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Abstract

Radiomics is an emerging field that aims to extract and analyse a

comprehensive set of quantitative features from medical images. This scoping

review is focused on MRI-based radiomic features for the molecular profiling

of breast tumours and the implications of this work for predicting patient

outcomes. A thorough systematic literature search and outcome extraction were

performed to identify relevant studies published in MEDLINE/PubMed

(National Centre for Biotechnology Information), EMBASE and Scopus from

2015 onwards. The following information was retrieved from each article: study

purpose, study design, extracted radiomic features, machine learning technique

(s), sample size/characteristics, statistical result(s) and implications on patient

outcomes. Based on the study purpose, four key themes were identified in the

included 63 studies: tumour subtype classification (n = 35), pathologically

complete response (pCR) prediction (n = 15), lymph node metastasis (LNM)

detection (n = 7) and recurrence rate prediction (n = 6). In all four themes,

reported accuracies widely varied among the studies, for example, area under

receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to

0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four

themes, combining radiomic features with clinical data improved the predictive

models. Preliminary results of this study showed radiomics potential to

characterise the whole tumour heterogeneity, with clear implications for

individual-targeted treatment. However, radiomics is still in the pre-clinical

phase, currently with an insufficient number of large multicentre studies and

those existing studies are often limited by insufficient methodological

transparency and standardised workflow. Consequently, the clinical translation

of existing studies is currently limited.

Introduction

Breast tumours are characteristically heterogeneous in

biological makeup, contributing to treatment failure and

poor prognosis for patients. They also have a variety of

clinical presentations and subtypes, each responding

uniquely to different treatments.1 Current methods of

molecular and pathological testing through biopsy

sampling are limited in demonstrating the entire tumour

and intratumoral heterogeneity as they only extract part of

the tumour’s tissue. Biopsies are invasive procedures that

cannot be repeated on the same sample for monitoring

disease progression.2 Hence, there is an emerging need to

identify newer, non-invasive imaging techniques, such as

radiomics, to provide a better understanding of tumour

biology and molecular characteristics.

Due to its wide availability and relatively low cost,

mammographic imaging is the method of choice for

screening and prevention at a national level; however,

studies have shown that its sensitivity and specificity

range from fair to good, measuring between 70% and

90%.2 Its positive predictive value can be as low as 15%,
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which indicates how many patients with positive results

actually have cancer.2 On the other hand, magnetic

resonance imaging (MRI) has excellent soft tissue contrast

and high sensitivity that can reach 100%.3 Unlike

mammography, MRI does not rely on ionising radiation

to produce images, rather it uses a magnetic field to

capture interactions with structures in the body and is

unaffected by tissue density.4 MR breast imaging is

multiparametric, meaning a range of sequences are

included, such as dynamic contrast-enhanced (DCE),

diffusion-weighted imaging (DWI) and T1- and T2-

weighted (W) images. Each sequence presents

information on the functional and anatomical properties

of the tumour, including the mobility of water molecules

within tissue and angiogenesis.5 These characteristics can

be indicative of tumour growth, spread and malignancy,

all of which assist in making prognostic predictions and

determining the aggressiveness of treatment required.6

Conventionally, image-based features are qualitatively

evaluated by considering size, shape and type of

enhancement, leaving behind hidden and unused data.7

Quantitative analysis of image data is required to predict

the tumour’s molecular profile and treatment response

and achieve personalised medicine for breast cancer

patients. This can be accomplished through radiomics.1

Radiomics is an emerging field of research that extracts

existing medical imaging features through mathematical

analysis and computer-aided detection.8 Its application

allows for tumour characterisation and molecular profiling,

optimises patient outcome through personalised treatment

plans and monitors tumour evolution.9 Radiomics offers

advantages through improved sensitivity and specificity of

diagnosis, prognosis predictions, disease management and

disease evolution. It is particularly valuable in non-invasive

applications such as breast cancer screening and

prevention.2 The radiomics process is complex and

variable, beginning with acquiring high-quality images that

do not contain artefacts or motion. Although obtaining

images without artefacts is ideal, it is challenging to

achieve. Therefore, features could be developed and

selected that are more robust to artefacts and motion. A

region of interest (ROI) containing the tumour is then

segmented by one of three methods outlined in Table 1.

