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Abstract 

Background  Cellular states of different immune cells can affect the activity of the whole immune microenvironment.

Methods  Here, leveraging reference profiles of microenvironment cell states that were constructed based on single-
cell RNA-seq data of melanoma, we dissected the composition of microenvironment cell states across 463 skin 
cutaneous melanoma (SKCM) bulk samples through CIBERSORT-based deconvolution of gene expression profiles 
and revealed high heterogeneity of their distribution. Correspondence analysis on the estimated cellular fractions 
of melanoma bulk samples was performed to identify immune phenotypes. Based on the publicly available clini-
cal survival and therapy data, we analyzed the relationship between immune phenotypes and clinical outcomes 
of melanoma.

Results  By analysis of the relationships among those cell states, we further identified three distinct tumor microenvi-
ronment immune phenotypes: “immune hot/active”, “immune cold-suppressive” and “immune cold-exhausted”. They 
were characterized by markedly different patterns of cell states: most notably the CD8 T Cytotoxic state, CD8 T Mixed 
state, B non-regulatory state and cancer-associated fibroblasts (CAFs), depicting distinct types of antitumor immune 
response (or immune activity). These phenotypes had prognostic significance for progression-free survival and impli-
cations in response to immune therapy in an independent cohort of anti-PD1 treated melanoma patients.

Conclusions  The proposed strategy of leveraging single-cell data to dissect the composition of microenvironment 
cell states in individual bulk tumors can also extend to other cancer types, and our results highlight the importance 
of microenvironment cell states for the understanding of tumor immunity.
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Introduction
In the last decade, the goal of cancer immunothera-
pies has become to selectively recover tumor-induced 
immune deficiency in the tumor microenvironment 
(TME), switching from “immune enhancement” to 
“immune normalization” [1]. The immune checkpoint 
blockade therapy (targeting PD1 or CTLA4) has been 
successfully applied in treating melanoma, lung can-
cer and kidney cancer, which acts on the dysfunction or 
exhaustion state of T cells [2, 3]. However, limited clinical 
responses are observed as in melanoma, despite the high 
response rate, most patients are untreatable. Therefore, 
it is very urgent and important to further understand 
tumor immunity.

The complexity of tumors is reflected by complicated 
interactions between immune, stromal and malignant 
cells [4]. The tumor microenvironment (TME) mainly 
comprises these non-tumor cells and is important in 
tumorigenesis and development. T cells are the most 
abundant and well-studied type in the TME of solid 
tumors, which may exert multifunctional roles [5]. 
CD8 + T cells with cytotoxic state induce antitumor 
immunity and prevent tumor growth, and high densi-
ties of CD8 + cytotoxic T cells are associated with good 
prognosis in various cancers [6]. However, the TME can 
suppress activated T cell responses. Tumor, myeloid and 
stromal cells could mediate the exhaustion of T cells 
through exciting co-inhibitory molecules (e.g., PD1, 
TIM-3, and CTLA4) on the T cell surface [4, 5]. T cells 
with regulatory (Treg) phenotype can suppress antitumor 
immunity by secreting immunosuppressive cytokines [5, 
7] and indicate poor prognosis in many tumor types with 
its presence of high densities in the TME [8]. Tumor-
associated macrophages (TAMs) are another immune 
population in the TME, they can either repress or induce 
antitumor immunity and tumor growth [5]. Two princi-
pal functional states of pro-inflammatory M1 and tissue 
reparative M2 in TAMs could inhibit tumor progres-
sion and facilitate tumor growth and metastasis, respec-
tively [2]. A high density of M1 macrophages has been 
associated with a favourable prognosis in some cancers. 
Conversely, the density of M2 macrophages generally 
correlates with a poor prognosis in tumors, including 
breast cancer and primary melanoma [8]. Furthermore, 
B cells with regulatory (Breg) phenotype could suppress 
antitumor immunity and facilitate tumor development 
by regulating different cell types including T cells and 
TAMs and associated with poor prognosis [7, 9]. While, 
many studies show that the presence of a large number of 
tumor-infiltrating B cells collaborates with T cells to pro-
mote antitumor immunity and indicates a good prognosis 
in cancers [7, 10]. Altogether, different cellular states of 
immune cells in the TME play distinct roles in affecting 

antitumor immunity and patient prognosis. If one could 
map the cellular states of infiltrating microenvironment 
cells in individual tumors at patient cohort level, it would 
greatly strength our knowledge on tumor immunity and 
the difference among patients.

Nowadays, several computational methods have been 
developed to permit the in-silico deconvolution of com-
plex cellular mixtures [11–13]. CIBERSORT was one of 
such methods [11] and has been combined with single-
cell RNA-seq (scRNA-seq) data to accurately decon-
volve the cellular composition of solid tumors [14, 15]. 
However, studies on deconvolving components of cel-
lular functional states in the TME are still lagging. In 
this study, we leveraged CIBERSORT-based deconvolu-
tion combined with scRNA-seq profiles from melanoma 
samples, to map functional states of infiltrating micro-
environment cells in skin cutaneous melanoma (SKCM) 
bulk samples from The Cancer Genome Atlas (TCGA). 
Our analysis of the relationships among these cell states 
within the TME identified three different immune pheno-
types that were correlated with progression-free survival 
and had implications in response to immune checkpoint 
therapy, which can be valuable in guiding the choice of 
immunotherapy in melanoma patients.

Materials and methods
Unsupervised subclustering of the major cell types
The workflow of this study is shown in Fig.  1A. We 
obtained the single-cell RNA-Seq data of 4645 tumor-
infiltrating cells from Tirosh and colleagues [4], GEO 
accession GSE72056. It corresponds to 19 melanoma 
patients and comprises primary tumors, lymph node 
metastasis or other lesions. Cell type identity was taken 
from Tirosh et al. (2016) (2068 T, 515 B, 52 NK cells, 126 
macrophages, 61 CAFs, 65 endothelial cells, cancer cells 
as well as cells not assigned a specific cell type). Cells 
with < 1000 detected genes and genes without detected 
expression in any cells were filtered out. Totally, 4645 sin-
gle cells and 20,079 genes remained and were included 
in downstream analyses. To identify subclusters within 
the three major non-malignant cell types (T, B and mac-
rophage), we reanalyzed cells belonging to each of these 
three cell types separately using the Seurat R package 
(version 2.3.3) [16]. The FindVariableGenes function 
was used to determine the mean–variance relationship 
of the normalized counts of each gene across cells. We 
then chose genes whose log-mean and dispersion were 
above 1 as highly variable genes. The resulting variably 
expressed genes (1196 for T, 1233 for B, 1216 for mac-
rophage) were summarized by principal component anal-
ysis, and the top principal components were selected by 
jackStraw procedure and PCElbowPlot function. Using 
the graph-based clustering approach implemented in 
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the FindClusters function, with a conservative resolution 
of 0.8 and otherwise default parameters, each cell type 
was reclustered by its principal components. Totally 15 
subclusters were identified. To visualize these clusters 
in two dimensions, these informative principal compo-
nents were further summarized using tSNE dimension-
ality reduction of the RunTSNE function with its default 
settings.

