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S-palmitoylation is a reversible lipid modification catalyzed
by 23 S-acyltransferases with a conserved zinc finger aspartate-
histidine-histidine-cysteine (zDHHC) domain that facilitates
targeting of proteins to specific intracellular membranes. Here
we performed a gain-of-function screen in the mouse and
identified the Golgi-localized enzymes zDHHC3 and zDHHC7
as regulators of cardiac hypertrophy. Cardiomyocyte-specific
transgenic mice overexpressing zDHHC3 show cardiac dis-
ease, and S-acyl proteomics identified the small GTPase Rac1
as a novel substrate of zDHHC3. Notably, cardiomyopathy and
congestive heart failure in zDHHC3 transgenic mice is pre-
ceded by enhanced Rac1 S-palmitoylation, membrane locali-
zation, activity, downstream hypertrophic signaling, and
concomitant induction of all Rho family small GTPases
whereas mice overexpressing an enzymatically dead zDHHC3
mutant show no discernible effect. However, loss of Rac1 or
other identified zDHHC3 targets Gαq/11 or galectin-1 does not
diminish zDHHC3-induced cardiomyopathy, suggesting mul-
tiple effectors and pathways promoting decompensation with
sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in
combination with Zdhhc7 reduces cardiac hypertrophy during
the early response to pressure overload stimulation but not
over longer time periods. Indeed, cardiac hypertrophy in
response to 2 weeks of angiotensin-II infusion is not dimin-
ished by Zdhhc3/7 deletion, again suggesting other S-acyl-
transferases or signaling mechanisms compensate to promote
hypertrophic signaling. Taken together, these data indicate
that the activity of zDHHC3 and zDHHC7 at the car-
diomyocyte Golgi promote Rac1 signaling and maladaptive
cardiac remodeling, but redundant signaling effectors
compensate to maintain cardiac hypertrophy with sustained
pathological stimulation in the absence of zDHHC3/7.

Cardiac hypertrophy is an adaptive growth response of the
heart whereby cardiomyocytes enlarge to maintain cardiac
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output. Although initially beneficial, cardiac hypertrophy often
becomes pathological, resulting in adverse remodeling and
decompensation that ultimately further impinge on cardiac
function and accelerate the progression to heart failure (1–3).
Thus, there is great interest in the delineation of intracellular
signaling mechanisms that facilitate pathological cardiac
growth that could potentially be inhibited to delay or prevent
the transition from cardiac hypertrophy to heart failure.

Diverse intracellular signaling pathways participate in car-
diac pathologic hypertrophy and heart failure (1–4). Patho-
logical signaling in cardiomyocytes is often transduced from
the sarcolemma (plasma membrane) by GTPases that activate
downstream intracellular signaling cascades (5–10). Activation
of small GTPases is dynamically regulated by guanine nucle-
otide dissociation inhibitors (GDIs), GTPase activating pro-
teins, and guanine nucleotide exchange factors (11–14).
Additionally, some small GTPases such as H-Ras, N-Ras, and
Ras-related C3 botulinum toxin substrate 1 (Rac1) undergo S-
palmitoylation or S-acylation, a reversible lipid modification
on cysteine residues that governs their dynamic association
with the plasma membrane and subsequent activation of
downstream effectors (15–17). Moreover, certain GTPase
regulatory proteins, including p63 RhoGEF (18) and the
regulator of G-protein signaling proteins that function as
GTPase activating proteins for heterotrimeric Gα subunits (19,
20), are S-palmitoylated, providing another layer of S-palmi-
toylation–dependent control of signaling by G proteins.
However, the enzymes controlling fatty acylation of GTPases
and the consequences of S-palmitoylation on signaling by
small GTPases are not well-established, particularly in the
context of cardiomyocyte signaling in hypertrophy and heart
failure.

