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Mesenchymal ovarian cancer cells promote CD8+ T cell
exhaustion through the LGALS3-LAG3 axis
Edward Yakubovich 1,2,3✉, David P. Cook1,2, Galaxia M. Rodriguez1,2,3 and Barbara C. Vanderhyden 1,2,3

Cancer cells often metastasize by undergoing an epithelial-mesenchymal transition (EMT). Although abundance of CD8+ T-cells in
the tumor microenvironment correlates with improved survival, mesenchymal cancer cells acquire greater resistance to antitumor
immunity in some cancers. We hypothesized the EMT modulates the immune response to ovarian cancer. Here we show that
cancer cells from infiltrated/inflamed tumors possess more mesenchymal cells, than excluded and desert tumors. We also noted
high expression of LGALS3 is associated with EMT in vivo, a finding validated with in vitro EMT models. Dissecting the cellular
communications among populations in the tumor revealed that mesenchymal cancer cells in infiltrated tumors communicate
through LGALS3 to LAG3 receptor expressed by CD8+ T cells. We found CD8+ T cells express high levels of LAG3, a marker of T cell
exhaustion. The results indicate that EMT in ovarian cancer cells promotes interactions between cancer cells and T cells through the
LGALS3 - LAG3 axis, which could increase T cell exhaustion in infiltrated tumors, dampening antitumor immunity.
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INTRODUCTION
The epithelial-to-mesenchymal transition (EMT) refers to the
plastic ability of epithelial cells to undergo a conversion to a
mesenchymal state by gradually shedding epithelial features in
response to environmental signals1. In tissue microenvironments,
cells undergoing EMT exist on a continuum where cells are either
in a complete epithelial state, complete mesenchymal cells, or a
gradient of intermediate states. In cancer, EMT has been
associated with metastatic spread and immunosuppression2–4. In
the case of metastasis, cancer cells responsible for invasiveness
and migration appear to be at least in a partial EMT (pEMT), if not
a fully mesenchymal, state5–7. Mesenchymal and pEMT states also
highly contribute to the immunosuppressive burden in the
ovarian tumor microenvironment (TME)7–9.
Immune infiltration and inflammation play an important role in

tumor development in a variety of cancers10,11. Chronic inflamma-
tion established by immune infiltration has been associated with
tumor progression, particularly with enhanced metastasis and the
EMT process through secreted factors such as transforming
growth factor beta 1 (TGF-β1) and tumor necrosis alpha (TNF-α)
derived from myeloid cells12,13. Human tumors can be classified
according to their level of immune infiltration: an ‘infiltrated-
inflamed’ (infiltrated) tumor is characterized by a TME containing
tumor infiltrating lymphocytes (TILs) in intraepithelial locations
and displaying a cytotoxic transcriptional signature14. This
immune phenotype along with the presence of CD8+ cytotoxic
T lymphocytes (CTLs) has been associated with better prognosis
and overall survival in high-grade serous (HGSOC)15,16. ‘Immune-
excluded’ (excluded) tumors are distinguished by TILs found
mainly in the stromal portion of the tumor. In ‘immune-desert’
(desert) tumors, immune cells are largely absent from the TME14,17.
The differences between excluded and desert tumors may be due
to immune exclusion because of the density of the extracellular
matrix18 or through a chemorepellent gradient as has been
reported for triple-negative breast cancer19.

Even though in ovarian cancer, particularly in HGSOC, immune
infiltration by CD8+CD103+ CTLs has been associated with
increased progression-free survival, recent findings indicate that
a large portion of this population are positive for T-cell
immunoglobulin and mucin-domain containing-3 (TIM3)20,21 and
Lymphocyte Activation Gene-3 (LAG3)21,22 in epithelial ovarian
cancer (EOC), suggesting they are prone to exhaustion and
attenuated effector functions. Both TIM3 and LAG3 act as co-
inhibitory molecules together with programmed cell death
protein-1 (PD1) to dampen CTL mediated antitumor immunity22,23.
LAG3 encodes a cell surface protein that is expressed on T-cells,
natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and B
cells, and associates with the T-Cell Receptor complex (TCR, CD3)
on both CD4+ and CD8+ T cells acting as an immune inhibitory
checkpoint. LAG3 binds to Galectin-3 (GAL-3) with strong affinity
and chronic LAG3 engagement on CD8+ tumor antigen-specific
T cells has been implicated in exhaustion of TILs and reduction in
their cytolytic capacity24,25.
EMT in cancer cells has been linked to chemoresistance and

immunosuppression in HGSOC. TGF-β/SMAD signaling drives
resistance to paclitaxel, BMP9 activates EMT through TGF-β1 and
promotes platinum resistance, and expression of lysyl oxidase
(LOX) induces EMT through SLUG and TWIST1 and contributes to
chemoresistance in activating PI3K/AKT9,26. Recent attempts in
breast cancer to elucidate the role of EMT in cancer cells’ ability to
facilitate an immunosuppressive TME have shown that mesench-
ymal cancer cells express low levels of MHC I and are associated
with infiltration of regulatory T cells (Treg)27 and resistance to anti-
CTLA4 therapy3. In HGSOC, lower abundance of CD8+ TILs is
associated with the worst prognosis and a high expression of EMT-
related gene signatures in cancer cells28. Despite the interest in
how cancer cells affect CD8+ T-cell exhaustion in HGSOC, the role
of the EMT has yet to be elucidated.
To better understand the signaling pathways underlying CD8+

T-cell function in HGSOC driven by EMT, we accessed a publicly
available single-cell RNA-seq (scRNA-seq) dataset of 16 HGSOC
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samples29 categorized by their tumor immune phenotypes:
infiltrated/inflamed (infiltrated), immune-excluded (excluded), or
immune-desert (desert). We first discovered that infiltrated ovarian
tumors have a higher EMT signature than either excluded or
desert tumors. Pathway analysis revealed that EOC cancer cells in
a pEMT or mesenchymal state upregulate pathways related to
chemotaxis of immune cells, particularly in infiltrated TMEs. In-
depth analysis of cell communication networks of cancer cells
signaling to the CD8+ T cell population revealed that a large
portion of the communication is facilitated by the mesenchymal
cells and is mediated by HLA II molecules and LGALS3
communicating with the LAG3 receptor complex. Our findings
suggest that direct signaling between mesenchymal cancer cells
and CD8+ T cells trigger LAG3 and other T cell exhaustion
pathways, disrupting anti-tumor immunity and supporting tumor
development.

