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Introduction

Abstract

Radiomics is an emerging field that aims to extract and analyse a
comprehensive set of quantitative features from medical images. This scoping
review is focused on MRI-based radiomic features for the molecular profiling
of breast tumours and the implications of this work for predicting patient
outcomes. A thorough systematic literature search and outcome extraction were
performed to identify relevant studies published in MEDLINE/PubMed
(National Centre for Biotechnology Information), EMBASE and Scopus from
2015 onwards. The following information was retrieved from each article: study
purpose, study design, extracted radiomic features, machine learning technique
(s), sample size/characteristics, statistical result(s) and implications on patient
outcomes. Based on the study purpose, four key themes were identified in the
included 63 studies: tumour subtype classification (n = 35), pathologically
complete response (pCR) prediction (n = 15), lymph node metastasis (LNM)
detection (n = 7) and recurrence rate prediction (n = 6). In all four themes,
reported accuracies widely varied among the studies, for example, area under
receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to
0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four
themes, combining radiomic features with clinical data improved the predictive
models. Preliminary results of this study showed radiomics potential to
characterise the whole tumour heterogeneity, with clear implications for
individual-targeted treatment. However, radiomics is still in the pre-clinical
phase, currently with an insufficient number of large multicentre studies and
those existing studies are often limited by insufficient methodological
transparency and standardised workflow. Consequently, the clinical translation
of existing studies is currently limited.

cannot be repeated on the same sample for monitoring
. . 2 . .
disease progression.” Hence, there is an emerging need to

Breast tumours are characteristically heterogeneous in
biological makeup, contributing to treatment failure and
poor prognosis for patients. They also have a variety of
clinical presentations and subtypes, each responding
uniquely to different treatments.' Current methods of
molecular and pathological testing through biopsy
sampling are limited in demonstrating the entire tumour
and intratumoral heterogeneity as they only extract part of
the tumour’s tissue. Biopsies are invasive procedures that

identify newer, non-invasive imaging techniques, such as
radiomics, to provide a better understanding of tumour
biology and molecular characteristics.

Due to its wide availability and relatively low cost,
mammographic imaging is the method of choice for
screening and prevention at a national level; however,
studies have shown that its sensitivity and specificity
range from fair to good, measuring between 70% and
90%.” Its positive predictive value can be as low as 15%,
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which indicates how many patients with positive results
actually have cancer.> On the other hand, magnetic
resonance imaging (MRI) has excellent soft tissue contrast
and high sensitivity that can reach 100%.’ Unlike
mammography, MRI does not rely on ionising radiation
to produce images, rather it uses a magnetic field to
capture interactions with structures in the body and is
unaffected by tissue density.* MR breast imaging is
multiparametric, meaning a range of sequences are
included, such as dynamic contrast-enhanced (DCE),
diffusion-weighted imaging (DWI) and TI1- and T2-
weighted (W) images. Each sequence presents
information on the functional and anatomical properties
of the tumour, including the mobility of water molecules
within tissue and angiogenesis.” These characteristics can
be indicative of tumour growth, spread and malignancy,
all of which assist in making prognostic predictions and
determining the aggressiveness of treatment required.®
Conventionally, image-based features are qualitatively
evaluated by considering size, shape and type of
enhancement, leaving behind hidden and unused data.”
Quantitative analysis of image data is required to predict
the tumour’s molecular profile and treatment response
and achieve personalised medicine for breast cancer
patients. This can be accomplished through radiomics.'
Radiomics is an emerging field of research that extracts
existing medical imaging features through mathematical
analysis and computer-aided detection.® Its application
allows for tumour characterisation and molecular profiling,
optimises patient outcome through personalised treatment
plans and monitors tumour evolution.” Radiomics offers
advantages through improved sensitivity and specificity of
diagnosis, prognosis predictions, disease management and
disease evolution. It is particularly valuable in non-invasive
applications such as breast cancer screening and
prevention.” The radiomics process is complex and
variable, beginning with acquiring high-quality images that
do not contain artefacts or motion. Although obtaining
images without artefacts is ideal, it is challenging to
achieve. Therefore, features could be developed and
selected that are more robust to artefacts and motion. A
region of interest (ROI) containing the tumour is then
segmented by one of three methods outlined in Table 1.
The ROI is analysed to enable quantitative features to
be extracted. Current tumour evaluation focuses on
qualitative features (although quantitative parameters can
also be extracted), including density, microcalcifications
and necrosis, which is limited by minimalistic sampling
of tumour tissue.'” On the other hand, radiomic features
analyse the pixel gray values and patterns within the
medical image to provide information on the tumours’
makeup, its relationship to surrounding tissues and its
microenvironment.'® There are a number of radiomic
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Table 1. Method of image segmentation.®