Cardiomyocyte-specific overexpression of RhoA or Rac1
causes cardiac failure in mice (10, 21), and RhoGTPase
signaling is activated in murine cardiomyopathy (7, 22) and
human heart failure (23). Conversely, deletion of RhoA is
detrimental in response to chronic pressure overload (24)
whereas deletion of Rac1 is beneficial (25). Rac1 is also an
essential mediator of reactive oxygen species generation in the
J. Biol. Chem. (2023) 299(12) 105426 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1016/j.jbc.2023.105426
Delta:1_given name
Delta:1_surname
https://orcid.org/0000-0001-5340-3290
Delta:1_given name
https://orcid.org/0000-0002-9493-9494
Delta:1_surname
https://orcid.org/0000-0002-6563-6689
Delta:1_given name
https://orcid.org/0000-0002-4704-8576
Delta:1_surname
Delta:1_given name
https://orcid.org/0000-0002-8027-1809
Delta:1_surname
Delta:1_given name
https://orcid.org/0000-0003-4904-7670
Delta:1_surname
mailto:jeff.molkentin@cchmc.org
mailto:majbrody@umich.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbc.2023.105426&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Role of zDHHC proteins in cardiomyocyte signaling
heart through regulation of the NADPH oxidase-2 (Nox2)
complex (26–28) and is required for cardiac hypertrophy and
oxidative stress in response to angiotensin II (6). Importantly,
impairment of Rac1 activity and oxidative stress are primary
mechanisms of statin-mediated cardioprotection in animal
models (6, 29, 30), and statin treatment ameliorates Rac1
activation, NADPH oxidase activity, and reactive oxygen spe-
cies production in the failing human heart (23). However, the
mechanisms that modulate Rac1 signaling in the heart remain
ill-defined.

The dynamic nature of protein S-palmitoylation provides a
regulatory mechanism akin to protein phosphorylation, with
diverse effects on protein localization and function. Small
GTPases and G protein α subunits undergo rapid cycles of S-
palmitoylation and depalmitoylation to elicit sustained
signaling activity (31, 32), implicating S-palmitoylation as a
critical control point for intracellular signal transduction.
There are 23 zinc finger Asp-His-His-Cys (zDHHC) S-acyl-
transferases (encoded by the Zdhhc genes) in mammals that
catalyze S-palmitoylation (33–35), which is reversed predom-
inantly by the cytosolic depalmitoylases, acyl protein thio-
esterase 1 and 2 (APT-1 and APT-2) (36), and α/β-hydrolase
domain containing 17 family proteins (ABHD17A/B/C) (37).
zDHHC S-acyltransferases are polytopic transmembrane pro-
teins, many of which localize to the endoplasmic reticulum or
Golgi apparatus with some also residing at the plasma mem-
brane, endomembrane system, or intracellular vesicles (33, 38).
Despite some common substrates among different zDHHC
enzymes, there is generally strong selectivity and substrate
specificity imparted by recruitment domains on the cyto-
plasmic tails of zDHHCs (36, 39, 40). Even among Golgi-
localized zDHHCs, there is specified recruitment of sub-
strates by their cognate zDHHC enzyme (41, 42). Thus, S-
palmitoylation is a tightly controlled regulatory mechanism
that underlies intracellular signal transduction via dynamic
targeting of proteins to membrane microdomains. However,
studies of zDHHC enzymes and S-palmitoylation in the heart
are largely limited to investigation of ion channel regulation
and electrophysiology (40, 43), and roles of S-palmitoylation in
cardiomyocyte signal transduction and hypertrophy and heart
failure remain understudied.

Here, we performed an in vivo screen using recombinant
adeno-associated virus (AAV)-mediated overexpression, which
identified the closely related Golgi-localized enzymes
zDHHC3 and zDHHC7 as inducers of cardiac maladaptation,
decompensation, and heart failure. While zDHHC3 is
expressed in the heart (38, 40), much of the prior work in the
field focused on its functions in neurons (44–47). We found
that Rac1 is a novel substrate of zDHHC3 using an unbiased
proteomic approach and that cardiomyocyte-specific trans-
genic mice overexpressing Zdhhc3, but not an enzymatically
dead mutant, develop lethal dilated cardiomyopathy. Indeed,
zDHHC3 transgenic mice develop cardiomyopathy and heart
failure with enhanced Rac1 S-palmitoylation and plasma
membrane localization, along with activation of other Rho
GTPase family members. Genetic deletion of Zdhhc3 alone or
in combination with Zdhhc7 does not impair baseline cardiac
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structure-function and pathological hypertrophy in response
to chronic pressure overload or angiotensin-II stimulation but
does alter the initiation of hypertrophy in response to acute
pressure overload stimulation. These studies identify zDHHC3
and zDHHC7 S-acyltransferase activity at the cardiomyocyte
Golgi as a regulator of RhoGTPase activity that is sufficient to
promote cardiac maladaptation and heart failure but not
overtly required for cardiac remodeling in response to pressure
overload or angiotensin-II.
Results