After clustering results were obtained, we performed 
differential expression analysis using the Seurat FindAll-
Markers function to define cell states for each of these 15 
subclusters within these 3 cell types. Firstly, genes were 
claimed as differentially expressed if they have an average 
expression in that subcluster that was > twofold higher 
than the average expression in the other subclusters 
from that cell type, and a detectable expression in > 10% 
of all cells from that subcluster. Additionally, they were 
required to show statistical significance with p < 0.01 and 
bonferroni correction < 0.05. Finally, when naming the 
subclusters, we annotated the differentially expressed 
genes of each subcluster by known functional markers 
derived from the literatures (Table S1) and picked one 
representative gene indicative of the functional status of 
each subcluster from the top 100 ranked (based on fold 
change) differentially expressed genes. We also directly 
examined the expression levels of the known functional 
markers derived from the literatures (Table S1; [7, 9]). 
We surveyed the extant literatures and manually curated 
consensus lists of genes that were used in at least half of 
the literatures to be the key markers. The relevant litera-
tures surveyed to determine these key marker genes were 
listed in Table S1 (below).

Development of MM17 reference profiles
To dissect composition of cell states constituting mela-
noma tumor microenvironment (TME), we developed 
the MM17 reference profiles. Firstly, single-cell gene 
expression profiles (Tirosh et  al. dataset) of all 18 cell 

subsets (15 immune cell subsets of T, B and macrophage, 
NK cells, CAFs and endothelial cells) of melanoma TME 
were utilized to derive signature genes for each subset. 
We tested the significance of differential expression for 
each gene detected in more than 10% of cells in each 
TME subset, comparing to all other subsets. Genes with 
log2(fold change) > 2 and FDR adjusted p-values < 0.01 
based on Wilcoxon rank sum test were considered as 
significantly differentially expressed genes. Secondly, 
we filtered signature genes for each subset according to 
the condition number measure as previously described 
[11]. Briefly, significant genes of each TME subset were 
sorted by fold changes comparing to other cell subsets 
in a decreasing order. We iteratively selected the top 50 
to 200 genes across all subsets, and constructed cor-
responding signature matrices by calculating average 
expression (non-log TPM values) within each cell subset. 
We retained the signature matrix with the lowest condi-
tion number which composed of 64 ~ 102 signature genes 
from each subset. Thirdly, to avoid potential confounding 
effects from tumor cells, we discarded those genes with 
higher average expression in tumor cells. During this 
process, the number of signature genes of C5 in T cells 
reduced dramatically from 102 to 9. This indicated sig-
nificant confounding in this subset from tumor content, 
and 9 signature genes were not sufficient to represent 
a cell subset, thus we discarded this subset and its spe-
cific signature genes. Finally, 1351 genes were retained 
to construct the reference profile for deconvolution 
of 17 TME subsets (Table S2). Among these, the T cell 
clusters C1-CD8-IFNG/HAVCR2, C2-CD8, C4-CD8 
and C8-CD8 expressing both cytotoxic and exhausted T 
cell markers were grouped as T_CD8_Mixed (Cytotoxic 
and Exhausted) state. The B cell clusters C0, C1 and C2 
expressing non-regulatory B cell markers were grouped 
as the B_Non-regulatory (IL10-) state. The remaining 
clusters of T, B and macrophage were denoted by their 
corresponding states respectively as described in the text.

(See figure on next page.)
Fig. 1  Dissection and clustering of tumor-related immune cells in melanoma. A Flow chart of the steps in the performed analyses. B The t-SNE 
projection of 2068 single T cells, 515 B cells and 126 macrophages from 19 patients, showing the formation of 9 main clusters of T cells, including 5 
for CD8 + T cells and 3 for CD4 + T cells (left), 4 main clusters of B cells, including 1 for regulatory B cells and 3 for non-regulatory B cells (top 
right), and 2 main clusters of M1 and M2 macrophages (bottom right). Each dot corresponds to one single cell, colored according to cell cluster. 
C Heatmap showing the z-score normalized mean expression of selected T cell function-associated genes (row) in each T-cell cluster (C0-C8, 
column) of the 9 main clusters identified in (B). The T cell function-associated genes covering five different classes, including cytotoxic, exhausted, 
regulatory and naïve types. The T-cell clusters are colored according to those shown in (B). Blue boxes highlight the key markers and the numbers 
in brackets represent the total times appeared in literature. D-E Z-score normalized mean expression of the selected B cell function-associated 
genes (row) in each B-cell cluster (C0-C3, column) of the 4 main clusters (D) and z-score normalized mean expression of the selected macrophage 
function-associated genes (row) in each cell cluster (C0-C1, column) of the 2 main macrophage clusters (E). The B cell function-associated genes 
covering five different classes, including anti-apoptosis, regulatory B cell, germinal center, pro-apoptosis and naïve/memory types. The macrophage 
function-associated genes covering two different classes of M1 and M2 types. The B-cell and macrophage clusters are colored according to those 
shown in (B). Blue boxes highlight the key markers and the numbers in brackets represent the total times appeared in literature
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Fig. 1  (See legend on previous page.)



Page 5 of 17Shi et al. BMC Immunology           (2023) 24:52 	

Deconvolution of tumor microenvironment cell states
CIBERSORT [11] algorithm (with 100 permutations, 
disabling quantile normalization) was used to deconvolve 
compositions of TME cell states in bulk tumor samples 
using transcriptomic profiles (non-log TPM values). 
Here, we calculated cell fractions of T_CD8_Mixed state 
by aggregating those of T cell clusters C1-CD8-IFNG/
HAVCR2, C2-CD8, C4-CD8 and C8-CD8, and B_Non-
regulatory state by aggregating the three corresponding 
B cell clusters. Briefly, CIBERSORT utilized a novel appli-
cation of linear support vector regression (SVR), which 
was highly robust with respect to noise, to deconvolve 
the bulk samples, and calculated an empirical p value 
for each sample to estimate the significance of presence 
of cell types in the reference profile. Only samples with 
p value < 0.05 were retained for analysis. For scRNA-seq 
datasets, we computed the artificial bulk expression data 
by calculating the average expression levels of each gene 
across all cells from the same sample.

Alternative gene signatures
To explore the impact of signature gene selection on 
deconvolution performance, we compared the MM17 
signature genes with three other signature gene sets and 
their combinations. The LM22 gene set was derived from 
Newman et al. [11], which denoted signature genes for 22 
human normal leukocyte subsets. The gene sets (supp.3 
and supp.12) were derived from supplementary tables 
by Tirosh et  al. [4]. The supp.3 gene set consisted of 
genes differentially expressed among major cell types in 
melanoma microenvironment, including T cells, B cells, 
macrophages, natural killer cells, cancer-associated fibro-
blasts, endothelial cells and tumor cells. The supp.12 gene 
set contained genes preferentially expressed in regulatory 
T cells. Another three gene sets were derived by combin-
ing the above gene sets. The Merged gene set were the 
combination of LM22, supp.3 and supp.12. The LM22_
MM17 gene set were the union of LM22 and MM17 
gene sets. And The Merged_MM17 were the combina-
tion of Merged and MM17 gene set. Finally, these gene 
sets were used to construct corresponding reference pro-
files with the same cell states as MM17 reference profile, 
and then deconvolution results were compared with the 
actual fractions. Due to the extremely high proportions 
of unknown content in samples 59 and 78, which was not 
suitable for deconvolution [11], we discarded these two 
samples when estimating deconvolution performance.

