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Abstract
Motivation: Analysis of open chromatin regions across multiple samples from two or more distinct conditions can determine altered gene regu-
latory patterns associated with biological phenotypes and complex traits. The ATAC-seq assay allows for tractable genome-wide open chromatin
profiling of large numbers of samples. Stable, broadly applicable genomic annotations of open chromatin regions are not available. Thus, most
studies first identify open regions using peak calling methods for each sample independently. These are then heuristically combined to obtain a
consensus peak set. Reconciling sample-specific peak results post hoc from larger cohorts is particularly challenging, and informative spatial fea-
tures specific to open chromatin signals are not leveraged effectively.

Results: We propose a novel method, ROCCO, that determines consensus open chromatin regions across multiple samples simultaneously.
ROCCO employs robust summary statistics and solves a constrained optimization problem formulated to account for both enrichment and spatial
dependence of open chromatin signal data. We show this formulation admits attractive theoretical and conceptual properties as well as superior
empirical performance compared to current methodology.

Availability and implementation: Source code, documentation, and usage demos for ROCCO are available on GitHub at: https://github.com/
nolan-h-hamilton/ROCCO. ROCCO can also be installed as a stand-alone binary utility using pip/PyPI.

1 Introduction

Nucleosomes, complexes of DNA and histone proteins, com-
prise the initial stage of chromatin compaction of the genome,
reducing its occupying volume and enabling it to fit in cell nu-
clei (Li and Reinberg 2011). Most nucleosomal DNA is inac-
cessible for binding by transcription factors (TFs) that
regulate gene expression. Genome-wide annotations of non-
nucleosomal DNA, or open chromatin, therefore delineate
where TFs can readily bind and effectively characterize the
current gene regulatory program in a sample. Open chroma-
tin landscapes vary across cell types and conditions, including
in disease (Corces and Granja 2018) reflecting cell and
condition-specific gene regulation. To better understand this
dynamic nature of gene regulation, the identification of open
chromatin regions has become an important aspect of molecu-
lar studies of complex phenotypes.

Several assays have been developed for genome-wide measure-
ment of open chromatin, including DNase-seq (Boyle et al.
2008) and ATAC-seq (Buenrostro et al. 2015). These assays gen-
erate DNA fragments enriched for open chromatin regions that
are then sequenced using short-read sequencers. Resulting reads
are aligned to a reference genome, and regions with an enrich-
ment of reads, or “peaks,” are identified as open chromatin.
Peak calling is a necessary step as, unlike genes for which anno-
tations are available for many species, there are not comprehen-
sive, predefined standard databases of open chromatin regions.

Studies focused on determining changes in chromatin associ-
ated with differing cellular conditions or complex traits nor-
mally include many samples. For these studies, it is necessary
to define a common set of open chromatin regions, or
“consensus peaks,” to facilitate comparisons across sample
groups. Typically, consensus peaks are determined by first an-
notating peaks independently in each sample. Then, these
sample-specific peaks are merged based on one of several heu-
ristics including: (i) simply take the maximal set across all sam-
ples. This method, though, is particularly vulnerable to
anomalous data since peaks from a single sample satisfy the in-
clusion criterion; (ii) include only peak regions that occur in
“all” samples. This is usually too stringent due to variability in
data quality across samples, especially when there is an expec-
tation of differences; and (iii) require that peaks be present in
at least M ¼ 1 . . . K samples, where the boundaries of the con-
sensus peaks allow for some tolerance, T, for disparity in nu-
cleotide position. Protocols in the spirit of this general method
have been utilized in many open chromatin studies (Bao et al.
2015, Wang et al. 2018, Bentsen et al. 2020, Ming et al.
2021). A difficulty in applying such methods is choosing ap-
propriate M and T—a task manifesting rigid criteria that may
ignore some open regions or may include spurious regions and
that may not define well-supported peak boundaries.

More statistically sound methods have been developed for
handling multiple samples. For the specific case of K¼ 2
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samples, the Irreproducible Discovery Rate (Li et al. 2011) can
be controlled to mitigate calling of irreproducible peaks.
However, since most experimental designs include K� 2 sam-
ples per group, it is difficult to apply this method broadly.
Alternatively, Genrich (available at https://github.com/jsh58/
Genrich) offers a method for multiple samples in which P-values
are combined using Fisher’s method (Fisher 1925). While
Genrich has been used successfully in several studies (Hofvander
et al. 2019, Guerin et al. 2021, Salavati et al. 2021, Tsaryk et al.
2022), the independence assumption of Fisher’s method may be
problematic for large numbers of samples and/or in cases involv-
ing multiple technical replicates (Roy et al. 2019). It also does
not explicitly account for specific peak boundaries.