Overexpression of zDHHC3 or zDHHC7 induces dilated
cardiomyopathy

We performed an in vivo screen by overexpressing several
zDHHC enzymes in the heart with adeno-associated virus
serotype 9 (AAV9). Pups were injected with AAV9 at postnatal
day 6 to induce cardiac expression of the Golgi-localized en-
zymes zDHHC3 and zDHHC13 as well as the plasma mem-
brane enzyme zDHHC5 and the endoplasmic reticulum–
localized enzyme zDHHC6, protein expression, cardiac
morphology and function were assessed 1 month later (Fig. 1,
A–C). Enhanced expression of the Golgi-resident S-acyl-
transferase zDHHC3 resulted in a profound cardiomyopathy
that was not observed with the overexpression of these other
zDHHC enzymes tested (Fig. 1, C–E). Cardiac overexpression
of Zdhhc3 complementary DNA (cDNA) resulted in cardiac
enlargement including ventricular and atrial dilation (Fig. 1C),
cardiac hypertrophy (Fig. 1D), and substantial cardiac
dysfunction indicative of cardiomyopathy (Fig. 1E). The most
homologous S-acyltransferase to zDHHC3 is another Golgi-
localized enzyme, zDHHC7, and AAV9-mediated over-
expression of this enzyme in the heart similarly induced car-
diomyopathy within 3 weeks (Fig. S1, A–E). These data
collectively suggest that the activity of the Golgi-localized
zDHHC3 and zDHHC7 enzymes promote pathogenic intra-
cellular signaling that results in cardiac hypertrophy and
decompensation. Importantly, endogenous protein levels of
zDHHC3 are increased in the adult mouse heart in response to
pressure overload–induced hypertrophic stimulation (Fig. 1,
F–H), suggesting a physiologic role of S-palmitoylation medi-
ated by zDHHC3 and/or zDHHC7 in cardiac maladaptation.
Notably, although zDHHC3 and zDHHC7 are appreciably
expressed in many cardiac cell types, including myocytes and
fibroblasts (data not shown) (48, 49), RNA-seq of isolated
cardiomyocytes revealed upregulation of ZDHHC3 and
ZDHHC7 transcripts in human dilated cardiomyopathy (50),
implicating a pathophysiologic role for cardiomyocyte
zDHHC3/7 in the heart.