The ROI is analysed to enable quantitative features to

be extracted. Current tumour evaluation focuses on

qualitative features (although quantitative parameters can

also be extracted), including density, microcalcifications

and necrosis, which is limited by minimalistic sampling

of tumour tissue.10 On the other hand, radiomic features

analyse the pixel gray values and patterns within the

medical image to provide information on the tumours’

makeup, its relationship to surrounding tissues and its

microenvironment.10 There are a number of radiomic

features, which are categorised into groups, such as those

listed in Table 2.

As thousands of features can be extracted from a medical

image, they are often limited or clustered to meet the

desired aim, which can include disease diagnosis,

predicting recurrence or metastatic spread.12 These

quantitative features can be combined with

clinicopathological information (e.g. age, histological grade

and biomarkers) to form a radiomics signature or

nomogram. This signature/nomogram can provide further

information on the tumour and improve the model’s

predictive ability.

Currently, the majority of radiomic studies in breast

cancer research focus on the classification of tumours

into benign or malignant lesions. Given the increasing

need and desire for personalised medicine, there is a

Table 1. Method of image segmentation.5

Segmentation

method Description

Manual Radiologist manually traces the outline of the

tumour but it is time-consuming for large datasets

Semi-automatic Manual seed planting in the tumours’ centre

followed by automatic border drawing by

computer algorithms

Automatic Uses highly trained computer algorithms to

delineate the tumour and is more accurate for

detecting the lesion versus background. Features

are more reproducible with automatic methods

Table 2. Radiomic features.11

Feature category Description

Morphology or shape Geometric properties of the ROI, for

example, volume, maximum surface,

tumour compactness and sphericity

First-order statistics or

histogram-based

features

Distribution of pixel/voxel values, for

example, mean, median, uniformity,

kurtosis, skewness and entropy

Second-order statistics

or texture

Contrast values between neighbouring

pixels and measures intratumoral

heterogeneity, for example, gray-level

co-occurrence matrix (GLCM) and gray-

level run matrix (GLRM)

Higher-order statistics Requires filters or transforms to be

applied to images and assesses

patterns and details, for example,

Fourier analysis

Structural features Describing the complexity of the

structures, for example, fractal

dimension

Kinetic Assesses washout rates and

heterogeneity of contrast

enhancement, for example, time to

peak enhancement
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growing interest in the use of radiomics for molecular

classification of breast tumours based on biological

markers. These are the oestrogen receptor (ER),

progesterone receptor (PR), human epidermal growth

factor 2 (HER2) and Ki67 proliferation marker. Through

immunohistochemical (IHC) testing, numeric values and

measures of positivity can be made to classify tumours

into four subtypes: luminal A, luminal B, HER2-enriched

and triple-negative breast cancer. Each of these subtypes

has different treatment options that they best respond to

and differing rates of aggression. For instance, luminal A

tumours have a better prognosis and long-term disease-

free survival compared to luminal B.13

The past few decades have seen significant

improvements in the survival rates of breast cancer

patients. However, there are still patients who are

ineffectively treated or remain undertreated, creating

additional physical and emotional burdens. Given the fact

that anticancer medications usually have severe side

effects, identifying patients who would not benefit from

specific treatments and avoiding needless exposure to

toxicity is critical.14 Radiomics has this potential and can

also identify other prognostic and predictive factors (e.g.

aggressiveness and metastatic risk). Furthermore,

identifying normal versus pathogenic biological processes

and pharmacological responses to a specific treatment

allows for proper risk stratification of patients to occur.15

Therefore, the purpose of this scoping review was to

investigate the range of existing studies in the field of

radiomics for breast cancer classification in magnetic

resonance imaging. Focus was placed on four themes of

research derived from the literature, which were

radiomics for tumour subtype classification, prediction of

pathologically complete response (pCR), detection of

lymph node metastasis and predicting recurrence.

Methods

Protocol

The protocol used for this review was the Preferred

Reporting Items for Systematic Reviews and Meta-

Analysis extension for Scoping Reviews (PRISMA-ScR)

checklist.

Eligibility criteria

Articles were included in this review if they were peer-

reviewed, full text and written in English to facilitate data

collection. Only original research studies were included.

Given that radiomic methods, MRI sequences and MRI

scanners are continually improving, articles published

from 2015 onwards were contemporary for this review.