RESULTS
Comparing single-cell profiles of distinct immune phenotypes
of HGSOC
To assess how EMT contributes to the activity, immunosuppres-
sion and/or exhaustion of CD8+ T cells, we began by accessing a
scRNA-Seq dataset of 16 human ovarian cancers29. The plan for
this data analysis is summarized in Fig. 1a. We chose these
datasets due to their inclusion of immune phenotyping metadata
confirmed by histology. We assessed for quality-control and
clustered every sample individually by merging the respective
CD45+, tumor, and stromal fractions of each individual dataset
before using our semi-supervised labeling method to identify the
individual cell types comprising each tumor sample, as described
in the Methods. The tumor samples analyzed are from a single
study where each tumor was processed with an identical
protocol29,30. Although this protocol may introduce cell type
biases, the assumption is that they are consistent among samples.
First, we overlaid the immune phenotypes of the samples in a

UMAP to visualize the grouping of all the cells (Fig. 1b). Next, we
overlaid the results from our semi-supervised labeling method
(Fig. 1c, d) to label the cell types onto the UMAP. While there is
some intracellular heterogeneity, most populations group
together irrespective of the tumor immune phenotype. This
suggests that infiltration status phenotypes minimally contributes
to dimensionality reduction and clustering of the cell populations.
By examining the population proportion breakdown in the TME by
immune phenotype metadata (Fig. 1e, Supplemental Fig. 1), we
found that semi-supervised labeling of the 16 tumors matches the
originally published findings with respect to immune phenotype,
where in infiltrated tumors there are most CD45+ cells relative to
cancer cells, fewer CD45+ cells relative to cancer cells in excluded
tumors, and fewest CD45+ cells relative to cancer cells in desert
tumors. This confirms that our cell labeling method was accurate
in correctly identifying CD45+ and CD45- cells.
To assess the role of cancer cells in contributing to the unique

composition of each immune phenotype, we performed differ-
ential gene expression analysis to identify the top and bottom
most differentially regulated genes between cancer cells from the
infiltrated TME compared to cancer cells from desert TME (Fig. 2a)
and excluded TME (Fig. 2b). Cancer cells from infiltrated TMEs
differentially express genes related to immune regulation within
the context of carcinogenesis, such as: B2M31, SLPI32, HLA-A33,
ELF334, MUC135, MDK36, CXCL1737 and others. Based on upregula-
tion of these immune regulatory genes, we performed GSEA first
comparing cancer cells from the infiltrated to the desert TMEs. We
discovered that many biological pathways (GOBP) related to
immune regulation were upregulated in cancer cells from
infiltrated TMEs (Fig. 2c, d). Among the main findings, some
pathways were related to chemotaxis and enrichment for

processes related to antigen presentation and cytokine activity,
suggesting that cancer cells in infiltrated tumors actively
participate in modulating the immune response and shape the
tumor immune phenotype. Similar results were obtained when
investigating the pathway enrichment analyses comparing cancer
cells from infiltrated versus excluded TMEs (Fig. 2e) and excluded
to desert TMEs (Supplemental Fig. 2) suggesting that pathways
related to immune regulation could be “turned on” either as a
response to immune infiltration or as a precursor to the arrival of
immune cells promoted by cancer cells themselves. These results
may be indicative of EMT-related cell-cell signaling driving
chemotaxis of various CD45+ cells from different populations to
the TME.

Cancer cells from infiltrated tumors are more mesenchymal
compared to cancer cells from other immune phenotypes
Our discovery that cancer cells in infiltrated TMEs activate immune
regulatory pathways prompted us to assess the EMT status of
cancer cells given that cells in partial or fully mesenchymal states
are known for their immunoregulatory capabilities38–40. Hornburg
et al., (2021)29 showed that desert TMEs contain malignant cells
with higher expression of EMT-associated genes using the MSigDB
Hallmark gene set41. Our gene set scoring using the subset of 58
Hallmark genes they found associated with the desert tumors
similarly reproduced their findings (Supplemental Fig. 3a, b).
However, when we performed gene set scoring on the cells with
the complete 200-gene Hallmark gene set, no difference was
found between tumor immune phenotypes (Supplemental Fig. 3c,
d). By applying GSEA enrichment analysis of the three different
EMT gene modules, we also found their subset enriched in DEGs
from desert derived cancer cells, whereas applying both the full
Hallmark EMT gene set and our cancer-specific EMT gene
signature yielded negative enrichment scores (Supplemental
Fig. 3e; Supplemental Data 1). Based on this analysis, it is unclear
if scores calculated using the Hallmark EMT gene set are sufficient
to indicate a mesenchymal phenotype. Signature activity among
malignant cells from different tumor immune phenotypes
revealed some key differences in the cancer cell population
(Fig. 3a). The score distribution was then evaluated across the
malignant cells derived from the 16 tumors (Fig. 3b) revealing a
notably higher EMT activity score of infiltrated tumors compared
to excluded and desert tumors (Fig. 3c, d; Supplemental Fig. 4).
This result was surprising as desert TMEs have been previously
linked to higher EMT signatures in the cancer cells of
HGSOC29,42,43. Consistent with our finding, individual cancer-
specific EMT signature genes such as PDIA3, HLA-A, BCAM, B2M,
LGALS3BP, and HLA-C were highly expressed in cancer cells from
infiltrated and excluded TMEs (Supplemental Fig. 5). Importantly,
none of the tumor samples was found as an obvious outlier for
cancer-specific EMT signature scores (Supplemental Fig. 4).
Interestingly, cancer cells from infiltrated TMEs appeared to be
more heterogeneous in their EMT scoring and skewed towards
mesenchymal phenotypes.
To validate the cancer-specific EMT signature’s fidelity in