To further evaluate functions of zDHHC3-mediated S-pal-
mitoylation in vivo, we generated mice with cardiomyocyte-
specific overexpression of Zdhhc3 using a binary and induc-
ible system consisting of the tetracycline transactivator (tTA)
protein and the tet operator downstream of a modified α-
myosin heavy chain (αMHC) promoter (51) such that double
transgenic mice (DTgZdhhc3) containing both the tTA and
Zdhhc3 transgenes express zDHHC3 protein in the heart if
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Figure 1. Enhanced activity of the Golgi-resident enzyme zDHHC3
causes cardiomyopathy. A, experimental design schematic and (B) West-
ern blotting for AAV9-mediated overexpression of HA-tagged zDHHC en-
zymes in the heart analyzed at 30 days of age from prior recombinant
AAV9-Zdhhc injection in 6-day-old pups (P6). GAPDH is used as tissue
processing and Western loading control. C, gross morphology of hearts
from mice shown in B (Scale bar represents 1 mm). D, heart weight-to-body
weight ratios (HW/BW) of the indicated groups of mice, n = 3 to 5. One way
ANOVA (p = 0.005) with pairwise comparison test of control compared to
Zdhhc3 (p < 0.0056), Zdhhc5 (p = 0.88), Zdhhc6 (p = 0.88), and Zdhhc13
(p = 0.78). E, fractional shortening (FS) as assessed by echocardiography in
mice with cardiac overexpression of the indicated zDHHC enzymes at
30 days of age. n = 4 to 7. One way ANOVA (p < 0.0001) with pairwise
comparison of control compared to Zdhhc3 (p = 0.0001), Zdhhc5 (p = 0.97),
Zdhhc6 (p = 0.40), and Zdhhc13 (p = 0.91). F–H, Western blotting (F) and
quantification (G and H) of zDHHC3 and zDHHC7 protein levels in mouse
hearts after 8 weeks of pressure overload stimulation (TAC; transverse aortic
constriction) compared to sham controls. α-tubulin is a tissue processing
and western loading control. Error bars throughout the figure panels
represent mean ± SEM. **p < 0.01, ****p < 0.0001. AAV, adeno-associated
virus.
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doxycycline (Dox) is not present in the diet (“tet-off” system)
(52) (Fig. 2, A and B). As an additional control, we generated
cardiac-specific transgenic mice that overexpress an enzy-
matically dead zDHHC3 protein containing a Cys-to-Ser point
mutation in its enzymatic DHHC domain (DTgZdhhc3DHHS)
(Fig. 2, A and B). Western blotting of heart extracts from adult
mice showed abundant overexpression of each protein in the
heart compared with tTA controls (Fig. 2B and S2, A and B).
Immunocytochemistry in isolated adult cardiomyocytes
revealed the expected Golgi localization pattern for overex-
pressed wildtype and transferase-dead zDHHC3 proteins
(Fig. 2C). Transgenic mice on a normal diet with over-
expression of Zdhhc3 starting around birth (when ventricular
αMHC expression begins), but not mice overexpressing the
enzymatically dead Zdhhc3DHHS mutant, exhibited substantial
mortality in young adulthood due to severe dilated cardio-
myopathy with a median survival of 6 weeks of age in low
expressing lines (Fig. 2, D and E) and around 3 weeks of age in
a high-expressing line (data not shown). Gross morphological
and histological analyses revealed dramatic cardiac enlarge-
ment and ventricular and atrial dilation in DTgZdhhc3 hearts
(Fig. 2E) and heart weight-to-body weight (HW/BW) ratios
confirmed significant cardiac hypertrophy (Fig. 2F). Cardiac
function and structure were evaluated by echocardiography,
which revealed significant left ventricular dilation (Fig. 2G),
systolic dysfunction (Fig. 2H), and impaired cardiac contrac-
tion and cardiomyopathy (Fig. 2I) in mice with cardiomyocyte-
specific overexpression of Zdhhc3 but not in mice expressing
the Zdhhc3DHHS mutant (Fig. 2, G–I). These results demon-
strate that enhanced zDHHC3 S-acyltransferase activity in
cardiomyocytes causes severe lethal dilated cardiomyopathy.

To examine the role of zDHHC3 in the adult heart, we kept
transgenic mice on a Dox-containing diet until weaning to
keep expression off and then switched them to normal lab
chow to induce transgene expression (Fig. S3A). Over-
expression of Zdhhc3 for the first time in the adult heart did
not result in immediate cardiomyopathy as observed with
perinatal overexpression of Zdhhc3 in cardiomyocytes (Fig. 2).
However, Zdhhc3 overexpression in adult cardiomyocytes
resulted in lethality within 7 or 10 months of transgene
expression in the high- and low-expressing lines, respectively
(Fig. S3B). Mortality in DTgZdhhc3 mice was preceded by
clinical symptoms of congestive heart failure, including dys-
pnea and peripheral edema (Fig. S3C) as well as cardiac hy-
pertrophy and ventricular and atrial dilation (Fig. S3, C–F).
Cardiac functional assessment by echocardiography revealed
systolic impairment (Fig. S3F) and cardiac dysfunction
(Fig. S3G) in DTgZdhhc3 mice prior to mortality. Lower-
expressing lines exhibited an identical phenotype with a
delayed onset and progression of disease (Fig. S3, C–G). In
contrast, overexpression of the Zdhhc3DHHS transferase–dead
mutant in the adult heart did not cause cardiac hypertrophy,
adverse remodeling, or cardiomyopathy at any age examined
(Fig. S3, D–G). Taken together, these data demonstrate the
expression of zDHHC3 S-acyltransferase activity in adult
cardiomyocytes causes congestive heart failure.
Rac1 is a novel substrate of zDHHC3