Segmentation

method Description

Manual Radiologist manually traces the outline of the
tumour but it is time-consuming for large datasets
Manual seed planting in the tumours’ centre
followed by automatic border drawing by
computer algorithms

Uses highly trained computer algorithms to
delineate the tumour and is more accurate for
detecting the lesion versus background. Features
are more reproducible with automatic methods

Semi-automatic

Automatic

Table 2. Radiomic features.!

Feature category Description

Morphology or shape Geometric properties of the ROI, for
example, volume, maximum surface,
tumour compactness and sphericity

Distribution of pixel/voxel values, for

example, mean, median, uniformity,

First-order statistics or
histogram-based

features kurtosis, skewness and entropy
Second-order statistics Contrast values between neighbouring
or texture pixels and measures intratumoral

heterogeneity, for example, gray-level
co-occurrence matrix (GLCM) and gray-
level run matrix (GLRM)

Requires filters or transforms to be
applied to images and assesses
patterns and details, for example,
Fourier analysis

Describing the complexity of the
structures, for example, fractal
dimension

Assesses washout rates and
heterogeneity of contrast
enhancement, for example, time to
peak enhancement

Higher-order statistics

Structural features

Kinetic

features, which are categorised into groups, such as those
listed in Table 2.

As thousands of features can be extracted from a medical
image, they are often limited or clustered to meet the
desired aim, diagnosis,
predicting recurrence or metastatic spread.'> These
quantitative

which can include disease
features can be  combined  with
clinicopathological information (e.g. age, histological grade
and biomarkers) to form a radiomics signature or
nomogram. This signature/nomogram can provide further
information on the tumour and improve the model’s
predictive ability.

Currently, the majority of radiomic studies in breast
cancer research focus on the classification of tumours
into benign or malignant lesions. Given the increasing
need and desire for personalised medicine, there is a
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growing interest in the use of radiomics for molecular
classification of breast tumours based on biological
markers. These are the oestrogen receptor (ER),
progesterone receptor (PR), human epidermal growth
factor 2 (HER2) and Ki67 proliferation marker. Through
immunohistochemical (IHC) testing, numeric values and
measures of positivity can be made to classify tumours
into four subtypes: luminal A, luminal B, HER2-enriched
and triple-negative breast cancer. Each of these subtypes
has different treatment options that they best respond to
and differing rates of aggression. For instance, luminal A
tumours have a better prognosis and long-term disease-
free survival compared to luminal B."?

The past few decades have seen significant
improvements in the survival rates of breast cancer
patients. However, there are still patients who are
ineffectively treated or remain undertreated, creating
additional physical and emotional burdens. Given the fact
that anticancer medications usually have severe side
effects, identifying patients who would not benefit from
specific treatments and avoiding needless exposure to
toxicity is critical."* Radiomics has this potential and can
also identify other prognostic and predictive factors (e.g.
aggressiveness and  metastatic risk). Furthermore,
identifying normal versus pathogenic biological processes
and pharmacological responses to a specific treatment
allows for proper risk stratification of patients to occur.'
Therefore, the purpose of this scoping review was to
investigate the range of existing studies in the field of
radiomics for breast cancer classification in magnetic
resonance imaging. Focus was placed on four themes of
research derived from the literature, which were
radiomics for tumour subtype classification, prediction of
pathologically complete response (pCR), detection of
lymph node metastasis and predicting recurrence.

Methods

Protocol

A. Campana et al.

Additionally, this review was limited to MRI imaging
only as radiomic techniques have been widely applied to
this imaging modality and have produced significant
results. MRI radiomics have been used to successfully
describe phenotype characteristics from DCE and DWI
imaging and have accurately predicted prognostic status
in breast cancer patients.’

Included studies utilised radiomic methods or, its
synonym, texture analysis, for the purpose of classifying
breast tumours into molecular subtypes: predicting pCR,
detecting lymph node metastasis or predicting recurrence
rates. All studies included patients who had a breast MRI
scan performed prior to commencing any treatment (e.g.
chemotherapy or surgery) and before a biopsy sample was
taken. Hence, this review could investigate the role of
radiomics in pre-treatment predictions, which reduce the
burden of unnecessary treatments and toxins for breast
cancer patients.