determining EMT, we leveraged an EOC cell line that we have
previously shown to undergo transcriptional changes asso-
ciated with EMT when treated with TGF-β144. OVCA420 cells
were treated with TGF-β1 to induce EMT and the cells were
collected at three different time-points to perform scRNA-seq
(Fig. 3e). We modeled a continuous pseudotemporal EMT
trajectory from the data (Fig. 3f) and found that scores from the
EMT signature increase throughout EMT progression as
expected, alongside pseudotime values (Fig. 3g). Furthermore,
the OVCA420 in vitro model of EMT involved activation of
classical EMT genes such SOX4, SNAI2, COL1A1, and FN1
(Fig. 3h). Finally, we leveraged non-negative matrix factoriza-
tion (NMF), a technique which enables the investigation of
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Fig. 1 Identification of cell populations from patient-derived tumor cells in silico confirms greater immune cell presence in infiltrated
tumors compared to excluded and desert tumors. a Overview of analysis and experimental validation procedures. b Uniform manifold and
approximation projection (UMAP) of patient derived tumor cells colored by tumor immune phenotype. c Labeled UMAP from patient derived
tumor cells colored by cell population. d Series of UMAPs colored by individual gene expression levels in various cell populations from patient
derived tumors: KRT19, ELF3, EPCAM for cancer cells; COL1A1, COL1A2 for fibroblasts; CDH5, CLDN5 for endothelial cells; ACTA2 for smooth
muscle cells. e Relative frequency of overall cell populations in patient derived tumor samples separated by immune phenotype and colored
by cell population.
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coordinated gene expression sources of heterogeneity in the
data in a semi-supervised manner with machine learning. We
therefore generated a list of 10 possible cell state programs
(Supplemental Fig. 6) representing the inherent expression of
unique sub-groups of cells throughout the time course (Fig. 3i).

Of all the NMF-derived programs, programs 2 and 10 were
most consistent with an EMT program. Program 10 (Supple-
mental Fig. 6) enriches the cell cluster located at the final
timepoint of 7-days after TGF-β1 treatment, where we expect a
‘maximal’ mesenchymal state. To further explore program 10,
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Fig. 2 Cancer cells from infiltrated tumors upregulate signaling pathways related to immune cell chemotaxis, immune modulation, and
antigen presentation compared to cancer cells from excluded or desert tumors. a Volcano plots of differentially expressed genes (DGE)
between cancer cells of desert and infiltrated tumors (left) and excluded and infiltrated tumors (right). b Enrichment plot of infiltrated GOBP
terms from GSEA of a selection of significant (*p-adjusted <0.05) pathways between cancer cells of infiltrated (red) and desert tumors (blue).
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we took the top 500 most-weighted genes in the program and
ran an Enrichr analysis (Supplemental Fig. 7a). We discovered
that program 10 enriches for Hallmark gene modules related to
immunoregulatory pathways such as ‘TNF-alpha signaling via

NF-kB’ (***p < 0.001), and others to ‘p53 pathway’
(***p < 0.001), and ‘mTORC1 signaling’ (***p < 0.001) while also
enriching the Hallmark EMT gene module. When we performed
the same analysis for program 2 (Supplemental Fig. 6), we
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found reduced enrichment for these same pathways (Supple-
mental Fig. 7b). These results suggest that a distinct
immunoregulatory program is activated upon TGF-β1
induced-EMT and may not be well represented by the Hallmark
EMT gene set.
Analysis of the enrichment of cancer cells in the dataset of 16

HGSOC for genes encapsulated in our in vitro-derived NMF
program 10 (Supplemental Data 2; Fig. 3i) revealed a greater
overall presence of mesenchymal cells in the cancer cell
population derived from the infiltrated tumors, followed by
cancer cells from excluded and then desert tumors. Scoring the
tumors with this defined NMF signature showed enrichment in
infiltrated tumors consistent with the distribution of scores from
the cancer-specific EMT signature. These findings suggest that
program 10 identifies genes related to an immunoregulatory
program activated by EMT in HGSOC cancer cells, that is most
prevalent in mesenchymal cancer cells from infiltrated tumors. We
therefore sought next to determine whether the EMT program
could have a direct role in shaping the tumor immune
phenotypes.

EMT is linked to CD8+ T cell activity and exhaustion through
the LAG3 receptor
Since our findings indicate that EMT in cancer cells correlates with
the presence of immune cells (Fig. 3d; Supplemental Fig. 5a), we
dissected the inter-cellular communications in each tumor
immune phenotype by evaluating the unique expression of
ligands in malignant cells and their cognate receptors in CD8+

T cells. CD8+ T cells are very abundant in infiltrated tumors
(Fig. 1e, Supplemental Fig. 1), and we were interested in assessing
whether EMT influences antitumor immunity in infiltrated and
excluded cancers. The ligand-receptor interactome analysis of
communication between cancer cells from infiltrated and
excluded tumors to CD8+ T-cell receptors revealed that the
majority of interactions are borne from mesenchymal cancer cells
towards CD8+ T cells in both immune phenotypes (Supplemental
Fig. 8a, b). We then assessed the top cancer cell to CD8+ T cell
receptor-ligand interactions with the former arrayed by EMT status
(Fig. 4a). Heterogeneity in signaling between different immune
phenotypes is evident, where receptor-ligand pairs such as
SECTM1 - CD7 appear to be unique to infiltrated tumors
(Fig. 4a). The top five ligands targeting CD8+ T-cells by
mesenchymal cancer cells from infiltrated tumors were HLA-C,
HLA-A, CD59, LGALS3, and B2M (Fig. 4a, b). We found similar gene
patterns in mesenchymal cells’ ligands in excluded tumors with
CD59, LGALS3, HLA-C, HLA-B, and HLA-E (Fig. 4a, c). The finding of
classic MHC I molecule expression by cancer cells was not
surprising as HLA I expressing tumors have been previously linked
to TIL frequency, with TILs eventually inducing HLA allotype
selection, consequently enabling cancer cells to evade antitumoral
immunity45,46. Nonetheless, we were expecting to find other
dominant inhibitory ligands such as PD-L1 promoting immuno-
suppression, but LGALS3 (Galectin-3, Gal-3) emerged as a top

ligand, highlighting its potential role in the EMT driven
immunosuppression in EOC9,47–50.
Further investigation of the specific receptors targeted by

LGALS3 showed that the LAG3 complex on CD8+ T cells is the
primary recipient of LGALS3, as well as MHC II molecules, matching
previous literature findings51–53 (Fig. 4a−c; Supplemental Fig. 8c,
d). In fact, LAG3 appears to be one of the most targeted receptor
complexes by rank in both infiltrated and excluded tumors,
suggesting the possible exhaustion of these cells. The observation
linking the LGALS3-LAG3 interaction to EMT prompted us to
further investigate CD8+ T cell exhaustion as a possible
consequence of the EMT process in primary HGSOC.
Common exhaustion markers or checkpoint inhibitors of CD8+