Here, we propose a novel method for identification of open
chromatin regions across multiple samples, ROCCO: “Robust
Open Chromatin detection via Convex Optimization.” This
method offers several favorable features:

• Accounts for both enrichment “and” spatial characteris-
tics of open chromatin signals, the latter of which is an in-
formative but often ignored aspect of ATAC-seq data that
can be used to not only better detect regions but also
improves on annotating peak boundaries;

• Leverages data from multiple samples without imposing
arbitrary “hard” thresholds on a minimum number of
samples declaring peaks;

• Is efficient for large numbers of samples;
• Does not require training data or a heuristically deter-

mined set of initial candidate regions, which are hard to
define given the lack of a priori sets of validated open
chromatin regions;

• Employs a mathematically tractable model granting useful
performance guarantees.

We formally describe the algorithm utilized by ROCCO for
the consensus peak problem and present a theoretical analy-
sis. We then conduct several experiments to investigate
ROCCO’s efficacy empirically, using a set of 56 samples from
human lymphoblastoid cell lines.

2 Materials and Methods

We begin by introducing notation (See Table 1 for a complete
notation reference) used throughout this manuscript and de-
scribing the structure of signal data used by ROCCO to detect
accessible chromatin.

2.1 Notation and definitions

Let L be a contiguous genomic sequence, e.g. a chromosome,
divided into n fixed-width loci, each consisting of L nucleoti-
des as in Fig. 1. For each sample j, we assume access to a sig-
nal, sij , computed as a function of observed enrichment based
on sequence reads at the ith locus. For K total samples, this
yields a K� n signal matrix used as input to ROCCO:

SL ¼

s11 s21 . . . sn1

s12 s22 . . . sn2

. . . . . . . . . . . .
s1k

s2k
. . . snK

0
BB@

1
CCA ¼ ð s1 s2 . . . sn Þ; (1)

with si 2 R
K denoting the column vector of signal values

among samples at the ith locus. This matrix can be generated

with a variety of methods, but a context-specific tool, rocco
prep is included as a subcommand in the software implemen-
tation for convenience: given a directory of samples’ BAM
files, SL is generated with multiple calls to PEPATAC’s (Smith
et al. 2021) bamSitesToWig.py tool.

2.2 Scoring loci

To determine consensus open chromatin regions, we first
score each locus while accounting for enrichment (g1), disper-
sion among samples (g2), and a measure of local volatility in
enrichment (g3).

Specifically, we take g1ðiÞ to be the median, and g2ðiÞ to be
the median absolute deviation (Pham-Gia and Hung 2001) of
the K signal values at the ith locus:

g1ðiÞ ¼ medfsi1 ; si2 ; . . . ; siKg
g2ðiÞ ¼ medfjsi1 � g1ðiÞj; . . . ; jsiK � g1ðiÞjg:

Large g1 and low g2 correspond to regions of high enrich-
ment with little dispersion among samples—a favorable combi-
nation of traits to emphasize when predicting accessibility. We
also leverage the disparities between enrichment signal values at
adjacent loci, normalized by the current locus’s enrichment,

g3ðiÞ ¼
1

g1ðiÞ þ 1

jg1ðiÞ � g1ðiþ 1Þj; i ¼ 1
maxfjg1ðiÞ � g1ðiþ 1Þj; jg1ðiÞ � g1ði� 1Þjg; 1 < i < n
jg1ðiÞ � g1ði� 1Þj; i ¼ n

:

8<
:

A fundamental aim of g3 is to more precisely annotate the
edges and immediately adjacent regions of peaks where sig-
nals may be low before or after an abrupt shift in enrichment
characterizing the nearby peak. See Fig. 2 for a visual demon-
stration on an idealized, continuous enrichment signal.

In (2), we define the score piece-wise and take a simple linear
combination of g1; g2; g3—or set this score to 0 if median enrich-
ment is below a defined threshold. This enrichment threshold
can encourage sparsity that may have favorable implications for
computational efficiency during optimization and mitigate con-
sideration of regions that are unlikely accessible.