Validation of deconvolution performance using external 
scRNA‑seq data
To further validate deconvolution performance of MM17 
reference profiles, we applied it to an external scRNA-
seq data of melanoma [17]. We obtained the processed 

expression profiles of TME cells directly from GEO data-
base [18] under accession number GSE115978, and uti-
lized a three-step approach. First, we trained an SVM 
classifier, using the caret R package (version 6.0–81) [19], 
based on expression levels of MM17 gene signatures and 
assign cell state labels for each cell in the Tirosh et  al. 
data, which showed high accuracy of 0.87 (Figure S3D). 
Then, we applied this classifier to the new scRNA-seq 
data to assign each TME cell a cell state, and calculated 
the actual fractions of cell states in the new data set. 
Finally, deconvolution results of the new data set based 
on MM17 reference profiles were compared with the 
actual fractions.

TCGA data
Transcriptomic profiles (TPM values) of 472 skin cuta-
neous melanoma (SKCM) samples from TCGA were 
downloaded (https://​osf.​io/​gqrz9/​wiki/​home/; [20]). 
The clinical data of these samples was obtained from 
the Pancancer Atlas publication page (https://​gdc.​can-
cer.​gov/​about-​data/​publi​catio​ns/​panca​natlas, Table S3), 
including the survival data, age at diagnosis, gender, race, 
American Joint Committee on Cancer (AJCC) pathologic 
tumor stage and tumor status. We also obtained the pub-
lished molecular subtypes and immune characteristics of 
melanoma samples ([21]; https://​gdc.​cancer.​gov/​about-​
data/​publi​catio​ns/​panim​mune).

Identification of immune phenotypes and prognostic 
analysis
We performed correspondence analysis (CA) on a fre-
quency table, in which each row represents a patient 
and each column represents the frequency of a cell state 
in that patient. Calculation of the projections, variance 
explained, and absolute contributions was performed 
by using the R packages FactoMineR (version 1.42) [22] 
and factoextra (version 1.0.5) [23]. The first two CA com-
ponents of CA-1 and CA-2, accounting collectively for 
47% of the variance in the co-association structure of 
the data, were used to identify three tumor microenvi-
ronment immune phenotypes (TMIPs): TMIP 0, TMIP 
1 and TMIP 2 based on their median scores in patients. 
Accordingly, SKCM patients were separated into three 
groups with their corresponding TMIPs. Median value 
difference of cell state fraction among TMIPs was evalu-
ated using Mood’s test. Furthermore, the difference of 
cell state fraction between any two TMIPs was computed 
using the two-sided Wilcoxon rank sum test. Associa-
tions between TMIP and survival were tested using uni-
variate/multivariate Cox proportional hazard model that 
included age, sex, tumor stage, and TMIP as independent 
variables in the survival model and then Kaplan–Meier 
survival curve analysis with a log-rank comparison.

https://osf.io/gqrz9/wiki/home/
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
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Analysis of immunotherapy response
Therapy and response information of SKCM samples in 
TCGA were obtained from GDC data portal (https://​
portal.​gdc.​cancer.​gov/; [24]). We extracted patients with 
measure_of_response information and with therapy_type 
as immunotherapy to explore associations between archi-
tectures of microenvironment components and response 
to immunotherapy, and we further extended this analy-
sis to all patients with measure_of_response information. 
Patients with complete or partial response or stable dis-
ease state were defined as responders, and patients with 
progressive disease were defined as non-responders.

An additional dataset containing pre-treatment and 
on-treatment transcriptomic profiles and response 
to anti-PD1 (nivolumab, Nivo) therapy in melanoma 
(Table S6) was derived from Riaz [25]. As introduced by 
the authors, all patients received Nivo (3  mg/kg every 
2 weeks) until progression or for a maximum of 2 years. 
All patients underwent biopsy before initial therapy 
(1–7 days before first dose of therapy, pre-treatment) and 
a repeat biopsy on cycle 1, day 29 (between days 23–29, 
on-treatment). Among these patients, a part of patients 
received anti-PD1 as the first-line treatment (ipilimumab 
(Ipi)-naive) while the others received anti-PD1 treatment 
after progression on prior anti-CTLA4 treatment (Ipi-
progressed). Tumor response to Nivo for patients was 
defined by Response Evaluation Criteria in Solid Tumors 
(RECIST) v1.1 criteria. Patients with complete response 
(CR) or partial response (PR) or stable disease (SD) state 
were defined as responders, and patients with progressive 
disease (PD) were defined as non-responders. We first 
performed deconvolution to obtain cell state proportions 
of each patient, based on which we predicted the CA-1 
and CA-2 scores using the R package FactoMineR. Then 
these patients were classified into the three groups with 
different architectures using the same thresholds as the 
TCGA data. The associations between architectures of 
microenvironment components and response to immu-
notherapy were examined using Fisher’s exact test. More-
over, we also tested the associations of the architectures 
with survival outcome of the patients using log-rank test.

Results
Identifying functional states of immune cells 
in the melanoma microenvironment
Single-cell RNA-seq profiles of non-malignant cells have 
highlighted the composition of the TME [4, 7]. Several 
studies have identified diverse functional subsets with 
specific expression states of the immune cell through 
finer clustering [26, 27]. To explore the functional states 
of the immune cells in the TME, we used the single-cell 
RNA-Seq data from 19 melanoma samples [4]. It includes 
4645 cells and the majority have been assigned to known 

cell lineages: T cells (n = 2068), B cells (n = 515), natural 
killer (NK) cells (n = 52), macrophages (n = 126), cancer-
associated fibroblasts (CAFs) (n = 61), endothelial (Endo) 
cells (n = 65) and cancer cells.

To identify subclusters within each of the three major 
non-malignant cell types, powered by their relatively 
large numbers in the dataset, we performed unsuper-
vised clustering of cells using the graph-based clustering 
method implemented in Seurat [16] within each cell type 
(see Materials and methods). A total of 15 stable subclus-
ters were identified, including 9 clusters for T, 4 clusters 
for B cells and 2 clusters for macrophages, each with its 
unique signature genes (Fig. 1B and Fig. S1A-E), reveal-
ing the expression heterogeneity. Importantly, when 
comparing across patients, these cell subclusters mostly 
consisted of cells from ten or more patients, indicating 
the diverse expression states in the TME are reproducibly 
detected across melanoma tumors and may thus repre-
sent common features of the melanoma TME, while they 
do vary in their proportions (Fig. S1C-F).

Reclustering of the T cells revealed 9 clusters (Fig. 1B 
and C; Fig. S2A and B). Cells of the first T cluster, 
C0-CD4-CCR7 (T_CD4_Naive) specifically expressed 
“naïve” marker genes such as CCR7, LEF1 and SELL. 
C6-CD4-PDCD1 (T_CD4_Exhausted) specifically 
expressed PDCD1 and BTLA, suggestive of the identity 
of exhausted CD4 T cells. C7-CD4-IL2RA (T_CD4_Reg-
ulatory), expressed high levels of markers IL2RA, FOXP3 
and CTLA4, thus representing regulatory T cells. The 
fourth cluster, C3-CD8-GZMA (T_CD8_Cytotoxic), was 
characterized by the high expression of the cytotoxic 
molecules, including GZMA, NKG7 and GZMB, indica-
tive of the status of cytotoxic CD8 T cells. C1-CD8-
IFNG/HAVCR2 (T_CD8_Mixed), shared a few common 
genes with cluster 3, such as NKG7 and GZMB, but also 
with the HAVCR2, LAG3 and PDCD1 expression signa-
tures that were associated with exhausted state, indicat-
ing the presence of possible partially exhausted T cells 
[28]. Furthermore, C2-CD8, C4-CD8 and C8-CD8, char-
acterized by the high expression of NKG7, PRF1, and 
GZMA, also respectively expressed HAVCR2, TIGIT and 
PDCD1, HAVCR2 and TIGIT, HAVCR2, PDCD1 and 
TIGIT, indicating the diverse phenotypes of possible par-
tially exhausted T cells (Fig. 1B and C; Fig. S2A-C).