Sources and search strategy

Three databases were explored to find eligible articles,
which were Medline, Embase and Scopus. Three databases
were deemed sufficient as a saturation point was reached,
whereby no original articles were found upon investigating
further databases. Additional studies were found by
searching for grey literature on Google Scholar and
examining reference lists of included studies. Any
inconsistencies in the inclusion and classification of
articles were resolved through discussion between authors.

The search strategy for Medline and Embase included
the key terms and their combinations, as listed in Table 3.

Scopus was searched using an advanced search strategy;
(TITLE-ABS-KEY (radiomic* OR radiogenomic* OR
‘texture analysis’) AND TITLE-ABS-KEY (MRI OR
‘magnetic resonance imaging’) AND TITLE-ABS-KEY
(Kie7 OR HER2 OR ? estrogen receptor’ OR

Table 3. Medline and embase search strategy.

The protocol used for this review was the Preferred 1 Breast cancer .mp 12 ?estrogen receptor .mp
Reporting Items for Systematic Reviews and Meta- 2 Breast neoplasm/ 13 Sor6or7or8or9
Analysis extension for Scoping Reviews (PRISMA-ScR) or 10 or 11 or 12
checklist. 3 Breast tumo?r* .mp 14 Radiogenomic* .mp

4 lTor2or3 15 Radiomic* .mp

5 Ki67 antigen/ or Ki67.mp 16 Texture analysis .mp
Eligibility criteria 6 Ki 67 .mp 17 14 or150r 16

7 HER2 .mp 18 MRI.mp
Articles were included in this review if they were peer- 8 Human epidermal 19 Magnetic resonance
reviewed, full text and written in English to facilitate data growth factor 2 .mp imaging .mp
collection. Only original research studies were included. 'mmU”Oh'StOChem'StrW 20 180r19
Given that radiomic methods, MRI sequences and MRI 10 B|omarkers,‘ tumour/ or 21 4and 13 and 17 and 20

. . . . . tumo?r* biomarker* .mp

scanners are continually improving, articles published 1M ER.mp
from 2015 onwards were contemporary for this review. '
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‘progesterone receptor’) AND TITLE-ABS-KEY (‘breast
cancer’) AND PUBYEAR >2014).

A combination of these keywords was used to conduct
searches on Google Scholar and select relevant articles
from reference lists.

Data charting

A descriptive summary of reported results was presented in
data charting tables (Tables 4a—4d) to reflect both the
heterogenous findings and common themes. Included
articles were divided into four themes: subtype
classification, pCR prediction, lymph node metastasis
detection and recurrence prediction, each being charted
separately. The data charting table was drafted and tested
on five articles before edits were made by all reviewers.
Once the final design was agreed upon, the remainder of
the data charting process was completed.

Synthesis of results

Critical appraisal of included studies and results is not
the aim of scoping reviews.'® Hence, study characteristics
of all included articles were described and presented in
the data charting table to identify common themes and
highlight numeric findings. A thematic analysis was also
performed for all four key themes to discuss the
implications of the radiomics technique in clinical
practice and to identify areas of future research.

Results

Selection of sources of evidence

The final literature search resulted in 252 articles from
database searching and an additional nine from other
sources. All articles were exported to Endnote X9, where
duplicates were removed, leaving 134 articles for
screening. They were first screened based on their title
and abstract, where a further 56 articles were excluded.
The full texts of the remaining 78 articles were read to
determine eligibility based on the specified criteria
(Section “Eligibility criteria”). All four reviewers were in
consensus about the excluded 15 articles, resulting in 63
articles remaining to be included in the scoping review.
The selection process is outlined in Figure 1.

Characteristics of sources of evidence

Results of individual sources of evidence

Of the 63 articles included in this scoping review, 35
addressed subtype classification, 15 for prediction of
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pathologically complete response, seven for lymph node
metastasis detection and six for recurrence prediction. All
included studies were retrospective in nature, with only
one including a prospective validation cohort.*® Findings
for each category will be discussed.