SðiÞ ¼ c1g1ðiÞ � c2g2ðiÞ þ c3g3ðiÞ if g1ðiÞ � s
0 if g1ðiÞ < s

;

�
(2)

where s � 0 is the minimum enrichment threshold placed on
the median signal, and c1; c2; c3 � 0 are coefficients for each
term. By default, each scoring term has the following weights:
c1; c2; c3 ¼ 1, and s¼ 0. These defaults provide strong perfor-
mance but can be modified in the software implementation of
ROCCO to suit users’ specific needs. For example, users desir-
ing more conservative peak predictions may wish to set s > 0.
SðiÞ � 0 does not necessarily preclude the corresponding

locus from being selected, since the objective function [see

Figure 1. Genomic region L consisting of n fixed-width loci containing

L¼ 5 nucleotides each.
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Equation (3)] is not completely dependent on the locus score.
Note that for default parameters, SðiÞ � 0.

2.3 Optimization

We address open chromatin detection as a constrained opti-
mization problem. Let ‘ 2 f0; 1gn be a vector of binary deci-
sion variables, where we label ‘i ¼ 1 if the ith locus is present
in open chromatin, and ‘i ¼ 0 otherwise.

We impose a budget constraint “upper-bounding” the propor-
tion of selected loci in a given input chromosome. Let b 2 ½0;1�
be the maximum proportion of loci that can be selected, i.e.

Xn

i¼1

‘i � bnbc:

This constraint controls sensitivity in peak predictions and
prevents unrealistic solutions in which an excessive fraction of
chromatin is declared open. With estimates for the fraction of
accessible chromatin hovering around 3%� 4% of the human
genome (Song et al. 2011, Sahinyan et al. 2022), we accord-
ingly set b¼ 0.035 as the default value. Since the budget
applies to each chromosome independently, and the accessibil-
ity for each chromosome can vary, the software implementa-
tion allows for chromosome-specific parameters to be defined.

To optimize selection of accessible regions, the following
objective function is minimized:

f ð‘Þ ¼
Xn

i¼1

�
�
SðiÞ � ‘i

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

reward high locus scores

þ c
Xn�1

i¼1

j‘i � ‘iþ1j
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

c controls influence of adjacent loci

: (3)

The first term rewards loci with high S scores, e.g. those
with consistently high enrichment across samples or those on
the edges of greatly enriched regions. The second term is intro-
duced to account for spatial proximity of loci during optimiza-
tion and controls the influence of signals in adjacent loci: for a
given budget b, as c is increased, fewer but longer distinct
regions are annotated as open, yielding simpler solutions in a
topological sense. This pattern is exhibited in Fig. 3.

To incorporate the described objective and budget constraint,
we pose the following constrained optimization problem:

Minimize :
‘

fIP ‘ð Þ ¼
Xn

i¼1

�
�
S ið Þ � ‘i

�
þ c
Xn�1

i¼1

j‘i � ‘iþ1j

Subject To : ið Þ
Xn

i¼1

‘i � bnbc

iið Þ ‘i 2 f0;1g; 8i ¼ 1 . . . n:

(4)

Constraint (ii) restricts the feasible region to integer solu-
tions. In general, such constraints yield difficult optimization
problems, e.g. because gradients are not defined for functions
over the integers. Indeed, general integer programing is
known to be NP-hard (Korte and Vygen 2012). A common
remedy is to convert the original, integer-constrained formula-
tion to an analogous problem with convenient analytic prop-
erties. Accordingly, we substitute the constraints

‘i 2 f0;1g ! ‘i 2 R : 0 � ‘i � 1

to obtain the following convex optimization problem:

Minimize :
‘

fCPð‘Þ ¼
Xn

i¼1

�
�
SðiÞ � ‘i

�
þ c
Xn�1

i¼1

j‘i � ‘iþ1j

Subject To : ðiÞ
Xn

i¼1

‘i � bnbc:

ðiiÞ ‘i 2 ½0;1�; 8i ¼ 1 . . . n:

(5)

As we will see, this formulation maintains the essence of the
original problem in (4) and confers several useful properties. In
general, convexity is a highly valued feature in constrained opti-
mization as it ensures every local minimum is also a global mini-
mum, thereby preventing instances of “premature” convergence
to suboptimal solutions (Boyd and Vandenberghe 2004).

Theorem 1 The problem in (5) can be solved in polynomial
time for a globally optimal solution.