Similarly, the B cells and macrophages were parti-
tioned into 4 and 2 subsets, respectively. Among them, 
one subset (C3-IL10, B_Regulatory) of B cells expressed 
the classical marker IL10, indicating a regulatory B cell 
phenotype (Fig.  1B and D; Fig. S2D and E). The other 
three B cell clusters (C0, C1 and C2) expressing non-
regulatory B cell markers were denoted as the B_Non-
regulatory (IL10-) state. One subset of macrophages, 
C0-SEPP1 (M_M2), expressed high levels of many 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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M2-type genes such as SEPP1, SLC38A6 and MSR1. The 
other subset, C1-VCAN (M_M1) was characterized by 
the high expression of the M1-type genes such as VCAN, 
NAMPT and BCL2A1 (Fig. 1B and E; Fig. S2D, F and G). 
Taken together, these results demonstrate that immune 
cells in the melanoma microenvironment present diverse 
functional states.

Landscape of microenvironment cell states in bulk 
melanoma
The composition of the tumor immune microenviron-
ment and the functional states of immune cells are key 
aspects for understanding of anti-cancer immune mecha-
nism. Recent studies have explored the composition of 
main immune cell subpopulations in cancers using CIB-
ERSORT [14, 29–31]. Here, we attempted to investigate 
the cellular functional states of infiltrating microenviron-
ment cells in melanoma bulk tumors. Having identified 
the diverse immune cell states by single-cell RNA-seq 
data, we first identified signatures characterizing those 
cell states and evaluated the ability of these signatures to 
accurately deconvolve mixtures of cell states. Then, we 
constructed the map of microenvironment cell states in 
melanoma bulk samples using CIBERSORT. Finally, the 
association between these cell states and clinico-patho-
logical variables was tested.

Evaluation of deconvolution performance 
for microenvironment cell states
To facilitate analyzing the cellular states of microenvi-
ronment cells in bulk melanoma tumors, we designed 
reference profiles (termed MM17) involving 14 immune 
cell states, NK cells, CAFs and endothelial cells, which 
contains 1351 signature genes (Table S2, Fig. S3A, and 
Methods). Then, we validated the ability of these gene 
signatures in MM17 for accurate deconvolution. We 
inputted it to CIBERSORT [11] to deconvolve microen-
vironment cell states from the artificial bulk expression 
profile for each patient, which was calculated as the aver-
age over all single cells in that patient from the Tirosh 
et al. dataset used in our study. Here, we calculated cell 
fractions of T_CD8_Mixed state and B_Non-regulatory 
state by aggregating those of their corresponding pheno-
types (four for T and three for B cells, Methods). Notably, 
comparing with the actual cell state fractions, which were 
calculated as the relative ratios among all states by count-
ing their corresponding cells, our predictions showed sig-
nificant correlation across all tumors (r = 0.91, Fig.  2A). 
Indeed, deconvolution results were also significantly 
correlated for each specific cell state (r = 0.67 ~ 0.94, Fig. 
S3B) and for each individual patient (r = 0.61 ~ 1, Fig. 
S3C). Moreover, prediction results based on alterna-
tive gene signatures (LM22, supp.3, supp.12, Merged, 

LM22 + MM17, Merged + MM17, Methods) were less 
consistent than MM17, both in overall level and indi-
vidual state levels (Fig. 2B), suggesting that the reference 
profile construction need context- and cell state-specific 
information. Finally, due to lack of available dataset on 
experimentally estimated abundances of microenviron-
ment cell states, we attempted to validate MM17 in an 
external single-cell RNA-seq dataset (Jerby-Arnon et al. 
dataset) containing 2021 TME cells from 17 melanoma 
samples [17]. We trained a high performance classifier 
(accuracy = 0.87, Fig. S3D, Methods) using support vec-
tor machine (SVM) algorithm based on the Tirosh et al. 
dataset, and applied it to the Jerby-Arnon et  al. dataset 
to assign each cell a cell state label. Similarly, compar-
ing to the actual cell state proportions, deconvolution 
results based on MM17 showed significant concordance 
(r = 0.71, Fig.  2C). Taken together, these results demon-
strated the accuracy and feasibility of MM17 on microen-
vironment cell states deconvolution.

The distribution of microenvironment cell states in bulk 
melanoma
To explore the landscape of microenvironment cell states 
in real bulk samples, we applied MM17 to 472 melanoma 
bulk tumors in TCGA. In total, there were 463 tumors 
with significant CIBERSORT p values (p value < 0.05, 
Fig. 3A). We observed different cellular fractions among 
the cell states, which displayed high variability across 
and within samples. Among the infiltrating microenvi-
ronment cells, T cells were the main population with a 
mean of 51.7% across patients. The mean frequencies of 
macrophages, CAFs, B cells and endothelial cells were 
18.5%, 14.3%, 11.2% and 4.2%, respectively. Natural killer 
cells were present at very low levels with a mean of 0.1% 
(Fig.  3B). Among T cells, T_CD8_Mixed was the major 
state, while T_CD8_Cytotoxic state accounted for a small 
part with largest proportion up to 20.3% in melanoma 
patients (Fig.  3C). M_M2 state accounted for the major 
part of macrophage cells, which was consistent with the 
observation of Thorsson et  al. [21] (Fig.  3D). As for B 
cells, a small part were with B_Regulatory state (Fig. 3E).

To investigate biological significance underlying the 
landscape of microenvironment cell states, we first 
tested for associations between fractions of individual 
cellular states and cytolytic activity measured based on 
the geometric mean of GZMA and PRF1 expression 
[32]. As expected, we observed strong positive corre-
lation between T_CD8_Cytotoxic state and cytolytic 
activity, while T_CD8_Mixed state showed strong neg-
ative correlation with cytolytic activity (Fig. 3F). More-
over, through interrogating immune characteristics 
obtained from Thorsson et al. [21], we observed strong 
positive association of T_CD8_Cytotoxic fraction with 
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lymphocyte infiltration signature score, IFN-gamma 
response, Th1 cells and TCR diversity (Fig. 3G), which 
is consistent with its functional role of eliciting antitu-
mor immunity. While T_CD8_Mixed state was strongly 
correlated with tumor proliferation, wound healing and 
immunosuppressive Th2 cells (Fig.  3G), the latter two 
have been linked to poor prognosis [21, 33], suggesting 
its role in repressing antitumor immunity. In addition, 
we observed strong positive associations between CAF 
and TGF-beta response, and between B_Non-regula-
tory state and BCR diversity (Fig.  3G), these two sig-
natures have been respectively linked to a suppressive 
immune response and a robust anti-tumor response 
[21, 34]. Finally, we confirmed pro-immunity roles of 
T_CD8_Cytotoxic and B_Non-regulatory states, and 

the roles in failure of antitumor immunity of T_CD8_
Mixed state and CAF based on gene set enrichment 
analysis [35] (Fig. S4A-D). For instance, genes posi-
tively correlated with T_CD8_Cytotoxic fraction were 
enriched with lymphocyte activation, cell–cell adhe-
sion, interferon gamma mediated signaling pathway, 
cell chemotaxis and so on, while genes negatively cor-
related were enriched with tumorigenic functions such 
as DNA replication, DNA repair and cell cycle (Fig. 
S4A). Altogether, these observations demonstrated the 
distribution heterogeneity of diverse cell states within 
individual or across SKCM tumors and their poten-
tial functional significance, supporting the strategy on 
microenvironment cell states deconvolution based on 
single-cell data.