Additionally, this review was limited to MRI imaging

only as radiomic techniques have been widely applied to

this imaging modality and have produced significant

results. MRI radiomics have been used to successfully

describe phenotype characteristics from DCE and DWI

imaging and have accurately predicted prognostic status

in breast cancer patients.3

Included studies utilised radiomic methods or, its

synonym, texture analysis, for the purpose of classifying

breast tumours into molecular subtypes: predicting pCR,

detecting lymph node metastasis or predicting recurrence

rates. All studies included patients who had a breast MRI

scan performed prior to commencing any treatment (e.g.

chemotherapy or surgery) and before a biopsy sample was

taken. Hence, this review could investigate the role of

radiomics in pre-treatment predictions, which reduce the

burden of unnecessary treatments and toxins for breast

cancer patients.

Sources and search strategy

Three databases were explored to find eligible articles,

which were Medline, Embase and Scopus. Three databases

were deemed sufficient as a saturation point was reached,

whereby no original articles were found upon investigating

further databases. Additional studies were found by

searching for grey literature on Google Scholar and

examining reference lists of included studies. Any

inconsistencies in the inclusion and classification of

articles were resolved through discussion between authors.

The search strategy for Medline and Embase included

the key terms and their combinations, as listed in Table 3.

Scopus was searched using an advanced search strategy;

(TITLE-ABS-KEY (radiomic* OR radiogenomic* OR

‘texture analysis’) AND TITLE-ABS-KEY (MRI OR

‘magnetic resonance imaging’) AND TITLE-ABS-KEY

(Ki67 OR HER2 OR ‘? estrogen receptor’ OR

Table 3. Medline and embase search strategy.

1 Breast cancer .mp 12 ?estrogen receptor .mp

2 Breast neoplasm/ 13 5 or 6 or 7 or 8 or 9

or 10 or 11 or 12

3 Breast tumo?r* .mp 14 Radiogenomic* .mp

4 1 or 2 or 3 15 Radiomic* .mp

5 Ki67 antigen/ or Ki67.mp 16 Texture analysis .mp

6 Ki 67 .mp 17 14 or 15 or 16

7 HER2 .mp 18 MRI .mp

8 Human epidermal

growth factor 2 .mp

19 Magnetic resonance

imaging .mp

9 Immunohistochemistry/ 20 18 or 19

10 Biomarkers, tumour/ or

tumo?r* biomarker* .mp

21 4 and 13 and 17 and 20

11 ER .mp
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‘progesterone receptor’) AND TITLE-ABS-KEY (‘breast

cancer’) AND PUBYEAR >2014).
A combination of these keywords was used to conduct

searches on Google Scholar and select relevant articles

from reference lists.

Data charting

A descriptive summary of reported results was presented in

data charting tables (Tables 4a–4d) to reflect both the

heterogenous findings and common themes. Included

articles were divided into four themes: subtype

classification, pCR prediction, lymph node metastasis

detection and recurrence prediction, each being charted

separately. The data charting table was drafted and tested

on five articles before edits were made by all reviewers.

Once the final design was agreed upon, the remainder of

the data charting process was completed.

Synthesis of results

Critical appraisal of included studies and results is not

the aim of scoping reviews.16 Hence, study characteristics

of all included articles were described and presented in

the data charting table to identify common themes and

highlight numeric findings. A thematic analysis was also

performed for all four key themes to discuss the

implications of the radiomics technique in clinical

practice and to identify areas of future research.

Results

Selection of sources of evidence

The final literature search resulted in 252 articles from

database searching and an additional nine from other

sources. All articles were exported to Endnote X9, where

duplicates were removed, leaving 134 articles for

screening. They were first screened based on their title

and abstract, where a further 56 articles were excluded.

The full texts of the remaining 78 articles were read to

determine eligibility based on the specified criteria

(Section “Eligibility criteria”). All four reviewers were in

consensus about the excluded 15 articles, resulting in 63

articles remaining to be included in the scoping review.

The selection process is outlined in Figure 1.

Characteristics of sources of evidence

Results of individual sources of evidence

Of the 63 articles included in this scoping review, 35

addressed subtype classification, 15 for prediction of

pathologically complete response, seven for lymph node

metastasis detection and six for recurrence prediction. All

included studies were retrospective in nature, with only

one including a prospective validation cohort.40 Findings

for each category will be discussed.