T-cells include BTLA, CD160, CD244, CTLA4, HAVCR2, LAG3, TIGIT,
and PD1, the NFAT family (NFAT5, NFATC1-4) of transcription
factors involved in promoting T cell exhaustion, and IRF4, BATF,
VSIR, and CIITA, a master regulator of MHC II expression which is
known to interact with LAG3. Of these markers, LAG3 and TIGIT are
most active in CD8+ T cells in infiltrated tumors (Fig. 5a). In fact,
high LAG3 and TIGIT expression in infiltrated tumors could be
indicative of a specific inflammatory milieu triggering LAG3 upon
CD8+ T cell infiltration and sensitizing these cells to exhaustion
signals from mesenchymal cancer cells. A breakdown of all the
ligands targeting the LAG3 receptor on CD8+ T cells, regardless of
cancer cell EMT status or tumor immune phenotype, showed that
most ligands for LAG3 are HLA II molecules, with LGALS3 being the
only non-MHC related ligand (Fig. 5b). Despite HLA II ligands
making up the bulk of interactions between cancer cells and LAG3
on CD8+ T-cells, we did not find any associations between EMT
and HLA II expression (data not shown). Additionally, NECTINs 2, 3,
and 4 are the major interacting partner with TIGIT between cancer
cells and CD8+ T-cells, suggesting another possible vector for T
cell exhaustion by mesenchymal cancer cells.
GSEA of the DEGs between LAG3+ and LAG3- CD8 T cells

revealed enrichment for molecular pathways related to decreased
cytotoxic T cell cytolysis (MP:0005079) and abnormal CD8+ T cell
morphology (MP:0002436) (Fig. 5c), suggesting that there is a
significant contingent of CD8+ T cells in infiltrated tumors that are
cytolytically non-functional as a result of LAG3-related signaling.
Fibrinogen-like protein 1 (FGL1) has been shown recently to be a
ligand of LAG3, also potentially influencing T cell exhaustion54.
Interestingly, we found FGL1 is expressed only by mesenchymal
cancer cells in infiltrated tumors (Fig. 5d). As our findings show
that there is a significant proportion of LAG3+ CD8+ T-cell
targeted by ligand LGALS3+ originating from mesenchymal
cancer cells, we sought to further explore the link between
LGALS3 and EMT to better elucidate how EMT could modulate
CD8+ T-cell exhaustion.

LGALS3 is linked with EMT in both in vivo and in vitro
contexts
To determine whether LGALS3 has any association with EMT, we
examined its expression across cancer cells arrayed by both tumor
immune phenotype and EMT status. We also assessed LGALS3

Fig. 3 Cancer cells from infiltrated tumors have higher cancer-specific EMT signature scores compared to cancer cells from excluded and
desert tumors and are more progressed on the EMT axis. a Quantile scaled heatmap of cancer-specific EMT signature genes arrayed by
immune phenotype. b UMAP clustering of cancer cell compartment of scRNA-Seq dataset of 16 HGSOC tumors colored by the immune
phenotype of the specific source tumor. c Enrichment UMAP plot for the cancer-specific EMT signature scores in the clustered cancer cell
compartment. d Ridge plot of individual cancer-specific EMT signature module scores in the cancer cell compartment of each tumor’s immune
phenotype. e UMAP clustering of OVCA420 cells treated with TGF-β1 for 4 different timepoints: Ctrl (no treatment), 1-day, 3-day, and 7-day.
f Pseudotime value density for each individual treatment timepoint in OVCA420 cells treated with TGF-β1. g Generalized additive model
(GAM) fitted line correlating pseudotime values and cancer-specific EMT signature scores. h Enrichment UMAP plot of classical EMT markers
Sox4, Snai2, Col1a1, and FN1 in OVCA420 cells treated with TGF-β1. (i) Violin plot of NMF program 10 ‘h’ coefficient values for cancer cells
in vivo in 16 HGSOC arrayed by immune phenotype. A one-way ANOVA test with Tukey’s multiple comparisons performed on program 10 ‘h’
coefficient values reveals significant differences among all immune subtypes (***p < 0.001).
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Fig. 4 Most ligands targeting CD8+ T-cells in the TME originate from the mesenchymal cancer cells. a Cell-cell communication analysis of
top-most ligand-receptor pairs from cancer cells from 16 HGSOC samples arrayed by infiltration phenotype of tumors and EMT to CD8+
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Binding Protein (LGALS3BP) as it is known to synergize with LGALS3
in certain contexts55. Both LGALS3 and LGALS3BP appear to have
higher expression in mesenchymal cancer cells, regardless of the
tumor immune phenotype (Fig. 6a). We fitted expression of
LGALS3 (Fig. 6b) and LGALS3BP (Fig. 6c) against EMT score and

arrayed by tumor immune phenotype to find that LGALS3
expression increases alongside the cancer specific EMT signature
expression in every tumor immune phenotype and every
delineated EMT phase (i.e., EPI, pEMT, and MES). By contrast,
LGALS3BP increases most in earlier, epithelial phases in all tumor
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Fig. 5 Most CD8+ T-cells in HGSOC express LAG3, a marker of T cell exhaustion. a Dot plot showing expression levels and frequency of
common markers of T-cell exhaustion in the entire CD45+ cell compartment. b Circle plot of CD8+ T-cell LAG3 receptor complex and all the
ligands that target it. c Analysis of enriched pathways from a DEG analysis of LAG3+ CD8 T-cells compared to LAG3- T-cells in the Mouse
Genome Informatics (MGI) database. d Log-normalized expression of FGL1 in the EMT-delineated compartment of cancer cells from each
tumor immune phenotype.
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immune phenotypes, and then plateaus, suggesting it is more
important in earlier phases of the EM program. To determine
whether LGALS3 correlates with survival in HGSOC, we analyzed
the TCGA data and found that low LGALS3 expression in bulk RNA-
Seq of HGSOC is associated with longer survival (*p= 0.013)
(Fig. 6d). These findings suggest that LGALS3 expression correlates
with EMT in cancer cells and contributes to reduced survival of
ovarian cancer patients.
To elucidate if LGALS3 is associated with the EMT in other