Fig. 2  Performance assessment of MM17 on deconvolution of tumor microenvironment (TME) cell states. A Comparison between predicted 
proportions by deconvolution and true proportions by counting cells from scRNA-seq data (Tirosh et al.).B Consistency between predicted 
proportions and true proportions when using different signature gene sets. C Consistency between predicted proportions and true proportions 
using an external scRNA-seq data from Jerby-Arnon et al. The dots in (A) and (C) represent corresponding cell proportions in patient tumors
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Association between cell states and clinico‑pathological 
variables
Next, we investigated the association between different 
cell states and the standard clinico-pathological variables 
(Table S3), including age, gender, race, AJCC tumor stage 
and tumor status. After removing 3 patients each with 
multiple sampling, we used the remaining 457 samples 

to which the patients were uniquely matched for analy-
sis. A comparison between 95 primary and 362 meta-
static tumors revealed no changes of T_CD8_Cytotoxic 
state, while a significant decrease of M_M1 (Wilcoxon 
rank test p value = 5.6e-07) and increase of M_M2 state 
(Wilcoxon rank test p value = 9.59e-07) at metastasis (Fig. 
S5A), which are consistent with their anti-tumor activity 

Fig. 3  Overview of tumor microenvironment (TME) cell states in melanoma samples from TCGA. A Stacked bar charts summarising proportion 
of each TME cell state in each sample. B-E Dot plots showing the population frequency for each melanoma sample among all TME cell types (B) 
and among cell states in T cells (C), in macrophages (D) and in B cells (E). F Bar plots showing associations between cell states and cytolytic activity. 
G Heatmap showing associations between cell states (row) and immune characteristics (column), red for positive correlations and blue for negative 
correlations. Pearson’s correlations were calculated. Dark red boxes highlight the strong positive associations with immune characteristics 
for the cell states: T_CD8_Cytotoxic, T_CD8_Mixed (Cytotoxic and Exhausted), B_Non-regulatory and CAF



Page 10 of 17Shi et al. BMC Immunology           (2023) 24:52 

of killing tumor cells and pro-tumor function of favour-
ing tumor growth, invasion and metastasis in most can-
cers, respectively [8, 36].

Owing to the observed differences between primary 
and metastatic samples, we then focused on the 362 
metastatic samples to avoid the confounding factor of the 
sample type and demonstrated the statistically signifi-
cant associations between cell states and other clinico-
pathological variables (Fig. S5). The comparison between 
the females and males revealed a lower frequency of 
CAF (Wilcoxon rank test p value = 0.0312), but a higher 
frequency of T_CD8_Cytotoxic (Wilcoxon rank test p 
value = 0.0002) cells in females (Fig. S5A). Genomic clas-
sification based on the pattern of the most prevalent 
significantly mutated genes identified four distinct sub-
types of melanoma, including mutant BRAF (n = 114), 
mutant RAS (mainly NRAS, n = 81), mutant NF1(n = 23), 
and Triple-WT (wild-type, n = 36) [37]. Among the cell 
states we examined, we observed a significant increase 
of CAF (Mood’s test p value < 0.05, Wilcoxon rank test p 
value = 0.0060) and a decrease of T_CD8_Mixed (Mood’s 
test p value < 0.05, Wilcoxon rank test p value = 0.0004) 
in BRAF_Hotspot_Mutants relative to RAS_Hotspot_
Mutants (Fig. S5C). BRAF and NRAS are all previously 
described melanoma oncogenes, indicating these cell 
states may contribute to the carcinogenesis. Finally, in 
terms of tumor status, we found a higher frequency of 
T_CD8_Mixed (Wilcoxon rank test p value = 6.10e-03), 
CAF (Wilcoxon rank test p value = 3.26e-05) and Endo 
(Wilcoxon rank test p value = 6.08e-03), while a lower 
frequency of B_Non-regulatory (Wilcoxon rank test p 
value = 1.56e-05) and T_CD8_Cytotoxic (Wilcoxon rank 
test p value = 2.45e-02) in samples with tumor status of 
“with tumor” compared with that of “tumor free” (Fig. 
S5A), indicating that patients with higher T_CD8_Mixed, 
CAF and lower B_Non-regulatory, T_CD8_Cytotoxic 
in the metastatic melanomas tend to have a higher risk 
of tumor recurrence during the follow-up period. These 
findings together demonstrated the strong association 
between individual cell states and clinical characteristics.

Microenvironment cell state patterns depict distinct 
immune phenotypes
To obtain a global understanding of all the microen-
vironment cell states, we attempted to explore their 
exact structures, i.e. distinct combinatorial patterns, in 
patients. We first quantified relationships between cell 
states present in the TME by simple correlation analyses. 
Multiple relationships were identified (Fig. 4A and S6A). 
Relationships among the CD8_Mixed T lymphocytes, the 
IL10- B lymphocytes, and the CD8_Cytotoxic T lympho-
cytes were observed. Samples with low levels of T_CD8_
Mixed contained high amounts of the B_Non-regulatory 

(IL10-) and T_CD8_Cytotoxic states (r = -0.43 and -0.45). 
M_M2 was associated with T_CD8_Cytotoxic (r = 0.48) 
and CAF was associated with Endo (r = 0.35). In addition, 
B_Regulatory was associated with T_CD4_Exhausted 
status (r = 0.47).

Given the associations between different cell states, 
we performed correspondence analysis (CA) on the esti-
mated cellular fractions of 316 metastatic melanoma 
samples with the age, gender, tumor stage and survival 
data all available, to obtain a smaller set of “explanatory” 
components. In our case, data on each patient and cell 
states is displayed in the same space by visualizations 
based on the first two components, which accounted for 
47% of the co-association structure between cell subsets 
and patients in the cohort (Fig.  4B). Patients are organ-
ized by their tendency to contain certain cell subsets, and 
cell subsets are organized by their tendency to co-occur 
in the same patients. The most important cell states for 
CA-1 are the B_Non-regulatory and T_CD8_Mixed 
(Fig. 4B and S6B), in that patients with high CA-1 scores 
had higher frequencies of B_Non-regulatory, T_CD8_
Cytotoxic and lower frequencies of T_CD8_Mixed, 
CAF (Fig. S6C and D). The second component captures 
a different ordering of cell states and patients, driven by 
mutually exclusive patterns of CAF and T_CD8_Mixed 
(Fig.  4B and S6B) and in that patients with high CA-2 
scores had higher frequencies of CAF, Endo and lower 
frequencies of T_CD8_Mixed (Fig. S6C and D).