Linear programs (LPs) are a special class of convex
optimization problems in which both the objective and con-
straints are linear functions of the decision variables. Though
general convex problems can often be solved efficiently in
practice, there are certain intractable instances. In contrast,
LPs can be solved in worst-case polynomial time with
respect to the number of variables (Boyd and Vandenberghe
2004). Accordingly, the proof of Theorem 1, deferred to
Supplementary Section S1.1), relies on showing that an opti-
mal solution to (5), ‘ CP 2 R

n, is obtained from the n-dimen-
sional truncation of the optimal solution to the following LP:

Minimize :
‘

fLPð‘Þ ¼
Xn

i¼1

�
�
SðiÞ � ‘i

�
þ c

X2n�1

j¼nþ1

‘j

Subject To : ðiÞ
Xn

i¼1

‘i � bnbc

ðiiÞ ‘i 2 ½0;1�; 8i ¼ 1 . . . n
ðiiiÞ ‘j � �1 � ð‘i � ‘iþ1Þ; 8i < n; j ¼ nþ i
ðivÞ ‘j � þ1 � ð‘i � ‘iþ1Þ; 8i < n; j ¼ nþ i

;

(6)

Figure 2. The g3 term in Equation (2) is designed to more accurately

determine peak edges to capture enriched regions in their whole. This

function is greatest (yellow marks) near the ends of the enriched region

and lowest (dark blue marks) at peak centers in this idealized example.
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which we denote as ‘LP 2 R
2n�1. Moreover, the optimal ob-

jective values for (5) and (6) are equal:

min fCP ¼ min fLP ¼ OPT:

The time complexity of standard interior-point methods for
solving LPs with n decision variables and a d-bit data repre-
sentation is Oðn3dÞ, though several methods with improved
worst-case bounds have been proposed (Karmarkar 1984,
Vaidya 1989, den Hertog 1994). It is important to note that,
in practice, modern solvers offer much greater efficiency than
this worst-case bound might suggest by exploiting problem
structure (Boyd and Vandenberghe 2004, Koch et al. 2022).
Indeed, (6) possesses a particularly sparse objective and con-
straint matrix that allows for surprising efficiency showcased
in Supplementary Material S1.3.

After solving the relaxed form of an integer program, it is
often necessary to refine the solution for feasibility in the orig-
inal integer-constrained region. Exact combinatorial techni-
ques, such as branch and bound, can be applied to find
optimal integer solutions; However, such methods may incur
prohibitive computational expense and do not offer efficient
runtime guarantees. It is often more practical to use an ap-
proximation scheme (Williamson and Shmoys 2011).

We find in our own experiments that solutions to (6) are
nearly integral (Fig. 4) and can be rounded immediately, for
instance, with the floor function, to obtain a feasible solution
without a substantial sacrifice in practical performance.
However, this near-integrality cannot be guaranteed in all ex-
perimental settings and parameter configurations, and a more
robust procedure is preferred, which we now describe.

Given a solution to the relaxed formulation (6), we devise a
procedure, denoted RR, based on randomized rounding
(Raghavan and Tompson 1987), to obtain a set of candidate
integral solutions, LN . This set is generated by executing N
iterations of Algorithm 1, after which RR picks the best feasi-
ble solution with the lowest objective value.

Note that in a given solution space A 2 RD;D � 1, integral
solutions cannot yield better performance than the best real-
valued solution. The set of integral solutions is a proper sub-
set of A. For this reason, the quality of integer solutions can
be judged with reference to fLPð‘LPÞ. In light of this, the con-
struction of solutions ‘ rand 2 LN , with each ‘ rand

i defined as a
Bernoulli-distributed random variable with parameter pi ¼
‘ LP

i ; grants convenient properties arising from linearity of ex-
pectation. Namely,

E½fLPð‘ randÞ� ¼ OPT

with constraints satisfied in expectation by ‘ rand. We can use
these expected values and leverage concentration inequalities
to make probabilistic assertions regarding the solutions pre-
sent in LN.

Theorem 2 Let LN be a set of N � 1 random solutions
generated with Algorithm 1, and let c > 1, a > 0 be real
numbers satisfying 1

c þ e�2nðabÞ2 < 1 for n loci and
budget b 2 ð0; 1Þ. Then with high probability, LN

contains at least one solution with both (i) an objective

Figure 3. Example behavior of ROCCO in the UCSC Genome Browser (Karolchik et al. 2003) as c is increased. The black bars in each track correspond to

ROCCO’s predictions given the samples’ enrichment signals below. In the last row, we see that two distinct regions of enrichment are merged due to the

strong influence of adjacent loci imposed by the c¼ 5 parameter.

Algorithm 1: Drawing ‘ rand
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value no more than c �OPT and (ii) no more than
nbð1þ aÞ loci selected.