model systems and under different conditions, we referred to
our TGF-β1 treated OVCA420 cancer cells and correlated
expression of LGALS3 with the cancer specific EMT signature
scores (Fig. 7a). We fitted a generalized linear model and noted a
modest positive association (R2= 0.01) between LGALS3 and
cancer specific EMT signature scores (Fig. 7b). We noted that it
appeared as though there are two populations of mesenchymal
cells where LGALS3 is expressed in one but not the other. To
determine if LGALS3 is consistently implicated in EMT rather
than simply a consequence of TGF-β1 treatment, we accessed
our previously published data44 where multiple cell lines of
different cancer types (ovarian, OVCA420; breast, MCF7;
prostate, DU145; and lung, A549) were each treated with EMT

inducers (TGF-β1, TNFα, EGF). While these proteins were chosen
for their ability to induce EMT through different receptors and
pathways, in certain cancers they can be secreted by immune
cells, such as TNFα by CD8+ T cells56, thus mimicking the
immune response to cancer cells. We found a similar positive
correlation between LGALS3 and cancer-specific EMT signature
scores in OVCA420 cells treated with either EGF (R2= 0.01) or
TNF-α (R2= 0.02) (Fig. 7c, d). Other cancer cell types also showed
positive correlations: MCF7 cells (TGF-β1, R2= 0.24; TNF-α,
R2= 0.21, EGF, R2= 0.22) (Fig. 7e−g), DU145 (TGF-β1, R2= 0.1;
TNF-α, R2= 0.11, EGF, R2= 0.11) (Supplemental Fig. 9a−c), and
A549 (TGF-β1, R2= 0.05; TNF-α, R2= 0.1, EGF, R2= 0.12)
(Supplemental Fig. 9d−f), with breast cancer cells showing the
strongest correlations between LGALS3 expression and EMT.
Taken together, our findings indicate that LGALS3 expression is
correlated with the EMT of cancer cells in vivo and in vitro, and
that EMT drives expression of LGALS3 in HGSOC cells.
Additionally, LGALS3 expression is a “core” gene in the EMT
program that is activated under a variety of EMT inducers
through TGF-β1-, or TNF-α-, or EGF-induced signaling. Mesench-
ymal cancer cells in turn exert inhibitory antitumoral signaling
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LGALS3 (b) and LGALS3BP (c) expression fitted via generalized linear model against cancer-specific EMT signature scores in cancer cells,
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expressing ovarian tumors from TCGA data.

E. Yakubovich et al.

9

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    61 



y = 0.874 � 0.718 x R2 = 0.01

0

1

2

3

0.2 0.4 0.6 0.8
EMT module score

LG
A

LS
3 

ex
pr

es
si

on
 (L

og
. n

or
m

.)

TGF-β1-treated OVCA420 cells

y = 0.94 � 1.22 x R2 = 0.02

0

1

2

3

0.2 0.3 0.4 0.5 0.6
EMT module score

LG
A

LS
3 

ex
pr

es
si

on
 (L

og
. N

or
m

.)

TNF-treated OVCA420 cells

y = �0.0561 � 4.7 x R2 = 0.24

0

1

2

3

4

0.2 0.3 0.4 0.5 0.6 0.7
EMT module score

LG
A

LS
3 

ex
pr

es
si

on
 (L

og
. N

or
m

.)

TGFB1-treated MCF7 cells

y = �0.0209 � 4.86 x R2 = 0.21

0

1

2

3

0.2 0.3 0.4 0.5 0.6
EMT module score

LG
A

LS
3 

ex
pr

es
si

on
 (L

og
. N

or
m

.)

EGF-treated MCF7 cells

y = 0.132 � 4.11 x R2 = 0.22

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7
EMT module score

LG
A

LS
3 

ex
pr

es
si

on
 (L

og
. N

or
m

.)

TNF-treated MCF7 cells

y = 1.11 � 0.778 x R2 = 0.01

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7
EMT module score

LG
A

LS
3 

ex
pr

es
si

on
 (L

og
. N

or
m

.)

EGF-treated OVCA420 cells

b

a

d

c

e

gf

Fig. 7 LGALS3 is directly correlated with the EMT in vitro in ovarian and breast cancer cell lines. a Schematic of cell line treatment (b−d)
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on CD8+ T cell promoting a dysfunctional cytotoxic state and
exhaustion by binding to the LAG3 receptor complex.

GSK3 and Aurora-A kinase inhibitors attenuate LGALS3
expression
To determine the possible pathways linking EMT and LGALS3
expression we referred to a previously published kinase inhibitor
screen that elucidated some of the signaling dependencies of the
EMT44. Particularly, the modularity of the EMT spectrum was
revealed to be a core part of the process where some TGF-β1R-
independent kinases attenuated the EMT despite treatment with
various inducers (TGF-β1, TNFα, and EGF). In the original screen it
was discovered that both RIP1 kinase inhibitor Necrostatin-5 and
TGF-β1R inhibitor LY364947 abrogated EMT in all treatment
conditions. When we explored this screen further (Fig. 8a−c), we
noted that two kinase inhibitors produced the most consistent
reduction in LGALS3 expression across cell lines and treatments:
CHIR99021, a GSK3 kinase inhibitor and phthalazinone pyrazole,
an Aurora kinase A inhibitor (Fig. 8d), suggesting LGALS3
expression is potentially dependent on activation of the Wnt
and NF-kB pathways, or the β-catenin pathway during EMT.
Finally, when we explored the effects of these two kinase
inhibitors on pseudotime values as a measure of EMT and LGALS3
expression, we found that neither CHIR99021 nor phthalazinone
pyrazole appear to attenuate the EMT, suggesting that blocking

LGALS3 upregulation is not sufficient to prevent EMT (Supple-
mental Fig. 10).

DISCUSSION
In this study, we show that the EMT, a complex cellular process
underpinning metastasis, associates with LGALS3 expression,
which may act as ligands for LAG3 in CD8+ T cells, promoting T
cell exhaustion and dampening antitumor immunity. Additionally,
we show that infiltrated TMEs in HGSOC have cancer cells that are,
on average, more mesenchymal than those found in the excluded
or desert phenotypes, with the potential implication that a greater
chance for metastasis and immunosuppression is possible in those
tumors. Given that infiltrated and excluded tumors have been
correlated with better survival among HGSOC patients compared
to desert tumors, and the presence of CD8+ T cells in these
tumors, there is great potential for treating these patients with
LAG3 checkpoint blockade therapy combined with other immune
checkpoint inhibitors as it has been demonstrated in mouse
IE9mp1 EOC model by Huang et al. (2015)22. Recently, the US Food
and Drug administration (FDA) approved second-generation
checkpoint inhibitor ‘Opdualag’, an anti-LAG3 and anti-PD1
combination drug that targets metastatic or unresectable
melanoma57. Additionally, the development of new peptides,
such as C25, that block LAG3 binding to MHC II has been proven
to activate CD8+ T cells52,58. LAG3 blockade therapies have been
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shown to have therapeutic benefit for patients with chronic
lymphocytic leukemia, melanoma, and pancreatic adenocarci-
noma59,60. In BRCA-mutated HGSOC patients, LAG3 was positively
correlated with PD-L1; however, combination immunotherapies in
human HGSOC to block the activity of both inhibitory checkpoints
were found to have negligible efficacy, suggesting other under-
lying mechanisms governing the immunosuppressive TME of
HGSOC in the context of LAG3 expression47.
Recent scRNA-Seq investigations on BRCA1/2 mutated HGSOCs