Recent studies have proposed a model in which, there 
are immune hot (inflamed) and cold tumors. These two 
phenotypes were mainly distinguished by the abundance 
of tumor-infiltrating lymphocytes (TILs), especially T 
cells with cytotoxic state [33, 38, 39]. Here, based on the 
median values of CA-1 and CA-2 scores in patients, we 
derived three tumor microenvironment immune phe-
notypes (TMIP) (Fig.  4B, C and Fig. S6E) that showed 
markedly different patterns of cell states, most notably T_
CD8_Cytotoxic, T_CD8_Mixed, B_Non-regulatory and 
CAF, all of which were implicated in antitumor immu-
nity as shown above. Accordingly, patients were sepa-
rated into three groups with their corresponding TMIPs 
(n = 158, 77 and 81, respectively). TMIP 0 (high CA-1, 
“immune hot/active”) was defined by higher B_Non-
regulatory, T_CD8_Cytotoxic states and a lower T_CD8_
Mixed state, which displayed an active immune response 
underlined by the functional impact of its corresponding 
cell states on tumor immunity. TMIP 1 (low CA-1/high 
CA-2, “immune cold-suppressive”) was mainly character-
ized by higher CAF, Endo and a lower B_Non-regulatory, 
which showed a suppressive immune response domi-
nated by CAF [40, 41]. While, the TMIP 2 (low CA-1/
low CA-2, “immune cold-exhausted”) exhibited the 
highest T_CD8_Mixed and lowest T_CD8_Cytotoxic, 
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Fig. 4  Identification of tumor-immune phenotypes. A Heatmap showing Pearson coefficients of correlation for relationships between each 
pair of cell states (top), red for positive correlations and blue for negative correlations. The cell states are colored according to cell states shown 
in Fig. 3A. Scatterplots showing relationships between T_CD8_Mixed (Cytotoxic and Exhausted) with T_CD8_Cytotoxic (top) and B_Non-regulatory 
(middle), CAF and Endo (bottom). Pearson correlations and p values are indicated. For significant correlations, linear models are shown as blue lines. 
B The first two components of correspondence analysis, accounting for 47% of the co-association structure between cell subsets and patients 
in the cohort, are shown. Cell states are displayed as red triangles, and patients as blue circles. Red texts highlight the important cell states 
for the first two components. Red, light blue and blue ellipses indicate the three patient groups of TMIP0, TMIP1 and TMIP2 classified by median 
values of CA-1 and CA-2, respectively. Circular heatmaps showing the z-score normalized cellular fractions for cell states (row, colored according 
to cell states shown in Fig. 3A) across the three patient groups (TMIP0, TMIP1 and TMIP2) classified by median values of CA-1 and CA-2. Median 
value difference of cell state fraction among groups was evaluated using Mood’s test. **** P < 0.0001 C The different structures of main cell states 
in the tumor microenvironment
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CAF (Mood’s test p value < 0.05, Wilcoxon rank test p 
value < 0.05), indicating an exhausted immune response 
[42]. We named the TMIPs based on two immune char-
acteristics: the abundance of T cells with cytotoxic state 
used to distinguish hot and cold tumors, and the micro-
environment cell state patterns used to depict immune 
response types. These results revealed different patterns 
of cell states in the melanoma patients, which depicted 
distinct types of immune response (or immune activity).

Prognostic significance of the immune phenotypes
We next investigated how the patterns of diverse cell 
states in the TME influence patient survival. The median 
follow-up of the 316 metastatic patients studied above 
was 4.2 years, with the type of follow-up being progress-
free survival (PFS) for 245 events and overall survival 
(OS) for 166 events. In univariate analysis, both the 
TMIP 1 and TMIP 2 groups were associated with worse 
PFS (Tables S4 and 5) compared with the TMIP 0 (HR1 

vs 0 = 1.4557, 95% CI = 1.0724–1.9761, p = 0.016; HR2 vs 

0 = 1.537, 95% CI = 1.1305–2.0898, p = 0.0061). Using 
multivariate Cox regression adjusted for age, gender and 
tumor stage, we identified some significant associations 
between these TMIPs and patient outcomes (Fig.  5). 
TMIP 1 was significantly associated with worse OS 
(HR1 vs 0 = 1.5832, 95% CI = 1.0726–2.3369, p = 0.0207), 
and showed moderately significant association with PFS 
(HR1 vs 0 = 1.3168, 95% CI = 0.955–1.8157, p = 0.0932). 
Remarkly, TMIP 2 showed a more significant association 
with worse PFS (HR2 vs 0 = 1.7003, 95% CI = 1.238–2.3354, 
p = 0.001) and OS (HR2 vs 0 = 1.7448, 95% CI = 1.1886–
2.5615, p = 0.0045) (Fig. 5A and B). These results revealed 
the potential prognostic implications of our identified 
immune phenotypes for melanoma patients.

Implications of immune phenotypes in response 
to immune checkpoint blockade therapy
Cancer cells exploit multiple mechanisms in order to 
avoid the immune attack, fortunately, immunotherapy 
strategy with checkpoint blockade has been raised as a 
promising weapon against immune escape. Here, having 
showed the prognostic significance of immune pheno-
types, we attempted to explore the relation of immune 
phenotypes to checkpoint therapy response. We first 
focused on 36 pre-treatment SKCM samples with availa-
ble information on response to immunotherapy, in which 
21 samples had response while 15 had no response. 
Patients with TMIP 0 showed a higher proportion of 
responders comparing to patients with TMIP2 (Fig. S7A, 
68.4% for TMIP 0 and 36.4% for TMIP 2). Then, we uti-
lized a recently generated RNA-seq profiles of melanoma 
patients treated with anti-PD1 containing pre-treatment 
and on-treatment (i.e. during therapy) patients (Table 

S6) [25]. We predicted CA-1 and CA-2 scores used to 
identify immune phenotypes of these samples based on 
the model constructed with TCGA data, and classified 
them into the three TMIP groups based on the corre-
sponding thresholds of CA-1 and CA-2 scores obtained 
from TCGA data (Fig. S7B and Methods). Among the 24 
anti-PD1 pre-treatment tumors which progressed after a 
first-line anti-CTLA4 treatment (Ipi-progressed), CA-1 
scores showed significantly higher levels in 14 respond-
ers than in 10 non-responders (Fig.  6A, Wilcoxon rank 
test, p value = 0.024). And, we observed that cell propor-
tions of B_Non-regulatory showed significant increase 
in responders compared to non-responders (Fig. S7D). 
Accordingly, tumors with TMIP 0 (high CA-1) had 
a 85.7% response, compared to 54.5% for those with 
TMIP1 and 33.3% for TMIP 2 (Fig. 6A, Fisher’s exact test, 
p value = 0.1 for TMIP0 and TMIP2). Moreover, patients 
with TMIP 0 showed significantly better OS than those 
with TMIP 1, and patients with TMIP 2 showed worse 
PFS and OS (Fig.  6C-D, log-rank p values = 0.014 and 
0.011 for PFS and OS, respectively). Notably, when using 
transcriptomic profiles of 28 on-treatment patients, Ipi-
progressed ones with TMIP 0 were all responders and 
those with TMIP 1 and TMIP 2 contained several non-
responders (Fig.  6B, 100% for TMIP 0, 27.3% for TMIP 
1 and 50% for TMIP 2, Fisher’s exact test, p value = 9.8e-
4). The comparison between the responders and non-
responders revealed a significantly higher frequency of 
both B_Non-regulatory and T_CD8_Cytotoxic (Wil-
coxon rank test p value < 0.05) cells in responders (Fig. 
S7E). Our results demonstrated that the progressed 
patients with more B_Non-regulatory, T_CD8_Cytotoxic 
and a less T_CD8_Mixed state (TMIP 0, “immune hot/
active”) tended to response to anti-PD1 therapy, com-
pared to the “immune cold-suppressive” (TMIP 1) or 
“immune cold-exhausted” (TMIP 2) phenotypes.

