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Amino acid 17 in QRDR of Gyrase A plays a key role in 
fluoroquinolones susceptibility in mycobacteria
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ABSTRACT The polymorphism at amino acid 17 of quinolone resistance-determining 
region of GyrA has been stated with a potential role in fluoroquinolone susceptibility in 
different mycobacterial species. However, no study has provided dependable evidence 
so far. Here, we verified that gene-edited Mycobacterium abscessus mutants bearing 
Ser/Gly at this position were more susceptible to fluoroquinolones than their parent 
strain and the revertant that supports mycobacteria containing Ser/Gly at this position 
were more susceptible to fluoroquinolones than those containing Ala.

IMPORTANCE Fluoroquinolones (FQs) play a key role in the treatment regimens 
against tuberculosis and non-tuberculous mycobacterial infections. However, there are 
significant differences in the sensitivities of different mycobacteria to FQs. In this study, 
we proved that this is associated with the polymorphism at amino acid 17 of quino­
lone resistance-determining region of Gyrase A by gene editing. This is the first study 
using CRISPR-associated recombination for gene editing in Mycobacterium abscessus to 
underscore the contribution of the amino acid substitutions in GyrA to FQ susceptibilities 
in mycobacteria.

KEYWORDS fluoroquinolone, mycobacteria, intrinsic resistance, gene editing, 
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F luoroquinolones (FQs) are very important and extensively used class of syn­
thetic antibacterial agents that are recommended for drug-resistant Mycobacte­

rium tuberculosis and some non-tuberculous mycobacteria such as macrolide-resistant 
Mycobacterium abscessus complex (1–3). Moxifloxacin (MOX) is known to be an effective 
FQ and a key component of the new first-line regimen which can shorten the treatment 
duration of drug-sensitive tuberculosis from 6 months to 4 months (4). The target of the 
FQs in mycobacteria is type II topoisomerase, which consists of two subunits, GyrA and 
GyrB, that form the catalytically active A2B2 heterotetrameric structure (5). In mycobacte­
ria, the FQs can interact with the cleaved DNA together with the GyrA and GyrB proteins 
to stabilize a cleavage complex and inhibit the religation of the cleaved DNA which 
potentially results in lethal double-strand DNA breaks in the genome (6). Mutations 
in quinolone resistance-determining region (QRDR) of gyrA and gyrB genes have been 
proven to lead to FQ resistance (7, 8).

Interestingly, most mycobacteria are intrinsically less susceptible to FQs than other 
bacteria, such as Escherichia coli, and the levels of susceptibility to FQs differ markedly for 
different mycobacterial species (9). Previous studies found the amino acid substitution 
at position 17 in QRDRGyrA (83 in E. coli; 90 in M. tuberculosis; 92 in M. abscessus of GyrA) 
may be involved in the FQ susceptibility by analyzing the sequences of the QRDR in 
GyrA and GyrB in different mycobacterial species as well as other bacteria (9, 10). The 
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presence of an Ala at position 17 of QRDRGyrA in most of the mycobacterial species (such 
as M. tuberculosis and M. abscessus) and a Ser in the three other mycobacterial spe­
cies (Mycobacterium peregrinum, Mycobacterium fortuitum, and Mycobacterium aurum) 
or E. coli associated with the minimal inhibitory concentrations (MICs) of quinolones, 
suggesting this amino acid residue might be a crucial determinant of different suscepti­
bilities to quinolones among mycobacteria (Fig. 1A) (9, 10). However, to date, no direct 
molecular experimental evidence supports this hypothesis. The success of mycobacteria 
gene editing with the development of CRISPR (11) allowed us to apply this new tool 
for exploring the correlation between FQ susceptibility patterns and the amino acid 
substitutions in mycobacteria.

M. abscessus is a rapidly growing non-tuberculous mycobacterium responsible for 
a wide variety of human diseases, including chronic pulmonary diseases and several 

FIG 1 The amino acid 17 in QRDR of GyrA contributes to intrinsic susceptibility of FQs in mycobacteria. (A) Alignment of the peptide sequences of the QRDR of 

GyrA from mycobacterial species and E. coli. (B and C) Drug susceptibility of different M. abscessus strains to MOX and levofloxacin. Tenfold serial dilutions of M. 

abscessus strains grown to OD600 of 0.7 were spotted on Middlebrook 7H10 containing indicated concentrations of antibiotics. Plates were incubated for 3 days. 