have showed a potential link between EMT and CD8+ T-cell
exhaustion61. As well, EMT and T cells found in malignant ascites
from EOC express high levels of LAG3 and PD-162,63. This latter
observation is of particular interest as it has been previously
suggested that EOC ascites contain a significant mesenchymal
cancer cell population64,65. As well, mesenchymal and pEMT
cancer cell states have been linked to higher PD-L1 expression in
breast cancer66 suggesting that even a pEMT state is correlated
with immunosuppression. Similar relationships between LGALS3
and T cell exhaustion in TGF-β1 induced fibrotic disease67 have
been uncovered, where LGALS3 inhibitors68,69 have proven to be
effective in treating the disease. In cancer contexts where TGF-β1
plays a major role in initiation and maintenance of EMT, patients
may also benefit from LGALS3 inhibitors. For example, LGALS3 has
a strong proinflammatory role when expressed by fibroblasts70,
eliciting secretion of IL-6, CXCL8, CCL2, and CCL5 all of which are
factors that play a role in carcinogenesis and immunosuppression.
Additionally, anti-TIGIT therapy has shown mixed success in
treating a variety of solid tumors, including ovarian cancer71 with
other clinical trials demonstrating better clinical benefits in tumors
with high TIGIT expression72. Curiously, CD8+ T cells infiltrated
ovarian tumors have high TIGIT expression as shown in this paper
(Fig. 5), which may suggest ovarian tumors are a potential target
for combination anti-LAG3 and anti-TIGIT therapy. Moreover,
combination therapies including anti-TIGIT and anti-PD-L1 syner-
gize to enhance cytolytic CD8+ T cell activity73,74 which could be
used to target ovarian tumors of the infiltrated subtype to alleviate
exhaustion and immunosuppression.
Galectin-3 (Gal-3/LGALS3), encoded by the LGALS3 gene, is a lectin

that can be both expressed on the cell surface75 and secreted76, and
is expressed by the majority of human cells. It exhibits several
immune-regulatory functions such as reducing the affinity of TCR for
its cognate MHC I-peptide ligand by sequestering the TCR from its
CD8+ co-receptor77, causing apoptosis78, and internalization of the
TCR79, leading to decreased interferon-gamma (IFN-γ) production
upon LAG3 engagement on CD8+ T cells51. LGALS3 has been linked to
poor prognosis in EOC80 with the assertion that it may be activating
the Wnt/β-Catenin pathway to effect cancer stemness mechanisms81.
Additionally, overexpression of Galectin-1 (LGALS1), a protein similar
to LGALS3, promotes EMT in fibroblasts through TGF-β signaling
pathways82. LGALS3 has also been linked to the EMT previously83 and
has been suggested as a T cell-directed immunotherapy to increase
efficacy of current immune checkpoint inhibitors. Interestingly, some
of our in vitro results demonstrate there could be two different EMT
trajectories where LGALS3 is expressed in one but not the other,
suggesting that the EMT can lead to heterogenous populations of
mesenchymal cells.
The potential to rescue CD8+ T-cells from exhaustion has been

shown, notably in studies where anti-PD1 therapy was shown to
improve the function of exhausted tumor infiltrating CD8+ T cells in
ovarian cancer84. Whether targeting LGALS3-LAG3 axis has similar
potential to rescue CD8+ T cell function alone or in combination with
other immunotherapies such as anti-PD1, anti-CTLA4, and anti-TIGIT,
requires further investigation. The LGALS3 inhibitor GB0139 has
shown promise in acute lung injury where its mechanism of action
involves reducing IL-6, TNF-α, and MIP-1α69, and thus may also prove
efficacious in ovarian cancer where TNF-α plays a role in EMT initiation
and maintenance. Galectin-3C, a dominant-negative inhibitor of

LGALS3, reduces the metastatic potential of ovarian cancer either in
combination with Paclitaxel or alone85.
It should be noted that the suggestion to target infiltrated

ovarian tumors for checkpoint therapy is based on our interpreta-
tion of data from primary tumors. Indeed, the immune environ-
ment in the ascites or metastases may be different where
CD8+ T cells may not be exhausted and could clear cancer cells,
thus reducing metastatic spread and contributing to the positive
survival prognosis of infiltrated tumors. In these cases, checkpoint
therapy may be less effective depending on the TME but could
still assist the immune system in clearing the primary tumor site.
In our screen of various kinase inhibitors, we found the highly

selective and potent GSK3 inhibitor CHIR99021 reduced expres-
sion levels of LGALS3 while not affecting EMT signature scores,
suggesting it may be suitable for therapeutic investigation due to
its possible specificity to LGALS3. GSK3 inhibition or down-
regulation can potentiate the cytotoxicity of CD8+ T cells against
lymphoma cells86, gastric cancer cells87, and melanoma cells, with
the latter also showing a blockage of LAG3 because of GSK3
targeting by small molecule inhibitors88.
A surprising finding in this study is the correlation between EMT