Discussion
The extensive studies on immune system function in 
tumor development underline successful immunotherapy 
in diverse cancer types [43, 44]. Although immunologic 
ignorance and active inhibition can cause tumor escape, 
immune cells can still mediate tumor development [45]. 
The heterogeneous composition of microenvironment 
cells and their states in tumors remain studied to fur-
ther understand the mechanisms of immune therapy. 
Leveraging reference profiles of microenvironment cell 
states that were constructed based on single-cell RNA-
seq data, we performed cell state-based deconvolution 
of gene expression profiles and mapped the landscape 
of microenvironment cell states across melanoma bulk 
tumors from TCGA. Then, by exploring the patterns 
of these cell states in TME, we identified three tumor 
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microenvironment immune phenotypes: “immune hot/
active”, “immune cold-suppressive” and “immune cold-
exhausted”, and revealed their associations with patient 
survival and response to immune checkpoint therapy in 
an independent cohort of checkpoint-treated melanoma 
patients.

In this study, we captured the primary functional status 
that play important roles in antitumor immunity through 
the analysis of ~ 2700 immune cells of T, B lymphocytes 
and macrophages. The exhaustion state of T cells is 

usually depicted by dynamic transformation from effec-
tor functions, and persistent expression of diverse inhibi-
tory receptors. The strength of exhaustion is mediated by 
many factors, including the level and count of expressed 
inhibitory molecules and the intensity of antigen stimu-
lation [46]. Several studies have revealed intermediate 
states between effector and exhausted CD8 + T cells in 
cancers [26, 47] and a hierarchy of CD8 + T cell exhaus-
tion in human melanoma [28]. Here, we found that a 
mixed state of T_CD8_Cytotoxic-Exhausted with its 

Fig. 5  Prognostic associations of immune phenotypes. A Forest plot of multivariable hazard ratios for PFS (left) and Kaplan–Meier curves showing 
PFS of patients (right). B As in (A), prognostic associations for OS. Multivariable analysis was adjusted for age, gender and tumor stage. Depicted p 
values for Kaplan–Meier curves are from log-rank tests
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phenotypic diversity existed in melanoma, indicating the 
presence of possible early or partially exhausted T cells. 
Since T cells transition to new states in cancer or chronic 
infections [48, 49], we used a nonlinear dimensionality-
reduction technique UMAP [50] to visualize the inter-
cluster relationships of T cells (Fig. S1A), which showed 
some overlap. The observation of the proximity between 
subclusters of T_CD8_cytotoxic state (C3) and T_CD8_
Mixed state (C1, C2 and C4) suggests that these diverse 
phenotypes of CD8 + T cells with mixed state may arise 
from the cytotoxic state. By contrast, the role of B cells 
in solid tumor development is not established and they 
were mainly studied in B cell malignancies (e.g. chronic 
lymphocytic leukemia) [51]. In our study, we found a 
subset of B cells with regulatory phenotype and the vast 

majority non-regulatory. While all cell types, subtypes 
and states cannot possibly be described here in full, we 
expect that as more and more scRNA-seq data with large 
microenvironment cells of the same tumor types avail-
able, future studies will need to integrate these single-cell 
transcriptomic data to determine the more subtle states 
of individual cells.

ScRNA-seq provides high-dimensional, single-cell level 
data, yet the difficulty in obtaining fresh tumor tissue and 
other technical limitations imply that it currently is not 
yet suitable for studies of large patient cohorts. Conven-
tionally, most studies utilized the normal leukocyte ref-
erence profile LM22 to dissect cellular composition of 
tumor microenvironment from bulk tumors [11, 52, 53], 
which differed from those of TME substantially, and thus 

Fig. 6  Association between tumor microenvironment immune phenotypes (TMIP) and response to immune checkpoint blockade (ICB) 
in melanoma. A-B Bar charts showing numbers of responders and non-responders with different TMIPs in anti-PD1 pre-treatment patients 
(A) and on-treatment patients (B) who progressed after a first-line anti-CTLA4 treatment (Ipi-progressed) in Riaz et al. data. Box plots showing 
differences of CA-1 scores between responders and non-responders in those corresponding patients. C-D Kaplan–Meier curves showing differences 
of progression-free survival (C) and overall survival (D) among patients with different TMIPs in Ipi-progressed patients in Riaz et al. data
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could lead to less accurate results [14]. Here, combining 
reference profiles of microenvironment cell states with 
the robust performance of CIBERSORT allowed us to 
accurately estimate the abundance for different cell states 
as a fraction of the overall cells we studied. We success-
fully mapped the cellular states of infiltrating microenvi-
ronment cells (e.g. T_CD8_Cytotoxic and T_CD8_Mixed 
states) in the SKCM samples, and revealed their distribu-
tion heterogeneity both across and within samples. Espe-
cially, T_CD8_Mixed sate largely existed across SKCM 
samples, highlighting its immunosuppressive role to 
promote carcinogenesis and progression. Importantly, 
by analysis of the structures (i.e. combinatorial patterns) 
of cell states, we identified three tumor microenviron-
ment immune phenotypes (TMIP) in SKCM samples: 
“immune hot/active”, “immune cold-suppressive” and 
“immune cold-exhausted”. These phenotypes were 
characterized by distinct structures of cell states, most 
notably T_CD8_Cytotoxic, T_CD8_Mixed, B_Non-regu-
latory and CAF, which depicted distinct types of antitu-
mor immune response (or immune activity). Our results 
suggest that the abundance of individual cell state is not 
sufficient to delineate the tumor-immune phenotype, 
and that it is important to also consider other cell states 
in the TME which collectively affect tumor immunity. 
To some extent, our study on the microenvironment cell 
states could help highlighting their importance in tumor 
biology and understanding heterogeneous response to 
immunotherapy.

Finally, we revealed associations of the immune phe-
notype with melanoma survival and immunotherapeu-
tic benefits. The “immune hot-active” showed a positive 
correlation with progression-free survival, while patients 
with “immune cold-suppressive” or “immune cold-
exhausted” phenotypes had shorter progression-free 
survival. We further found its association with response 
to immunotherapy in an independent cohort of check-
point-treated (anti-PD1) melanoma patients [25] with 
explicit information on therapeutic drugs and out-
comes. We observed a higher proportion of responders 
in patients with “immune hot/active” phenotype when 
compared to those with “immune cold-exhausted” in 
pre-treatment tumors, which progressed after a first-
line anti-CTLA4 treatment (Ipi-progressed). Moreover, 
patients with “immune hot/active” phenotype showed 
better OS than those with “immune cold-suppressive” 
phenotype, and patients with “immune cold-exhausted” 
phenotype had worse prognosis (PFS and OS). Notably, 
among that of on-treatment patients, we also observed 
a higher proportion of responders in patients with 
“immune hot/active” when compared to those with 
“immune cold-suppressive” or “immune cold-exhausted”. 
These results together pointed to the less favorable 

microenvironment of “suppressive” or “exhausted” 
phenotypes for immunotherapy, compared to that of 
“immune hot/active”. Although there were no obvi-
ous difference between “suppressive” and “exhausted” 
phenotypes on clinical outcome, the different cellu-
lar states between them could provide therapy basis in 
further study. Complementarily, Jiang et  al. recently 
proposed the TIDE signature which could predict can-
cer immunotherapy response, and their results showed 
good prediction performance among Ipi-naive patients 
while no efficiency among Ipi-progressed patients using 
pre-treatment tumors [54]. Thus, it is possible that com-
bining TIDE with TMIP could show more robust per-
formance in prediction of immunotherapy response. 
Several other biomarkers have also been proposed, such 
as tumor neoantigen load [55], and signatures of mesen-
chymal transition, wound healing, and angiogenesis [56]. 
As limited efficiency was achieved due to the complex 
interplay between tumor genomics, epigenomics and 
anti-tumor immune responses, we anticipate better pre-
diction performance through further incorporating mul-
tiple biomarkers with additional information on immune 
infiltrates such as spatial distribution [57].