Subtype classification

A total of 35 articles were found that investigate the use

of radiomics for subtype classification of breast tumours,

with 12 articles using 1.5T scanners, 21 with 3T and five

with both 1.5 and 3T MRI scanners. Of the articles that

used both MRI scanner strengths, only one compared

their performance, noting that accuracy was slightly

improved when using a 3T scanner. Classification

accuracy was 95% and 97.7% for 1.5T and 3T scanners

respectively.50 This finding supports research suggesting

that, due to the higher field strength of 3T scanners,

spatial and temporal resolution increases, consequently

improving image quality and detection of smaller lesions.4

Additionally, a multiparametric MRI protocol was used

in 11 studies, whereby DCE, DWI and T2W images were

included for radiomic analysis and feature extraction. The

predictive performance of subtype classification improved

when multiparametric MRI models were used compared

to single-series models. Zhou et al.29 performed radiomic

analysis on three models comprised of T2W fat-saturated

images, T1W-weighted contrast-enhanced images and a

combination of both images to form a multiparametric

model. Prediction of HER2 status in breast cancer

patients for each model was AUC of 0.74, 0.71 and 0.86,

respectively, noting a significant improvement in

performance for the multiparametric model.29 This study

also used 3D segmentation and extracted a large range of

radiomic features from both the T1 and T2W MR

images, hence, could provide a greater range of features

to enable more comprehensive information of the

tumour’s biology to be incorporated into the predictive

model.

Furthermore, five studies formed radiomic signatures

that comprised both radiomic and clinical features. Wang

et al.34 sought to distinguish triple-negative breast cancer

(TNBC) from all other subtypes and compared the

performance of radiomic features alone versus the

inclusion of background parenchymal enhancement

(BPE), which is known to represent hormonal activity. In

each experiment, there was a significant increase in

predictive accuracy when using both radiomic and clinical

features (Fig. 2), highlighting the importance of BPE

heterogeneity on DCE sequences for diagnosing TNBC.34

First-order statistics features, including kurtosis,

entropy and skewness, are investigated in radiomic

studies as they are highly predictive of tumour
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characteristics. Ma et al.25 sought to determine Ki67

expression in breast tumours and found that high Ki67

lesions have higher kurtosis and lower skewness, which

measure the steepness and symmetry of data distribution.

Higher kurtosis indicates more heterogeneity, whereas

lower skewness suggests the opposite as the dataset

appears more homogenous. The homogenous appearance

from lower skewness occurs because there are many

nearby voxels that have similar uptake, indicating high

proliferation. This matches with what are clinically known

about high Ki67 tumours, which are highly proliferating

and more aggressive compared to low Ki67 tumours.25

Additionally, lower Ki67 tumours had smaller measures

of effective diameter, entropy, kurtosis and homogeneity,

all indicating less proliferation.25 This highlights the

ability of a machine learning model to make prognostic

predictions relating to tumour aggressiveness and

proliferation.

Radiomic analysis of intratumoral subregions was

investigated by Fan et al.,26 whereby they sought to

determine Ki67 status. As breast tumours are

heterogeneous in biological makeup, it is suggested that

intratumoral regions can better demonstrate this

heterogeneity compared to analysing the entire tumour as

one entity.26 This can reflect biological processes of the

tumour to facilitate prognostic predictions. The

performance of second-order statistics features in tumour

subregions versus the entire tumour was compared,

which predicted Ki67 status with an AUC of 0.807 and

0.748 respectively.26 This indicates that features from

tumour subregions are more representative of and related

to the tumour’s phenotype and characteristics.

Of note, only three studies explored subtype

classification by using a multicentre approach, meaning

that the study was heterogenous in the included cohort,

imaging protocol and MRI scanners used. Many previous

studies note that radiomics research is limited by small

patient cohorts, minimal number of radiomic features

used and no validation cohorts.46 To fill these research

gaps, Saha et al.46 performed a study to determine the

molecular subtype of breast cancer patients. They

included 922 patients who underwent breast MRI scans at

a variety of clinics with different imaging protocols. The

cohort was divided in half to produce equal-sized testing

and validation groups and used a total of 522 radiomic

features for lesion analysis. Moderate-to-good results were

produced with AUCs of <0.7, resulting in the conclusion

that radiomic features alone are insufficient for predicting

molecular subtypes.46 This heterogenous cohort reduces

the chance of overfitting and is representative of a

Figure 1. PRISMA flow chart of study selection process.
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broader range of patients, however, it also introduces