Subtype classification

A total of 35 articles were found that investigate the use
of radiomics for subtype classification of breast tumours,
with 12 articles using 1.5T scanners, 21 with 3T and five
with both 1.5 and 3T MRI scanners. Of the articles that
used both MRI scanner strengths, only one compared
their performance, noting that accuracy was slightly
improved when using a 3T Classification
accuracy was 95% and 97.7% for 1.5T and 3T scanners
respectively.”® This finding supports research suggesting
that, due to the higher field strength of 3T scanners,
spatial and temporal resolution increases, consequently
improving image quality and detection of smaller lesions.*

Additionally, a multiparametric MRI protocol was used
in 11 studies, whereby DCE, DWI and T2W images were
included for radiomic analysis and feature extraction. The

scanner.

predictive performance of subtype classification improved
when multiparametric MRI models were used compared
to single-series models. Zhou et al.* performed radiomic
analysis on three models comprised of T2W fat-saturated
images, T1W-weighted contrast-enhanced images and a
combination of both images to form a multiparametric
model. Prediction of HER2 status in breast cancer
patients for each model was AUC of 0.74, 0.71 and 0.86,
respectively, noting a significant improvement in
performance for the multiparametric model.”* This study
also used 3D segmentation and extracted a large range of
radiomic features from both the T1 and T2W MR
images, hence, could provide a greater range of features
to enable more comprehensive information of the
tumour’s biology to be incorporated into the predictive
model.

Furthermore, five studies formed radiomic signatures
that comprised both radiomic and clinical features. Wang
et al.** sought to distinguish triple-negative breast cancer
(TNBC) from all other subtypes and compared the
performance of radiomic features alone versus the
inclusion of background parenchymal enhancement
(BPE), which is known to represent hormonal activity. In
each experiment, there was a significant increase in
predictive accuracy when using both radiomic and clinical
features (Fig. 2), highlighting the importance of BPE
heterogeneity on DCE sequences for diagnosing TNBC.™

First-order statistics features,
entropy and skewness, are investigated in radiomic
studies as they are highly predictive

including kurtosis,

of tumour
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Figure 1. PRISMA flow chart of study selection process.

characteristics. Ma et al.”> sought to determine Ki67
expression in breast tumours and found that high Ki67
lesions have higher kurtosis and lower skewness, which
measure the steepness and symmetry of data distribution.
Higher kurtosis indicates more heterogeneity, whereas
lower skewness suggests the opposite as the dataset
appears more homogenous. The homogenous appearance
from lower skewness occurs because there are many
nearby voxels that have similar uptake, indicating high
proliferation. This matches with what are clinically known
about high Ki67 tumours, which are highly proliferating
and more aggressive compared to low Ki67 tumours.*
Additionally, lower Ki67 tumours had smaller measures
of effective diameter, entropy, kurtosis and homogeneity,
all indicating less proliferation.”” This highlights the
ability of a machine learning model to make prognostic
predictions relating to tumour aggressiveness and
proliferation.

Radiomic analysis of intratumoral subregions was
investigated by Fan et al,”® whereby they sought to
determine Ki67 status. As breast tumours are
heterogeneous in biological makeup, it is suggested that
intratumoral regions can Dbetter demonstrate this
heterogeneity compared to analysing the entire tumour as
one entity.”® This can reflect biological processes of the

specified aims (n = 3)
- Other imaging modality
used (n=1)

tumour to facilitate prognostic predictions. The
performance of second-order statistics features in tumour
subregions versus the entire tumour was compared,
which predicted Ki67 status with an AUC of 0.807 and
0.748 respectively.”® This indicates that features from
tumour subregions are more representative of and related
to the tumour’s phenotype and characteristics.

Of note, only three studies explored subtype
classification by using a multicentre approach, meaning
that the study was heterogenous in the included cohort,
imaging protocol and MRI scanners used. Many previous
studies note that radiomics research is limited by small
patient cohorts, minimal number of radiomic features
used and no validation cohorts.*® To fill these research
gaps, Saha et al.*® performed a study to determine the
molecular subtype of breast cancer patients. They
included 922 patients who underwent breast MRI scans at
a variety of clinics with different imaging protocols. The
cohort was divided in half to produce equal-sized testing
and validation groups and used a total of 522 radiomic
features for lesion analysis. Moderate-to-good results were
produced with AUCs of <0.7, resulting in the conclusion
that radiomic features alone are insufficient for predicting
molecular subtypes.”® This heterogenous cohort reduces
the chance of overfitting and is representative of a