In short, Theorem 2 is proven (Supplementary Material
S1.2) using Markov’s and Hoeffding’s inequalities to show
that the probability of one or more ‘rand 2 LN satisfying both
criteria is at least

1� 1
c
þ e�2nðabÞ2

� �N

;

which quickly approaches 1 for increasing N. We emphasize
that this expression is a lower bound on the probability of a
satisfying solution, and we often observed multiple such solu-
tions in LN during the course of our experiments. But
Theorem 2 allows us to make more general assertions under
the supposition 1

c þ e�2nðabÞ2 < 1. Since n is on the order of
millions for default locus size L¼50, this criterion is satisfied
even for quite small c > 1; a > 0.

The RR procedure has linear time and space complexity, mak-
ing it a minor contributor to overall computational expense.
Though this random procedure technically renders ROCCO sto-
chastic, for the default N¼50 RR iterations, we observed only
minor variation in solutions returned from independent runs of
ROCCO. As seen in Supplementary Material S1.5, a pairwise
Jaccard similarity matrix for five independently generated
ROCCO solutions contains values no less than 0.9977.

Algorithm 2 offers a pseudocode representation of ROCCO
as a whole.

The object returned by Algorithm 2 is an n-dimensional de-
cision vector, ‘	; used to select loci as accessible. Note, contig-
uous selections (i.e. sequences of loci such that ‘	i ¼ 1) are
merged into single peaks in the final BED file.

Remark 1 Large Sample Sizes. Note that only the scoring
step is directly affected in runtime by the number of input
samples K, running on the order of nK elementary
operations using the median of medians algorithm.
Practical scenarios satisfy K
 n, making the number of
input samples a minor contributor to computational
expense during the calculation of Sð�Þ. Further, because
the scoring step is asymptotically dominated in worst-case
computational expense by the optimization step, which is

independent of K, the worst-case time complexity of
ROCCO is likewise independent of the sample size, K.

3 Results

We performed several experiments to assess ROCCO’s detec-
tion performance using ATAC-seq data from 56 human lym-
phoblast samples generated within the ENCODE project (See
"Data availability" section). Experiments were conducted us-
ing a stand-alone computer with an Intel Xeon CPU E5-2680
v3 @ 2.50 GHz processor, 8 cores, and 64 g RAM. We ran
the utility, rocco prep, included in the ROCCO software dis-
tribution, to process BAM files and create enrichment signal
tracks with L¼50. The MOSEK solver (https://mosek.com),
for which a free academic license can be readily obtained, is
used to solve the linear program (LP) in (6). Note, ROCCO can
call any open-source solver offered within the CVXPY
(Diamond and Boyd 2016) platform, but runtimes may vary.
ECOS (Domahidi et al. 2013)is a viable option installed with
CVXPY by default. Additional analyses and details are avail-
able in the Supplementary Material.

3.1 Detection performance

A noteworthy limitation in experiments comparing perfor-
mance of open chromatin detection methods is a lack of high-
confidence annotations against which to test. However, to
gauge performance and ensure viability, some proxy for
ground truth is needed. Following Zhao and Boyle (2021), we
constructed a “union set,” GT, of conservative irreproducible
discovery rate-thresholded (Li et al. 2011) peaks from
ENCODE “transcription factor” ChIP-seq experiments in the
GM12878 lymphoblast cell line. We assume that the majority
of annotated TF binding sites will correspond to open chro-
matin regions, but we note that variability in binding at a
snapshot in time, the incomplete annotation of all TF binding,
and cases where factors can bind to non-accessible chromatin
introduce notable limitations. But, we argue that these data
are sufficient to compare the relative performance of distinct
methods. The Fb-score, defined below, was then used to as-
sess the ability to recover and bound regions in GT using
ATAC-seq data from the 56 independent samples. Details re-
garding the construction of the GT dataset can be found in
Supplementary Material S1.7.

For each method, we generated consensus peaks using pre-
viously determined alignments for the K¼56 samples. We
then computed precision as

Algorithm 2: ROCCO

Figure 4. Observed distribution of decision variables after solving (6) with

budgets b 2 f:01; :025; :05; :075; :10g on 50 random subsamples (K¼40)
of the ATAC-seq data detailed in “Data availability” section and pooling

the solutions from each run.
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P ¼ jDX \DGTj
jDXj

and recall as

R ¼ jDX \DGTj
jDGTj;

where DX denotes the consensus peaks obtained from method
X and set intersections in the numerators are computed using
bedtools intersect (Quinlan and Hall 2010). The Fb-score
was then calculated as the harmonic mean of precision and re-
call where recall is weighed b times as much as precision, i.e.

Fb ¼ 1þ b2
� 	 P �R

b2PþR
:

As in Zhao and Boyle (2021), we use the Fb-score as the
primary metric for comparison of methods since it intuitively
combines both precision and recall and is less affected by ex-
treme regions of the precision–recall curve that do not corre-
spond to realistic use-cases.