noise in analysis.46 Stronger associations between

radiomic features and subtype classification of breast

tumours could be found with a more uniform cohort and

methodology.46 This finding contradicts conclusions

drawn in many other studies, which suggest that

heterogenous cohorts and imaging protocols are vital in

improving reproducibility in clinical settings.28

Pathologically complete response

Prediction of pCR included 15 articles, with three articles

using 1.5T MRI scanners, four with 3T, six with both 3

and 1.5T and one unknown. Of the studies that

compared the performance of both scanners, no

significant findings were noted.52,55,56,57,60,61 The majority

of studies used DCE imaging protocols and produced

strong results ranging from AUC of 0.707 to 0.986.56,60

Two studies used T2W images alone for radiomic analysis

and could predict pCR following NAC with an AUC of

0.90261 and accuracy of 85.2%.63

Of note, five articles utilised radiomics signatures with

both clinicopathological and radiomic features, all

producing significant results of AUC >0.83.6,51,60,61,62

Interestingly, all articles included validation cohorts to

verify initial findings and produced AUCs of >0.79, which
is promising for producing reliable results and validating

the conclusion that a combined model performs better

than radiomics features alone.

Furthermore, Braman et al.57 was a largely

heterogenous study, using multiple MRI scanners from

different institutions and variable treatment regimens for

patients. Performance among training and validation

cohorts remained consistent, with an AUC of 0.89 and

0.80 respectively.57 Liu et al.59 was another multicentre

study, utilising three external validation cohorts. The

radiomics model performed strongly in the training set

but noted poor results in the validation cohorts. This

study measured pCR following NAC in multiple tumour

subtypes but had an unequal distribution of patients in

each subtype. The produced radiomics signature was

ineffective in predicting pCR for all subtypes, resulting in

non-significant results (i.e. an AUC of <0.6, with a P-

value >0.05 in comparison with the chance level) for

some experiments.59 Hence, it can be concluded that

radiomic models cannot be generalised among all

patients, rather should be subtype specific.59

Lymph node metastasis

Seven articles investigating radiomic analysis for the

detection of lymph node metastasis were identified. Two

studies utilised a multiparametric model to predict lymph

node metastasis, meaning the radiomics nomogram was

produced based on a combination of MR images,

including DCE, DWI and T2W.67,69 In both of these

studies, the multiparametric model produced the best

results, with AUCs of 0.86356 and 0.91.69 This is because,

when compared to single-series models, multiparametric

protocols can more accurately represent tumour

morphology and pathogenic processes.67

Additionally, Tan et al.66 utilised a combined

clinicopathological and radiomics model that noted a

slight improvement in predictive performance compared
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Figure 2. Comparison of predictive performance (AUC) for models using radiomic features alone versus a combined radiomic and clinical
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to a radiomics-only model, with AUCs of 0.894 and 0.88

respectively. However, Guo et al.68 found that a genomic

model performed significantly better than the radiomics

model, with AUCs of 0.916 and 0.775 respectively.

Another trend noted is that studies utilising a range of

radiomic features to develop the radiomic signature

produced results of greater statistical significance. For

instance, Chai et al.69 utilised a multiparametric model

with morphological, first-order statistics, second-order

statistics, transform and kinetic features to build the

radiomic signature, producing results with an AUC of 0.91.

The addition of kinetic features to this model allowed for

contrast uptake rates and heterogeneity in contrast

enhancement to be analysed.69 Cui et al.70 also noted this

trend, whereby improved prediction of axillary lymph node

metastasis resulted by combining morphological and

texture features to form the radiomics signature.