© 2023 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of 471
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Figure 2. Comparison of predictive performance (AUC) for models using radiomic features alone versus a combined radiomic and clinical
features signature, with standard deviation error bar. Experiment 1: TNBC versus ER+. Experiment 2: TNBC versus all other subtypes. Experiment

3: TNBC versus PR+. Experiment 4: TNBC versus luminal B.>*

broader range of patients, however, it also introduces
noise in analysis."® Stronger associations between
radiomic features and subtype classification of breast
tumours could be found with a more uniform cohort and
methodology.*® This finding contradicts conclusions
drawn in many other studies, which suggest that
heterogenous cohorts and imaging protocols are vital in
improving reproducibility in clinical settings.”®

Pathologically complete response

Prediction of pCR included 15 articles, with three articles
using 1.5T MRI scanners, four with 3T, six with both 3
and 1.5T and one unknown. Of the studies that
compared the performance of both scanners, no
significant findings were noted.’*>>®°”%¢! The majority
of studies used DCE imaging protocols and produced
strong results ranging from AUC of 0.707 to 0.986.°%%
Two studies used T2W images alone for radiomic analysis
and could predict pCR following NAC with an AUC of
0.902°! and accuracy of 85.2%.%

Of note, five articles utilised radiomics signatures with
both clinicopathological and radiomic features, all
producing significant results of AUC >0.83.0°16061.62
Interestingly, all articles included validation cohorts to
verify initial findings and produced AUCs of >0.79, which
is promising for producing reliable results and validating
the conclusion that a combined model performs better
than radiomics features alone.

Furthermore, largely
heterogenous study, using multiple MRI scanners from
different institutions and variable treatment regimens for

57
Braman et al was a

patients. Performance among training and validation
cohorts remained consistent, with an AUC of 0.89 and
0.80 respectively.”” Liu et al.”® was another multicentre
study, utilising three external validation cohorts. The
radiomics model performed strongly in the training set
but noted poor results in the validation cohorts. This
study measured pCR following NAC in multiple tumour
subtypes but had an unequal distribution of patients in
each subtype. The produced radiomics signature was
ineffective in predicting pCR for all subtypes, resulting in
non-significant results (i.e. an AUC of <0.6, with a P-
value >0.05 in comparison with the chance level) for
some experirnents.59 Hence, it can be concluded that
radiomic models cannot be generalised among all
patients, rather should be subtype specific.””

Lymph node metastasis

Seven articles investigating radiomic analysis for the
detection of lymph node metastasis were identified. Two
studies utilised a multiparametric model to predict lymph
node metastasis, meaning the radiomics nomogram was
produced based on a combination of MR images,
including DCE, DWI and T2W.*7% In both of these
studies, the multiparametric model produced the best
results, with AUCs of 0.863°° and 0.91.°” This is because,
when compared to single-series models, multiparametric

protocols can more accurately represent tumour
morphology and pathogenic processes.®”
Additionally, Tan et al® utilised a combined

clinicopathological and radiomics model that noted a
slight improvement in predictive performance compared

472 © 2023 The Authors. Journal of Medlical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of
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to a radiomics-only model, with AUCs of 0.894 and 0.88
respectively. However, Guo et al.°®® found that a genomic
model performed significantly better than the radiomics
model, with AUCs of 0.916 and 0.775 respectively.

Another trend noted is that studies utilising a range of
radiomic features to develop the radiomic signature
produced results of greater statistical significance. For
instance, Chai et al.*®® utilised a multiparametric model
with morphological, first-order statistics, second-order
statistics, transform and kinetic features to build the
radiomic signature, producing results with an AUC of 0.91.
The addition of kinetic features to this model allowed for
contrast uptake rates and heterogeneity in contrast
enhancement to be analysed.*” Cui et al.”® also noted this
trend, whereby improved prediction of axillary lymph node
metastasis resulted by combining morphological and
texture features to form the radiomics signature.