3.1.1 Detection performance: benchmark methods
Most methods to determine consensus peaks begin by
identifying sample-specific peaks. For this step, we employed
the widely used MACS2 software (Gaspar 2018) using
parameters commonly specified for ATAC-seq experiments
(see Section 5). With these, we used a common heuristic to
specify consensus peaks (Yang et al. 2014). Namely, MACS2-
Consensus only retained merged peaks supported by a
majority of samples with a 100 bp tolerance in chromosome
position across samples. Genrich is another method for con-
sensus peak calling we tested that analyzes samples separately,
calculating P-values for each. It then applies Fisher’s method
to combine P-values at each genomic region. We also
generated peak sets with MACS2-Pooled, which combined
alignments from all samples into one BAM file and then used
MACS2 to call peaks on this combined alignment file.

See Supplementary Material S1.8 for exact configurations
used to produce results for these MACS2-based methods and
for Genrich.

3.1.2 Detection performance: results
For an initial visual comparison of methods, Fig. 5 displays
peak calls from each in 100 and 20kb regions on
Chromosome 19 in the UCSC Genome Browser (Karolchik
et al. 2003). We also include ATAC-seq signals from 25 of
the lymphoblast samples being evaluated. As expected, all
methods identify regions with consistently strong signals across
all samples. They vary, though, in the contiguity and bound-
aries of these regions. There are also method-specific regions,
as well as ones called by multiple, but not all, methods.

To quantify genome-wide detection performance of the
methods, we evaluated across several values

b 2 f0:5;0:75; . . . ; 1:50;2:0g

to address a plausible but encompassing range of recall/preci-
sion prioritizations. The most extreme cases b ¼ 0:5;b ¼ 2:0
were included for completeness but may not be particularly
well-motivated by realistic usage since the corresponding Fb

score can be unduly improved by simply rejecting any uncer-
tain predictions or accepting all plausible predictions,
respectively.

For each Fb-score, we tuned each method over a range of
significance thresholds deemed reasonable given their under-
lying models to maximize their performance. For Genrich,
we tested

p 2 f10�6; 10�5; . . . ;10�1g:

For the MACS2-based methods, we tested:

q 2 f:001; :005; :01; :05; :10; :20g:

For ROCCO, the budget parameter is most fundamental and
upper-bounds the fraction of genomic region L that can be
selected. We thus use b as the tuning parameter for ROCCO,
leaving c; s; c1;2;3 as their default values, and evaluated:

b 2 f:02; :025; . . . ; :06g:

For each b listed above, given a method X and parameter r,
we computed tuned performance as

max
r

FbðXrÞ;

i.e. the best-observed performance of the method while sweep-
ing its most fundamental parameter. These values are
recorded in Table 2. ROCCO matched or exceeded the best per-
formance of every benchmark method for all six b values. The
performance disparity between ROCCO and the second best-
scoring method was smallest for the most recall-dependent
case b¼2, which we have stated is only partially informative
and particularly vulnerable to spurious predictions.

As mentioned above, ROCCO allows for specifying
chromosome-specific parameters to account for varying chro-
matin state dynamics across the genome. For a cursory inves-
tigation into the effects of this practice, we tuned the budget
parameter for F1 via grid search for each chromosome. We
observed a non-trivial increase in performance (F1 ¼ :620)
compared to a constant budget for all chromosomes
(F1 ¼ :579 as in Table 2), but we expect additional improve-
ments from a more rigorous, technically sound approach in
which budgets are not restricted to an arbitrary set of values.

A comparison of methods using their “default”
significance thresholds without tuning is included in
Supplementary Material S1.4, where ROCCO offers the great-
est Fb-score in all but the b ¼ 0:5;b ¼ 2:0 experiments.
Likewise, Supplementary Material S1.3 includes experiments
assessing ROCCO’s computational efficiency in both theory
and practice.

3.2 Variation in sample size/quality

Ideally, a consensus peak calling procedure will

• Effectively leverage data presented by multiple samples.
• Yield robust results in the presence of varying sample

quality and size.
• Scale efficiently for large sample sizes.

In this section, we conduct several analyses to consider
these aspects for ROCCO.
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In the first experiment, ROCCO is repeatedly executed using
random subsamples of Ksub 2 f5;10; 15; . . . ;50g ATAC-seq
alignments from the dataset in “Data availability” section as
input. The subsamples’ respective output peak sets are then

(a)

(b)

Figure 5. Example behavior over chr19:1000000–1100000. Consensus peak calls from each method tuned using the Fb score (b ¼ 1:0). For
perspective, results are displayed at two resolutions. (a) 100 kb and (b) 20 kb.