Recurrence prediction

Radiomics for prediction of cancer recurrence consisted

of six eligible studies, with three utilising a combined

clinicopathological and radiomics model. The addition of

clinical features, including heterogeneity phenotypes,

micro-vessel density and histological grade, saw

improvements in radiomic signature performance. For

example, Chitalia et al.71 noted significant improvements

in recurrence prediction, with AUC increasing from 0.55

to 0.73. Similar trends were noted in the other two

studies, which achieved maximum performances of AUC

0.76 and 0.79 respectively.72,74 All three studies concluded

that radiomic signatures based on both radiomic and

clinicopathological features improve the overall accuracy

of recurrence predictions. The addition of kinetic features

to studies provided valuable information on recurrence

patterns by measuring the relationship between contrast

enhancement and delays in uptake.11,74 Enhancement

characteristics provide information on the aggressiveness

of the tumours and can be associated with recurrence

risk.11 For example, Tokuda et al.11 could distinguish

between patients with low and high risk of recurrence by

analysing the kinetic feature of volume ratio, which

relates to the rate of contrast uptake. Slower, persistent

volume ratio was associated with a lower risk of

recurrence (P = 0.041), highlighting the value of kinetic

features for risk stratification of patients.11 Additionally,

one study was multicentre and produced statistically

significant (P < 0.05) results for predicting recurrence in

the HER+/HER2� and HER2+ subtypes only.73

Morphological features were the only type of radiomic

features used in this study, suggesting that a wider range

of features could improve the applicability of the

radiomics model across other subtypes.73

Discussion

The study has highlighted the potential for radiomic

techniques to facilitate the diagnosis and classification of

breast cancer, as well as predict patient outcomes.

Through mathematical analysis of MRI images, an

individual tumour’s anatomy and pathological processes

can be further understood. This allows for improved

accuracy of tumour classification and can indicate the

most clinically relevant treatment options for personalised

medicine. However, it was also recognised that radiomic

studies differ significantly and can be flawed in their

methodology, consequently inhibiting the clinical

application of this technique. Given the emerging nature

of radiomics and variations in methodological

approaches, this finding was consistent with other reviews

in this field. Therefore, future radiomics research should

aim to develop a standardised methodology to improve

understanding of the basic concepts of radiomics among

the medical imaging community. Additionally, there

should be a more detailed assessment of the quality of

these radiomic studies.

Another potential for future research is that unused

quantitative data remain within existing breast images,

which can be extracted through radiomic analysis to better

understand tumour characteristics. DCE images are highly

sensitive to enhancement patterns and angiogenesis as a

result of contrast enhancement, which is valuable in

describing tumour aggressiveness and malignancy.5 The

value of contrast required for DCE images is an ongoing

debate, and the extent to which contrast is necessary

should be further investigated. DWI and T2W images are

non-contrast protocols, with DWI assessing water

diffusion to reflect pathological processes associated with

the tumours microenvironment and membrane integrity.5

T2W images can assess intracellular and extracellular

activity to detect diseased tissue, which appears with

increased free water and hyperintensity.22 T2W images can

also assess the morphological characteristics of breast

tumours, such as architecture, cystic makeup and

heterogeneity, but are currently unable to determine

enhancement characteristics. Therefore, multiparametric

MRI sequences are advantageous for demonstrating a

wider range of tumour characteristics, which can improve

accuracy of subtype classification, prediction of treatment

response and recurrence or metastatic spread.

Furthermore, radiomic features have distinct

characteristics and appearances on the different MRI

sequences. For instance, Ko et al.36 investigated the

radiomic and clinical features of ER+ tumours. Higher-

grade, more aggressive tumours had greater uniformity

and lower entropy (textural features measuring

heterogeneity) on contrast-enhanced (CE) T1W images,
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whereas the opposite tendency was noted on T2W images.

These findings are contradictory as higher uniformity on

CE T1W images indicates more homogeneity, whereas

decreased uniformity on T2W images suggests

heterogeneity.36 This contradictory finding highlights an

important characteristic of aggressive tumours, which is

that they enhance homogenously due to increased

vascularisation. Multiparametric MRI protocols therefore

are critical for improving the accuracy of radiomic models

for predicting patient outcomes and the biological and

pathological processes of breast tumours.

Intratumour heterogeneity refers to the presence of

variations within a tumour and is increasingly recognised

as an important factor in understanding tumour behaviour

and predicting treatment response. Radiomics can provide

valuable insights into intratumour homogeneity, and to

fully understand its complexity, the tumour can be divided

into subregions to examine the variations in radiomic

features within different regions of the tumour. This

approach allows for a more detailed assessment of the

spatial patterns and distribution of imaging features within

the tumour. Voxel-wise analysis takes the spatial resolution

to an even finer level. Examining individual image voxels

and their corresponding radiomic features.