and tumor immune cell infiltration, since previous studies have
reported greater EMT in desert tumors. Certain immune cells, such
as CD4+ CD25+ Treg cells, tumor-associated macrophages, and
myeloid-derived suppressor cells (MDSCs) can induce EMT in
cancer cells8 and our study shows upregulation of chemotactic
signals during EMT. Consequently, we propose the existence of a
positive feedback loop between immune cells and cancer cells,
based on their EMT status. In this scenario, initial signals favoring
EMT are propagated through the TME, perhaps from the stroma
and fibroblasts89–91, or the result of hypoxic conditions92–94.
Cancer cells receiving those signals undergo EMT and upregulate
pathways related to leucocyte and lymphoid chemotaxis by
secreting relevant interleukins and chemokines, as predicted by
our findings. Tumor infiltration by activated immune cells promote
secretion of factors such as TGF-β1, TNF-α, and ADAM17
intensifying EMT signals and further driving EMT progression in
the cancer cell population, resulting in tumor-promoting positive
feedback loop. This would ultimately lead to T cell exhaustion
through elevated LAG3 stimulation, among other coinhibitory
markers, such as TIGIT (Fig. 9). The validity of this feedback loop
hypothesis warrants further investigation, for example, by asses-
sing the tumor immune cell composition in mouse models of
ovarian cancer that express an inducible EMT signal, such as SNAIL.
Our results do not eliminate the possibility that active CD8+ T cells

select for survival of pro-exhaustion mesenchymal cells by successfully
attacking the less immunosuppressive epithelial cells. However, this
still leaves a question about the origin of signals that promote EMT,
whether they originate from another population of cells such as
fibroblasts secreting TGF-β1. Our results demonstrate that while
desert tumors have a large fibroblast population, there are fewer
mesenchymal cancer cells in them than infiltrated tumors, further
suggesting that EMT signals likely originate from a different cell
population, such as immune cells. Therefore, even if CD8+ T cells and
other immune cells select for mesenchymal cells, the trigger for EMT
may also originate in those cells.
Our results indicating that there are more mesenchymal cells in

infiltrated TMEs as opposed to desert TMEs likely differ from
Hornburg et al. 29 for a few reasons. First, we used a cancer-
specific EMT signature that can capture the intra-tumoral
heterogeneity of the epithelial/mesenchymal program and states.
The Hallmark EMT gene set, when combined with classical EMT
markers (i.e., SNAI1/2, ZEB1/2, TWIST1) captures mostly pEMT
states95 and is based on founder gene sets, some of which are not
from a cancer context41,96. Second, the Hallmark EMT gene set
enriches in stromal compartments97 and also in cancer-associated
fibroblasts95 suggesting it may be poorly optimized to capture
malignant mesenchymal cells at all, at least on a single-cell RNA
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level. Only 58 out of 200 genes in the Hallmark EMT gene set were
enriched in Hornburg et al.’s analysis of desert tumors and were
on the cusp of significance. Third, our scoring strategy to compute
EMT scores differs from their enrichment analysis in that our
strategy provides valuable single-cell level scoring compared to
bulk sample averages. Pseudo-bulking scoring methods have
difficulty accounting for cell-to-cell variability98 which could
impact EMT calculations where different cell states exist even
within the same cell type. We believe that as the cancer-specific
EMT signature was derived from scRNA-Seq datasets, it may be
best used in single-cell contexts using analysis algorithms best-
suited to the technology.
With single-cell sequencing technologies still rapidly improving in

both capability and fidelity, there is tremendous potential to expand
the study of tumor interactomes either through advances in
technology or improved algorithm design. For example, technologies
such as CITE-Seq can be leveraged to supplement genomic
sequencing data with cell surface-level protein expression data
combined with established receptor-ligand algorithms to generate a
clearer picture of the interactome of the TME99. Future exploration of
the interactome that we have generated could reveal novel
interactions between cancer cells and other immune cell types, or
further delve into subtypes of T cells such as Treg cells, to paint a more
complete picture of the receptor-ligand interactions in the TME of
HGSOC. To conclude, ovarian mesenchymal cancer cells suppress
CD8+ T cell activity through the pro-exhaustion LAG3-LGALS3
pathway. There is a therapeutic opportunity to target HGSOC that
are already infiltrated by CD8+ T cells and relieve them of barriers that
dampen antitumoral activity, such as T cell exhaustion. Other than
targeting the LAG3-LGALS3 pathway itself, it may be possible to
attenuate the EMT to prevent pathway activity specifically and
remove a possible source of immunosuppression.

METHODS
Cell culture
The human ovarian cancer cell line OVCA420 was kindly provided
by Dr. Gordon Mills. Cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) with 4.5 g/L glucose, L-glutamine, and

sodium pyruvate (Corning, 10-013-CV), supplemented with 10% of
fetal bovine serum (FBS) and cultured at 37 oC with 5% CO2.

OVCA420 scRNA-seq EMT time course experiment
OVCA420 cells (10,000/well) were plated into in 6-well plates. Cells
were treated with 10 ng/mL TGF-β1 (R&D Systems, #240-B-010), with
treatment timed in such a way that all time-points were synchronized
at the time of collection. Cells were passaged as needed to avoid
confluence, and fresh TGF-β1 was added every two days with
refreshed media. Cells were not passaged in the 2 days prior to final
collection to avoid artifacts during sequencing. Single-cell suspensions
were processed using the 10x Genomics Single Cell 3’ RNA-seq kit v3.
Final libraries were sequenced on an Illumina HiSeq 4000 after gene
expression libraries were prepared according to the manufacturer’s
protocol. Raw sequencing reads were processed using CellRanger
v2.0.1 using the GRCh38 build of the human genome and default
parameters. Graphics were created using ‘ggplot2’ and ‘SCpubr’100.

Data quality control and processing
Quality control was first performed independently on each 10x
Genomic library, and all main processing steps were performed with
Seurat V3101 for the OVCA420 cells and Seurat v4102 for the ovarian
cancer datasets. Expression matrices for the OVCA420 cells were
imported into R as Seurat objects. Only cells with more than 200
genes detected were retained and cells with a high percentage of
mitochondrial gene expression were also removed. For the OVCA420
treatment time course, an independent Seurat object was made
combining all timepoints, followed by a standard workflow by first
removing genes detected in fewer than 1% of the cells for each
timepoint. We then obtained the top 2000 most variable genes using
the ‘vst’ selection method in Seurat, scaled RNA expression values and
regressed out mitochondrial reads, total UMI count, and cell cycle
scoring. Cell cycle regression was handled by ‘SCTransform’103,104,
which was also used to normalize the RNA matrices for each sample
using regularized negative binomial regression. After this, PCA was
run on the variable genes and all UMAP embeddings were calculated
from the first 30 principal components.
For the ovarian cancer datasets42, each individual tumor sample

matrix was obtained as tables divided into stroma, CD45+, and tumor
cell files that we first made into Seurat objects with a minimum of 200