Table 2. Performance for each method is recorded after tuning for the Fb

value in the leftmost column.

b ROCCO Genrich MACS2� Pooled MACS2� Consensus

0.50 0.651 0.460 0.390 0.643
0.75 0.596 0.489 0.427 0.586
1.0 0.579 0.520 0.465 0.545
1.25 0.580 0.545 0.501 0.517
1.50 0.582 0.566 0.531 0.498
2.0 0.603 0.595 0.577 0.475

Bold values indicate the greatest score in each row across
the tested methods.

Table 1. Notation reference.

Symbol Description Default value

b Budget threshold on selected loci 0.035
c1; c2; c3 Weights for score function SðiÞ 1.0
f Objective function N/A
c Fragmentation penalty in Equation (3) 1.0
K Number of input samples N/A
‘i Decision variable for ith locus N/A
‘ Vector of decision variables N/A
L Fixed interval size of input signals 50
L Contiguous genomic region N/A
n Number of loci in L N/A
N RR iterations 50
Sð�Þ Locus score function N/A
SL K�n signal matrix over L N/A
s Median enrichment threshold in Sð�Þ 0
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compared to the peak set obtained by running ROCCO on the
full set of K¼56 ATAC-seq alignments. To compute similarity
between the subsamples’ peak sets and the entire sample’s, we
measured the Jaccard statistic between their respective BED
files using bedtools (Quinlan and Hall 2010). In this con-
text, the Jaccard index measures the ratio of the number of
intersecting base pairs to the number of base pairs in the
union of two BED files. The average Jaccard index for each
Ksub is recorded in Fig. 6 along with 95% confidence inter-
vals. Notably, with only Ksub ¼ 5 samples, ROCCO generated
peak sets roughly 70%—similar to the ROCCO’s peak set gen-
erated using all K¼56 samples. Moreover, ROCCO produced
strictly increasing Jaccard indexes for increasing subsample
sizes, indicating an effective utilization of additional samples.
Though the purpose of this experiment is to evaluate ROCCO’s
approximation of the full-sample-derived results with
respect to smaller subsamples, we note that detection perfor-
mance as measured in Section 3.1 likewise improved with
respect to increasing Ksub from F1 ¼ 0:54660:011 to
F1 ¼ 0:57836:001.

Regarding efficiency, the cpu-time required to execute
ROCCO genome-wide was affected negligibly by Ksub, with the
average runtime for Ksub ¼ 5 and Ksub ¼ 50 differing by
<20% despite the 1000% increase in samples. This result is
informed theoretically by Remark 1, where the time complex-
ity of ROCCO is shown to be asymptotically independent of
sample size K.

The second experiment compares the effect of data quality
on consensus peak sets generated by executing ROCCO
independently on the ten best and worst samples as measured
by the transcription start site (TSS) enrichment score
(Smith et al. 2021). The data from the 56 lymphoblast sam-
ples are of relatively good quality (Supplementary Material
S1.6), as evidenced by minimum TSS enrichment score of
4.95. Nonetheless, the distribution of scores reflects apprecia-
ble differences in sample quality between the left and right
tails. With this considered, the relatively small disparities in
ROCCO’s detection performance shown in Fig. 7 indicate ro-
bustness to variation in sample quality. In comparison,
MACS2-Consensus, the best-performing alternative method
in this experimental setting, returns lower F1-scores for both

the worst 10 samples (F1 ¼ 0:492) and best 10 samples
(F1 ¼ 0:530) and a larger disparity between performance in
each case.

3.3 Differential accessibility testing with ROCCO

A key motivation in the development of ROCCO was for exper-
imental designs where ATAC-seq data are generated from
multiple samples within two or more distinct groups. Using
these data, a key question regards the location of genomic
regions over which accessibility differs significantly between
groups. Knowledge of such regions may yield insights into
regulatory mechanisms responsible for phenotypic differen-
ces. To offer a template for differential analysis with ROCCO,
we ran a simple experiment comparing the accessibility land-
scapes of males and females in the lymphoblast data described
in “Data availability” section. Note, a Jupyter Notebook tu-
torial addresses steps for differential analysis with ROCCO and
is available on the GitHub repository.