Recurrence prediction

Radiomics for prediction of cancer recurrence consisted
of six eligible studies, with three utilising a combined
clinicopathological and radiomics model. The addition of
clinical features, including heterogeneity phenotypes,
density and histological grade, saw
improvements in radiomic signature performance. For
example, Chitalia et al.”' noted significant improvements

micro-vessel

in recurrence prediction, with AUC increasing from 0.55
to 0.73. Similar trends were noted in the other two
studies, which achieved maximum performances of AUC
0.76 and 0.79 respectively.”>’* All three studies concluded
that radiomic signatures based on both radiomic and
clinicopathological features improve the overall accuracy
of recurrence predictions. The addition of kinetic features
to studies provided valuable information on recurrence
patterns by measuring the relationship between contrast
enhancement and delays in uptake.'"”* Enhancement
characteristics provide information on the aggressiveness
of the tumours and can be associated with recurrence
risk.'" For example, Tokuda et al.'' could distinguish
between patients with low and high risk of recurrence by
analysing the kinetic feature of volume ratio, which
relates to the rate of contrast uptake. Slower, persistent
volume ratio was associated with a lower risk of
recurrence (P = 0.041), highlighting the value of kinetic
features for risk stratification of patients.'' Additionally,
one study was multicentre and produced statistically
significant (P < 0.05) results for predicting recurrence in
the HER+/HER2— and HER2+ subtypes only.””
Morphological features were the only type of radiomic
features used in this study, suggesting that a wider range
of features could improve the applicability of the
radiomics model across other subtypes.”?

Radiomics in MRI of Breast Cancers

Discussion

The study has highlighted the potential for radiomic
techniques to facilitate the diagnosis and classification of
breast cancer, as well as predict patient outcomes.
Through mathematical analysis of MRI images, an
individual tumour’s anatomy and pathological processes
can be further understood. This allows for improved
accuracy of tumour classification and can indicate the
most clinically relevant treatment options for personalised
medicine. However, it was also recognised that radiomic
studies differ significantly and can be flawed in their
methodology, consequently inhibiting the clinical
application of this technique. Given the emerging nature
of radiomics and variations in methodological
approaches, this finding was consistent with other reviews
in this field. Therefore, future radiomics research should
aim to develop a standardised methodology to improve
understanding of the basic concepts of radiomics among
the medical imaging community. Additionally, there
should be a more detailed assessment of the quality of
these radiomic studies.

Another potential for future research is that unused
quantitative data remain within existing breast images,
which can be extracted through radiomic analysis to better
understand tumour characteristics. DCE images are highly
sensitive to enhancement patterns and angiogenesis as a
result of contrast enhancement, which is valuable in
describing tumour aggressiveness and malignancy.” The
value of contrast required for DCE images is an ongoing
debate, and the extent to which contrast is necessary
should be further investigated. DWI and T2W images are
non-contrast protocols, with DWI assessing water
diffusion to reflect pathological processes associated with
the tumours microenvironment and membrane integrity.’
T2W images can assess intracellular and extracellular
activity to detect diseased tissue, which appears with
increased free water and hyperintensity.”> T2W images can
also assess the morphological characteristics of breast
tumours, such as architecture, cystic makeup and
heterogeneity, but are currently unable to determine
enhancement characteristics. Therefore, multiparametric
MRI sequences are advantageous for demonstrating a
wider range of tumour characteristics, which can improve
accuracy of subtype classification, prediction of treatment
response  and spread.
Furthermore, features  have  distinct
characteristics and appearances on the different MRI
sequences. For instance, Ko et al.’® investigated the
radiomic and clinical features of ER+ tumours. Higher-
grade, more aggressive tumours had greater uniformity
and lower entropy (textural features measuring
heterogeneity) on contrast-enhanced (CE) T1W images,

recurrence or metastatic

radiomic
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whereas the opposite tendency was noted on T2W images.
These findings are contradictory as higher uniformity on
CE TIW images indicates more homogeneity, whereas
decreased uniformity on T2W images suggests
heterogeneity.® This contradictory finding highlights an
important characteristic of aggressive tumours, which is
that they enhance homogenously due to increased
vascularisation. Multiparametric MRI protocols therefore
are critical for improving the accuracy of radiomic models
for predicting patient outcomes and the biological and
pathological processes of breast tumours.

Intratumour heterogeneity refers to the presence of
variations within a tumour and is increasingly recognised
as an important factor in understanding tumour behaviour
and predicting treatment response. Radiomics can provide
valuable insights into intratumour homogeneity, and to
fully understand its complexity, the tumour can be divided
into subregions to examine the variations in radiomic
features within different regions of the tumour. This
approach allows for a more detailed assessment of the
spatial patterns and distribution of imaging features within
the tumour. Voxel-wise analysis takes the spatial resolution
to an even finer level. Examining individual image voxels
and their corresponding radiomic features.