Fig. 9 Schematic of hypothesized positive feedback loop between immune cells and cancer cells leading to metastasis and
immunosuppression. In cancer, mesenchymal cancer cells have been shown to be associated with immunosuppression and exhaustion of
T-cells in the TME. In our paper, we demonstrate one way in which mesenchymal cells may exhaust CD8+ T-cells in the TME of epithelial
ovarian cancer. Additionally, we show there is an association between infiltration of immune cells, particularly T-cells, and EMT. It is currently
unknown whether cancer cells instigate the infiltration of T-cells after undergoing EMT, or whether the initial infiltration of T-cells and other
immune cells triggers EMT in cancer cells. We propose this model as a potential future direction, where the relationship between immune cell
infiltration and EMT can be further investigated.
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genes per cell and then merged using the ‘base::merge()’ function
prior to processing, yielding 16 individual samples (i.e., 16 tumors).
Each sample was processed independently similarly to the OVCA420
cells. Briefly, cells with high percentage mitochondrial genes and low
feature number were subset out and cell cycle genes were regressed
out for each sample using ‘SCTransform’103,104. ‘SCTransform’ was also
used to normalize the RNAmatrices for each sample using regularized
negative binomial regression. PCA was then applied to each
individual sample and UMAP embeddings were calculated from the
first 30 principal components. We also added metadata such as
immune phenotype and patient-ID in each samples’ Seurat
metadata slot.

Semi-supervised cell labeling and integration
Cell type labeling was first performed using common markers for
cancer cells (KRT19, AMHR2, ELF3, EPCAM) and fibroblasts (COL1A1,
COL1A2). We also labeled endothelial cells (CDH5, CLDN5) and
smooth muscle cells (ACTA2) to find very small populations (<100
cells) for each, so we removed these populations. To label the
CD45+ population we applied Seurat’s multimodal reference
mapping method102 to each individual sample with their
published CITE-Seq reference object of 162,000 PBMCs measured
with 228 antibodies. We used all default settings provided by
Seurat for this part of the processing pipeline. After mapping the
cell populations by the reference object, we merged this with our
labels for cancer cells and fibroblasts to finalize the individual
sample objects with labels for all clusters.
Seurat’s integration101 was used to align and combine shared

populations across the 16 tumors. Briefly, Seurat matches pairs of
cells across datasets that share certain biological states, or
anchors, based on bulk RNA expression. The corrected data was
then scaled and UMAP embeddings were applied to it based on
30 principal components from a PCA run.

EMT scoring strategy
For EMT scoring, we subset the cancer cell population from the
integrated object and used the ‘AddModuleScore()’ Seurat
function together with our previously published cancer-specific
EMT signature96 to assign an EMT score to each cancer cell. This
EMT signature reflects the most consistent expression patterns
associated with epithelial-mesenchymal plasticity in cancer96. EMT
scoring was similarly performed for the OVCA420 object. We then
calculated the mean of each individual samples’ EMT scores and
labeled every cell that fell under a threshold of ‘mean–1 standard
deviation’ an epithelial cell and every cell above a threshold of
‘mean+1 standard deviation’ a mesenchymal cell, with all cells in-
between labeled as partial-EMT (pEMT).

Differential gene expression analysis
The Wilcoxon rank sum test implemented in the ‘FindMarkers()’ or
‘FindAllMarkers()’ functions of Seurat were used to calculate all
differentially expressed genes between the input populations. For
volcano plots and analysis of most differentially expressed genes
we used a cutoff of p-adjusted < 0.05 and for log2 fold-change
(log2fc) the mean of the log2fc ± 2*standard deviation of log2fc.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed using the
‘fgsea’ R package105. Input genes were ranked by their log2 fold-
change values. Reference gene sets were collected from the
Molecular Signatures Database (MSigDB) v6.2. For gene set
enrichment of LAG3+-high CD8+ T-cells, we used the
Enrichr106–108 online tool (https://maayanlab.cloud/Enrichr/).

Pseudotemporal ordering of cells
For a detailed explanation of the pseudotime pipeline, refer to
Cook and Vanderhyden (2020)44. Briefly, we used R package
‘psupertime’109 v0.2.6 (https://github.com/wmacnair/
psupertime) to calculate pseudotime scores on the top 3000
most variable genes for the OVCA420 Seurat object. Psuper-
time requires scRNA-seq data with ordinal labels to build a
linear combination of genes that vary consistently over the
time course and are used to assign a pseudotemporal value to
individual cells. Individual cells with pseudotemporal values
were correlated with other genes or modules (eg. EMT
signature scores).

Non-negative matrix factorization
Non-negative matrix factorization (NMF) was performed using the
‘RcppML’ R package110. Briefly, ‘RcppML’ leverages NMF as a
machine learning strategy to learn coordinated gene activity in
sparse data and present summaries of biological processes as
broken into individual vectors of weighted values that contribute
to the overall dimensionality in the data.

Cell-cell communication analysis
For cell-cell communication analysis, we used LIANA111, a tool that
integrates multiple methods for cell-cell communication inference in
single-cell data. LIANA provides a consensus-based rank aggregate for
receptor-ligand pairs from the results of multiple cell-cell commu-
nication algorithms through ‘robust rank aggregation’ (RRA). Briefly,
we chose the default settings of LIANA for our analysis that use
methods from SCA, NATMI, Connectome, CellPhoneDB, and CytoTalk
to evaluate receptor-ligand pairs. We ran LIANA using the function
‘liana_wrap()’ on our integrated object. The cancer cell population was
divided into unique identities based on immune phenotype and EMT
score, resulting in 9 identities: Infiltrated-epithelial, Infiltrated-pEMT,
infiltrated-mesenchymal, excluded-epithelial, excluded-pEMT,
excluded-mesenchymal, desert-epithelial, desert-pEMT, desert-
mesenchymal. We then aggregated all the methods into a single
matrix using ‘liana_aggregate()’ to construct maps of cell-cell
communications with ‘Circlize’112 based on the top ‘aggregate_rank’
of receptor-ligand pairs.

Kaplan-Meier plots
For KM plots, https://kmplot.com/113 was accessed to use bulk
RNA-Seq TCGA and microarray data to construct KM survival plots.
For LAG3 and LGALS3, we plotted overall survival of optimally
debulked patients with high-grade (3+ 4), later stage (2+ 3+ 4)
tumors with TP53 mutation. We chose these settings because they
match well with the patient data from Hornburg et al. (2021)29 and
represent a subset of some of the worst HGSOC samples based on
expected patient outcomes.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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