features were the differ-
entiation factors applied to differentiate the hPSC-derived
vascularized cardiac organoids with targeted cardiovas-
cular cell types. The feature importance function ranked
the differentiation factors for each cardiovascular cell type
(cardiomyocytes, smooth muscle cells, and endothelial
cells) in hPSC-derived vascularized cardiac organoids,
which supports our differentiation protocol design and
outcomes.7

If necessary, in other research applications, the well plate
dimensions (set to six rows by eight columns of wells per
plate by default) can be adjusted by modifying some vari-
ables in the code; due to the usage of 6 · 8 plates in the
laboratory and the tedium of repeatedly entering informa-
tion, it can be more efficient for users to have the defaults
set to 6 · 8 in this feature importance function. Moreover,
additional machine learning-relevant features will be inclu-
ded, such as accuracy validation and F1 score output, to
further support organoid applications.

Conclusion

Collectively, Organalysis provides an interface for orga-
noid researchers to process bulk image data more efficiently
and intuitively. This application provides the preprocessing
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functions of brightness/contrast adjustment and noise remo-
val, area/intensity computation, fractal analysis for organoid
complexity, and feature importance for comparison and iden-
tification of major influences on organoid differentiation.
The functions of our application are highly aligned with
established ImageJ method, delivering accurate measure-
ments with improved efficiency and throughput. Due to its
flexibility, the application can work with many other vari-
ations of image type and resolution.

In summary, Organalysis scrutinizes developing cardiac
organoid images for in-depth quantification results and
graphical trend analysis. It also improves the quality of
organoid images through processing filters in the applica-
tion. These efficient methods prove invaluable to further
applications of hPSC-derived organoids in disease modeling
and regenerative medicine. Organalysis can be employed in
image-based organoid research to rapidly amplify incon-
sistent data and determine essential mechanisms in the
organoids.
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