Conclusions
In summary, leveraging single-cell RNA-seq data, we dis-
sected the composition of microenvironment cell states 
in melanoma tumors at bulk level and revealed different 
immune phenotypes characterized by distinct cell states, 
highlighting the importance of microenvironment cell 
states for the understanding of tumor immunity in indi-
vidual tumors and providing a new strategy for patient 
stratification.
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Additional file 1: Figure S1. Immune cell expression heterogeneity and 
cell subsets distribution across patients, related to Fig. 1. (A) UMAP projec-
tion of 2068 single T cells (left), 515 B cells (middle) and 126 macrophages 
(right) from 19 patients. Each dot corresponds to one single cell, colored 
according to cell cluster. (B) Heatmap of T cell clusters (left), B cell clusters 
(middle) and macrophage clusters (right) with unique signature genes. 
Top 20 specifically expressed genes are marked alongside, if available. 
(C-E) Bar plots showing the number (left panel) and fraction (right panel) 
of cells originating from the 19 patients for each subcluster of T cells (C), 
B cells (D) and macrophages (E). (F) The fractions of the 15 subclusters, NK 
cells, CAFs and endothelial cells in each patient. Figure S2. Cell subcluster 
characterization of functional status. (A) Top 100 ranked (based on fold 
change) differentially expressed genes indicative of the functional status 
in each T-cell cluster (top) and z-score normalized mean expression of 
known functional marker sets across single T cells (bottom). The numbers 
in parentheses correspond to the ranks and the key markers (Table S1) 
are highlighted by red color. (B) Heatmap showing the log2-transformed 
expression of selected T cell function-associated genes in single cells. (C) 
Violin plots showing the expression profile of selected genes involved 
in T-cell cytotoxicity (top) and exhaustion (bottom), stratified by T-cell 
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clusters. (D) Top 100 ranked (based on fold change) differentially 
expressed genes indicative of the functional status in each cluster (C1, C2 
and C3 for B cells; C0 and C1 for macrophages). The numbers in parenthe-
ses correspond to the ranks and the key markers (Table S1) are highlighted 
by red color. (E) Z-score normalized mean expression of known functional 
marker sets across single B cells (top) and the log2-transformed expression 
of selected B cell function-associated genes in single cells (bottom). (F-G) 
Heatmaps showing the z-score normalized mean expression of known 
functional marker sets across single macrophages and their log2-trans-
formed expression in single cells. Blue boxes highlight the key markers 
and the numbers in brackets represent the total times appeared in litera-
ture. Figure S3. MM17 reference profile and performance assessment. (A) 
Heatmap of MM17 reference profile depicting z-score normalized expres-
sion of each gene across 17 tumor microenvironment (TME) cell subsets. 
(B-C) Correlation between predicted proportions and true proportions for 
each individual cell state (B) and for each individual patient (C). (D) Confu-
sion matrix of all TME cell states. Figure S4. Functional associations of 
tumor microenvironment (TME) cell states. (A-D) Enriched GO biological 
processes of T_CD8_Cytotoxic (A), B_Non-regulatory (B), T_CD8_Mixed 
(C) and CAF (D) based on gene set enrichment analysis (GSEA). Figure S5. 
Associations between cell states and clinico-pathological variables. (A-C) 
Associations of molecular and clinical features with cell states. (A) Boxplots 
showing the cell fraction distribution of each cell state stratified by tumor 
type (left), gender (middle) and tumor status (right). (B) Boxplots showing 
the cell fraction distribution of each cell state stratified by integrative age 
(left), tumor stage (middle), and race (right). (C) The fraction distribution 
of cell states stratified by TCGA subtypes. Median value difference of cell 
fraction among subtypes was evaluated using Mood’s test. Wilcoxon 
rank sum tests were used to examine the significance of the differences 
between two groups. For tumor stage, patients with Stage 0, Stage I, IA, 
IB, Stage II, IIA, IIB and IIC are grouped as “LOW” (n=154), Stage III, IIIA, IIIB, 
IIIC and Stage IV are grouped as “HIGH” (n=162). * P < 0.05, ** P < 0.01, *** 
P < 0.001, **** P < 0.0001. Figure S6. Associations between cell states 
and immune phenotypes, related to Fig. 4. (A) Scatterplots showing 
relationships between T_CD8_Cytotoxic and M_M2 (top), B_Regulatory 
and T_CD4_Exhausted (middle), CAF and T_CD8_Mixed (Cytotoxic and 
Exhausted) (bottom). Pearson correlations and p values are indicated. For 
significant correlations, linear models are shown as blue lines. (B) Contri-
butions of the cell states to CA-1 (top) and CA-2 (bottom). (C) Scatter chart 
of the Pearson correlations of CA-1 and CA-2 with cell states. Different 
colors indicate whether or not significant associations between CA scores 
and cell states were observed (p < 0.05). (D) Boxplots showing the cell 
fraction distribution of each cell state stratified by the median values of 
CA-1 (top) and CA-2 (bottom), respectively. Wilcoxon rank sum tests were 
used to examine the significance of the differences between two groups. 
(E) The distribution of cell states across the three immunophenotype 
groups classified by median values of CA-1 and CA-2. Median value differ-
ence of cell fraction among groups was evaluated using Mood’s test. Then 
the statistical significance between any two groups was evaluated by 
Wilcoxon rank sum test and p values are shown at the top of each panel. * 
P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Figure S7. Assessment 
on association between tumor microenvironment immune phenotypes 
(TMIP) and response to immune checkpoint blockade (ICB) in melanoma. 
(A) Box plots showing differences of CA-1 (upper panel) and CA-2 (middle 
panel) scores between responders and non-responders in patients under 
immunotherapy in TCGA data. Bar charts showing numbers of respond-
ers and non-responders with different TMIPs in those patients (lower 
panel). (B) Projection of each patient of Riaz et al. dataset onto the first and 
second component of the correspondence analysis. Left panel showed 
pre-treatment samples and right panel denoted on-treatment patients. 
Non-responders were colored blue, and responders were colored orange. 
Points denoted Ipi-naive patients, and triangles denoted Ipi-progressed 
patients. (C) Box plots showing differences of CA-2 scores between 
responders and non-responders in anti-PD1 pre-treatment patients 
(upper panel) and on-treatment patients (lower panel) who progressed 
after a first-line anti-CTLA4 treatment (Ipi-progressed) in Riaz et al. data. 
(D-E) Comparison of each cell state proportion between responders and 
non-responders in Ipi-progressed patients based on pre-treatment (D) 
and on-treatment (E) transcriptomic profiles. ns: not significant; *: p < 0.05.  
Table S1. Gene lists used for functional analyses. Table S3. Demographics 

and characteristics of patients with melanoma. Table S4. Uni- and multi-
variate analysis for progress-free survival (316 sample). Table S5. Uni- and 
multivariate analysis for overall survival (316 sample).

Additional file 2: Table S2. MM17 reference profile.

Additional file 3: Table S6. Summary of characteristics for Riaz et al. 
dataset.
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