In this demonstrative experiment, ROCCO was run indepen-
dently on the 23 female and 33 male lymphoblast samples using
default parameters, and the peaks were merged post hoc to cre-
ate a final set of 172 933 consensus peaks, which we refer to as
p-hoc_merge. p-hoc_merge included 23 865 peaks only
detected in the male samples and 19 165 peaks only detected in
the female samples. �17 000 peaks in each of these sets were
not included in the set derived from running ROCCO on the in-
put set of all K¼56 samples, which we refer to as all_k.
However, we note that the total span of disparate features was
modest: a Jaccard similarity of �85% was observed between
all_k and p-hoc_merge. Whether to split by group and then
merge or to run ROCCO on all samples combined is a context-
specific decision dependent on parity in sample sizes/quality
among the cohorts and the general motivation of the experi-
ment. We accommodate both protocols and have made each
straightforward to apply in ROCCO’s software implementation.

Peak calling is an intermediate step in differential accessibility
analyses to strategically identify candidate regions of interest,
and DESeq2 (Love et al. 2014) was used in this experiment to
detect significant differences in chromatin state between groups
over the peak regions identified with ROCCO. At FDR-adjusted
P<0.05, 3141 significant differentially accessible peaks span-
ning 2 275 100 bp were identified. About 93% (2916) of these
peaks were observed in chromosome X, which is unsurprising
given the recorded difference in sex between cohorts.

Figure 6. In 50 experiments for each Ksub 2 f5; 10; 15; . . . ; 50g; Ksub

ATAC-seq alignments are randomly subsampled and supplied as input to

ROCCO. The 50 resulting output BED files are used to compute the

average Jaccard index (95% CI) to ROCCO’s results obtained using all

K¼ 56 samples.

Figure 7. Histogram of TSS enrichment scores as defined by ENCODE for

the K¼ 56 ENCODE ATAC-seq samples used in experiments. TSS scores

are commonly used as a quality measure for ATAC-seq alignments.

ROCCO was run twice with default parameters—once using the K¼ 10

“worst” samples (left/red) as input and again using the K¼ 10 “best”

samples (right/blue). TheF1 performance in each case is labeled for

comparison.
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4 Discussion

In this manuscript, we introduced ROCCO, a novel method for
identifying open chromatin regions in ATAC-seq data that si-
multaneously leverages information from multiple samples to
determine a consensus set of peaks. ROCCO uses spatial fea-
tures of enrichment signal data by initially formulating the
problem with a convex model that can be solved with prov-
able efficiency and performance guarantees. Importantly, the
model accounts for features common to the edges of accessi-
ble chromatin regions, which are often hard to determine
based on independently determined sample peaks that can
vary widely in their genomic locations. In addition to several
attractive conceptual and theoretical features, ROCCO also
exhibited improved detection performance based on ATAC-
seq data from 56 lymphoblast samples evaluated against
known TF binding sites determined using ChIP-seq. ROCCO is
especially suited for experimental designs that include multi-
ple samples from two or more distinct groups with one goal
being to determine regions that are differentially accessible be-
tween these groups. A Jupyter notebook tutorial provides a
step-by-step protocol for this with all necessary scripts pro-
vided on the GitHub repository.

For simplicity and to provide a conservative comparison
with other methods, we ran ROCCO with the same genome-
wide parameters for all chromosomes, including the budget
which dictates the “maximum” proportion of the chromo-
some that should be considered accessible. However, chroma-
tin accessibility varies across chromosomes, and ROCCO’s
performance may be improved by exploiting properties spe-
cific to each chromosome. We found that optimizing the bud-
get parameter for each chromosome for Fb-score at b ¼ 1:0
did show an improvement. These optimized budget parame-
ters roughly reflected the differences in gene density and read
density across chromosomes, as expected. In the future, we
will focus on developing an efficient, robust method to derive
reasonable chromosome-specific budgets based on the input
signal data.
ROCCO’s locus size parameter was set to L¼50 throughout

experiments. While our results suggest this grants good per-
formance and a resolution sufficient to identify both broad
and concentrated regions of enrichment, it may prove benefi-
cial to modify this parameter depending on the expected size
of elements and desired granularity. We note, however, that
decreasing L increases the number of loci, n, which may in-
duce additional computational expense. By the same reason-
ing, computational burden can be reduced by increasing L,
though some loss in the precision of predicted peaks may re-
sult. The effects of the locus size parameter are discussed in
greater detail in Supplementary Material S1.4.

Overall, ROCCO represents a scalable, effective, and mathe-
matically sound method that is broadly applicable and
addresses an important need in functional genomics analysis.

Supplementary data

Supplementary data are available at Bioinformatics online.
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