Acquisition parameters (e.g. echo time and repetition

time) as well as reconstruction algorithms and slice

thickness affect MR images produced during an imaging

sequence.75 These factors, in turn, determine image noise

and texture, which affects the radiomic features extracted

and their quantitative value.75 Consequently, images

captured on different scanners at a variety of institutions

will reflect different radiomic properties and produce

unstable features.75 Hence, it is difficult to obtain uniform

results that have consistent imaging parameters, which is a

barrier to the application of radiomic techniques to

clinical settings. Scanner strength is another parameter

affecting MR images, with few radiomic studies comparing

the radiomic features and predictive performance of 1.5T

and 3T scanners. Most studies concluded that no

statistically significant findings could be noted, however,

Sun et al.50 found slightly higher accuracy for predicting

molecular subtype with 3T scanners compared to 1.5T

(accuracy of 86.4% and 82.8% respectively).

ROI segmentation is a vital step in the radiomics method

as data are extracted from these defined regions for feature

analysis.75 It can be limited by poorly defined tumour

borders and lack of consensus and standardised

methodology. Researchers have the option to perform

manual, semi-automatic or automatic segmentation with

2D or 3D reconstructions. Automatic 3D segmentation is

the preferred method of segmentation as it is faster, can

provide a holistic understanding of the tumour’s

relationship with surrounding tissues and reduces the

chance of bias. On the other hand, semi-automatic or

manual 2D segmentation is prone to errors, inter- or

intrareader variability and is time-consuming.2 Yet, studies

using the suboptimal manual 2D segmentation approach are

still producing statistically significant results as can be seen

with Wang et al.,33 who distinguished TNBC from non-

TNBC with an accuracy of 95.4%. Currently, radiomic

features are extracted from the intratumoral (i.e. within the

tumour’s border) space. However, there is growing interest

in the peritumoral space, which is the region immediately

surrounding the tumour border that is defined in ROI

segmentation. Analysis of radiomic features in the

peritumoral space can provide insight into tumour

characteristics and biology, such as enhancement patterns,

angiogenesis and necrosis. Studies demonstrate improved

pCR prediction when using both peritumoral and

intratumoral features, resulting in an AUC of 0.78.5

It is evident that a radiomics signature/nomogram

consisting of both radiomic and clinicopathological

features improves prediction of anatomical and functional

tumour features. Radiomic or clinical features alone lack

detail and provide noisy data.18 However, as each

individual feature provides diagnostic and therapeutic

information, a more complete depiction of the tumour

can be gathered when features are combined, resulting in

statistically significant findings and improved positive

predictive values.18,60 Therefore, it is advantageous to use

a combined radiomic and clinicopathological model with

a range of features as predictions on subtype classification

and patient outcomes significantly improve, allowing for

the possibility of personalised medicine.

Current radiomic studies appear limited by small

patient cohorts, with included studies ranging from 27 to

922 patients, with an average of 169. This raises issues

including overfitting, unreliable results and poor

generalisation to the breast cancer population, limiting

the significance of findings from radiomic studies.

Therefore, future studies should seek to include larger

patient cohorts with a more equal distribution of

patients, such that study findings can be more reliable,

accurate and applicable to real-life breast cancer patients.

This review is limited by only investigating radiomic

studies using MRI as the imaging modality. The scope of

radiomic studies explored was reduced by not considering

ultrasound, mammography or computed tomography

(CT) scans. However, this limitation is countered by the

fact that this study performed an in-depth discussion on

the vast potential MRI images that must predict patient

outcomes and perform lesion classification. MRI is well

explored in relation to radiomic techniques, with results

of existing studies demonstrating highly accurate

predictions when using the DCE, DWI and T2W MR

images for radiomic analysis. Additionally, the limited
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range of included studies from 2015 onwards may have

resulted in missing key preliminary studies in the field of

radiomics.

Conclusion

Personalised treatment, risk stratification and prognostic

predictions are highly valued and desired in this current era

of personalised medicine, and radiomics provides the

potential to avoid unnecessary toxicities, reduce patient

burden and improve overall outcomes. Therefore,

radiomics has the potential to non-invasively assess tumour

pathophysiology and anatomy to allow for early and

accurate diagnosis of breast cancer. Radiomics is still in the

pre-clinical phase, with a lack of prospective studies and

standardised methodology, preventing its application in

clinical settings. With future studies addressing these

methodological pitfalls, radiomics has the potential to

revolutionise the management of breast cancer patients and

improve both survival rates and quality of life through

personalised medicine.
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