Representative data from three independent experiments are shown.
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extrapulmonary diseases such as soft tissue, skin, and central nervous system infections 
(12). These infections are difficult to treat with the standard antibacterial therapy due to 
their high-level intrinsic resistance to most antibiotics (13). Here, we used M. abscessus 
as a model organism for studying the correlation between FQ susceptibility patterns 
and amino acid sequences of QRDRGyrA in mycobacteria. To elucidate the contribution 
of the amino acid substitution located at position 17 of QRDRGyrA, the GyrA was edited 
to alter the Ala to Ser at position 17 of QRDRGyrA (QRDRGyrAA17S) in M. abscessus using 
CRISPR-associated recombineering as described previously for other mycobacteria (11). 
The primers used in this study are listed in Table S1. Interestingly, QRDRGyrAA17S exhibited a 
markedly enhanced sensitivity to levofloxacin (LEV) and MOX compared to its parent M. 
abscessus strain (QRDRWT) as shown in Fig. 1B and Table 1. The MICs of both LEV and MOX 
to the QRDRGyrAA17S were 1/4 of that of MabWT (Table 1), whereas QRDRGyrAA17S17A, the GyrA 
of which was edited to alter the Ser back to Ala at position 17 of QRDRGyrA in QRDRGyrAA17S, 
recovered the FQ resistance level to that of QRDRWT (Fig. 1B and Table 1), thus confirming 
that Ala17 in QRDRGyrA is critical for the FQs resistance in M. abscessus. Susceptibility of 
QRDRGyrAA17S to other two types of non-FQ antibiotics remained unchanged (Table 1), 
indicating that the substitution of this amino acid specifically affects the LEV and MOX 
susceptibility. Additionally, Aubry et al. found that some M. tuberculosis isolates bearing 
a combination of T80A and A90G (Thr7Ala and Ala17Gly in QRDRGyrA) substitutions were 
hypersusceptible to ofloxacin (14). Therefore, we also constructed a M. abscessus mutant 
(QRDRGyrAA17G+T7A) containing Thr7Ala and Ala17Gly in QRDRGyrA double mutations in GyrA. 
Similar to QRDRGyrAA17S, QRDRGyrAA17G+T7A also showed the significantly increased sensitivity 
to LEV and MOX (Fig. 1C and Table 1). To further investigate the contribution of Thr7Ala 
and Ala17Gly in QRDRGyrA to the susceptibility of FQs, the GyrA was edited to alter the 
Thr to Ala at position 7 in QRDRGyrA (QRDRGyrAT7A) and Ala to Gly at position 17 in QRDRGyrA 

(QRDRGyrAA17G) separately. We observed that the Ala17Gly mutation in QRDRGyrA confers 
hypersensitivity to FQs but not Thr7Ala (Fig. 1C and Table 1). These results imply that 
Ala17 in QRDRGyrA of mycobacteria plays a key role in susceptibility to FQs and hints that 
the mycobacterium bearing Ala17Gly or Ala17Ser amino acid substitution in QRDRGyrA 

may be hypersensitive to FQs.
To the best of our knowledge, this is the first detailed study to underscore the 

contribution of the amino acid substitutions in GyrA to FQs resistance in mycobacte­
ria using the CRISPR-associated recombintion for gene editing in M. abscessus. Our 
observations are in strong agreement with a previous study in which it was found 
by peptide sequences alignment that the amino acid at position 17 of QRDRGyrA was 
likely involved in the intrinsic resistance of mycobacteria to quinolones (9). In addition, 
although both Ala17Gly and Ala17Ser of QRDRGyrA could cause hypersensitivity of M. 
abscesses to FQs, the susceptibility of MOX to QRDRGyrAA17S and QRDRGyrAA17G is differ-
ent. Following the Clinical and Laboratory Standards Institute (CLSI) guidelines, the 
breakpoint for MOX resistance in M. abscessus was determined to be 4 µg/mL (15). 
Consequently, QRDRGyrAA17G is still classified as resistant to MOX. The MICs of FQs to the 
hypersensitive M. abscessus mutants (QRDRGyrAA17S or QRDRGyrAA17G) are still higher than 
that to M. tuberculosis, which indicates that besides the contribution of the 17Ala of 
QRDRGyrA in M. abscessus, other factors leading to higher MICs of FQs to M. abscessus may 
exist. A recent study analyzed the gyrA and gyrB of FQs-resistant M. abscessus isolates 

TABLE 1 MICs of various drugs for different M. abscessus strainsa

Antibiotics

M. abscessus strains/MICs (μg/mL)

QRDRWT QRDRGyrAA17S QRDRGyrAA17S17A QRDRGyrAA17G+T7A QRDRGyrAA17G QRDRGyrAT7A

Levofloxacin 16 4 16 4 4 16
Moxifloxacin 8 2 8 4 4 8
Rifabutin 4 4 4 4 4 4
Amikacin 4 4 4 4 4 4
aBroth microdilution method was used to determine the MICs. The MIC was defined as the lowest drug concentration that prevented visible bacterial growth. The 
experiment was performed in triplicate and repeated twice.
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but found no mutation in them, which also suggested that besides gyrA and gyrB, other 
mechanisms also contribute to FQs resistance in M. abscessus (16).
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