Acquisition parameters (e.g. echo time and repetition
time) as well as reconstruction algorithms and slice
thickness affect MR images produced during an imaging
sequence.”” These factors, in turn, determine image noise
and texture, which affects the radiomic features extracted
and their quantitative value.”” Consequently, images
captured on different scanners at a variety of institutions
will reflect different radiomic properties and produce
unstable features.”> Hence, it is difficult to obtain uniform
results that have consistent imaging parameters, which is a
barrier to the application of radiomic techniques to
clinical settings. Scanner strength is another parameter
affecting MR images, with few radiomic studies comparing
the radiomic features and predictive performance of 1.5T
and 3T scanners. Most studies concluded that no
statistically significant findings could be noted, however,
Sun et al.”® found slightly higher accuracy for predicting
molecular subtype with 3T scanners compared to 1.5T
(accuracy of 86.4% and 82.8% respectively).

ROI segmentation is a vital step in the radiomics method
as data are extracted from these defined regions for feature
analysis.”> It can be limited by poorly defined tumour
borders and lack of consensus and standardised
methodology. Researchers have the option to perform
manual, semi-automatic or automatic segmentation with
2D or 3D reconstructions. Automatic 3D segmentation is
the preferred method of segmentation as it is faster, can
provide a holistic understanding of the tumour’s
relationship with surrounding tissues and reduces the

A. Campana et al.

chance of bias. On the other hand, semi-automatic or
manual 2D segmentation is prone to errors, inter- or
intrareader variability and is time-consuming.” Yet, studies
using the suboptimal manual 2D segmentation approach are
still producing statistically significant results as can be seen
with Wang et al.,”> who distinguished TNBC from non-
TNBC with an accuracy of 95.4%. Currently, radiomic
features are extracted from the intratumoral (i.e. within the
tumour’s border) space. However, there is growing interest
in the peritumoral space, which is the region immediately
surrounding the tumour border that is defined in ROI
segmentation. Analysis of radiomic features in the
peritumoral space can provide insight into tumour
characteristics and biology, such as enhancement patterns,
angiogenesis and necrosis. Studies demonstrate improved
pCR prediction when wusing both peritumoral and
intratumoral features, resulting in an AUC of 0.78.”

It is evident that a radiomics signature/nomogram
consisting of both radiomic and clinicopathological
features improves prediction of anatomical and functional
tumour features. Radiomic or clinical features alone lack
detail and provide noisy data.'® However, as each
individual feature provides diagnostic and therapeutic
information, a more complete depiction of the tumour
can be gathered when features are combined, resulting in
statistically significant findings and improved positive
predictive values.'®®® Therefore, it is advantageous to use
a combined radiomic and clinicopathological model with
a range of features as predictions on subtype classification
and patient outcomes significantly improve, allowing for
the possibility of personalised medicine.

Current radiomic studies appear limited by small
patient cohorts, with included studies ranging from 27 to
922 patients, with an average of 169. This raises issues
including overfitting, unreliable results and poor
generalisation to the breast cancer population, limiting
the significance of findings from radiomic studies.
Therefore, future studies should seek to include larger
patient cohorts with a more equal distribution of
patients, such that study findings can be more reliable,
accurate and applicable to real-life breast cancer patients.

This review is limited by only investigating radiomic
studies using MRI as the imaging modality. The scope of
radiomic studies explored was reduced by not considering
ultrasound, mammography or computed tomography
(CT) scans. However, this limitation is countered by the
fact that this study performed an in-depth discussion on
the vast potential MRI images that must predict patient
outcomes and perform lesion classification. MRI is well
explored in relation to radiomic techniques, with results
of existing studies demonstrating highly accurate
predictions when using the DCE, DWI and T2W MR
images for radiomic analysis. Additionally, the limited
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range of included studies from 2015 onwards may have
resulted in missing key preliminary studies in the field of
radiomics.

Conclusion

Personalised treatment, risk stratification and prognostic
predictions are highly valued and desired in this current era
of personalised medicine, and radiomics provides the
potential to avoid unnecessary toxicities, reduce patient
burden and improve overall outcomes. Therefore,
radiomics has the potential to non-invasively assess tumour
pathophysiology and anatomy to allow for early and
accurate diagnosis of breast cancer. Radiomics is still in the
pre-clinical phase, with a lack of prospective studies and
standardised methodology, preventing its application in
clinical settings. With future studies addressing these
methodological pitfalls, radiomics has the potential to
revolutionise the management of breast cancer patients and
improve both survival rates and quality of life through

personalised medicine.
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