To identify zDHHC3 substrates that could underlie cardiac
maladaptation, we employed a quantitative and site-specific
proteomic approach to sequence peptides containing S-pal-
mitoylated cysteine residues. We generated stable NIH3T3 cell
lines that overexpress Zdhhc3 or enhanced green fluorescent
protein (eGFP) as a control and performed stable isotope la-
beling with amino acids in cell culture (SILAC) for quantitative
mass spectrometry sequencing (53). S-palmitoylated proteins
were purified from 3T3-Zdhhc3 and 3T3-eGFP cells by Acyl
resin-assisted capture (Acyl-RAC) (54), trypsin-digested on
thiopropyl sepharose, and eluted to release bound peptides
containing the S-palmitoylation sites for mass spectrometry
sequencing. 3T3-Zdhhc3 cells were labeled with “heavy” lysine
J. Biol. Chem. (2023) 299(12) 105426 3
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and arginine while 3T3-eGFP controls were labeled with me-
dia containing normal isotopic lysine and arginine (“light”)
such that peptides identified with increased heavy:light ratios
(H:L) exhibit increased S-palmitoylation in Zdhhc3-over-
expressing cells. Altogether, we identified 82 unique proteins
and 101 unique peptides containing H:L ratios above 1.2,
which we also categorized separately for known cardiac
signaling effectors (Table S1 and Supporting Data Files 1 and
2), suggesting regulation by zDHHC3 activity. Peptides
sequenced included the previously reported zDHHC3 modi-
fication sites on phosphatidylinositol 4-kinase IIa (PI4K2α) (55,
56) as well as previously reported S-palmitoylation sites on
caveolin-2 (57), Rac1 (17), scribble (58), and Trappc3 (59). An
identical strategy was also performed to compare mouse em-
bryonic fibroblast cultures that were wildtype versus cultures
deleted for Zdhhc3, which identified additional putative targets
of zDHHC3 including Gαq/11, an established substrate of
zDHHC3 and zDHHC7 (60), as the signaling protein with the
most prominent reduction in S-palmitoylation in Zdhhc3-
deleted cells (Table S1).

The proteomic screen suggests zDHHC3 directly modifies
Rac1 at Cys-178 (Table S1), which is critical for its activation and
localization to specific plasma membrane microdomains
involved in actin cytoskeletal reorganization (17). Cys-178 of
Rac1 is located in its C-terminal membrane-targeting domain
4 J. Biol. Chem. (2023) 299(12) 105426
that also contains the classical prenylated-CAAXmotif required
for processing and trafficking of all small GTPases (61).
Importantly, S-palmitoylation–dependent regulation of Rac1
has not been evaluated in cardiomyocytes or in vivo to date. To
determine if zDHHC3 S-palmitoylates Rac1 in the heart, we
performed Acyl-RAC assays to purify S-palmitoylated proteins
from transgenic hearts followed by immunoblotting, where we
observed a substantial increase in S-palmitoylated Rac1 in
zDHHC3-overexpressing hearts (Figs. 3, A–C and S4, A–D)
concomitant with upregulation of total Rac1 protein levels
(Figs. 3, B andD and S4C). H-Ras S-palmitoylation was reduced
in Zdhhc3-overexpressing hearts (Fig. 3B), indicating specificity
of zDHHC3 for modification of Rac1 in cardiomyocytes.
Notably, induction of Rac1 S-palmitoylation in DTgZdhhc3
hearts occurred within 2 weeks of transgene expression, prior to
the development of cardiac hypertrophy and heart failure
(Fig. S4), suggesting thatmodification of Rac1may be a proximal
mechanism underlying zDHHC3 activity–induced cardiac pa-
thology. Immunoblotting of membrane fractions from trans-
genic hearts after 8 weeks of transgene expression demonstrated
a substantial increase in membrane-associated Rac1 with
Zdhhc3 overexpression (Fig. 3E). Finally, immunostaining of
isolated myocytes from transgenic hearts similarly revealed a
dramatic enhancement in plasma membrane–associated Rac1
relative to tTA and DTgZdhhc3DHHS controls (Fig. 3F).
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Western blotting analyses of signaling molecules down-
stream of Rac1 revealed a substantial increase in the expres-
sion of the Rac1 effector, p21-activated kinase 1 (PAK1) (62,
63), in Zdhhc3-overexpressing hearts (Fig. 3, G and H) as well
as increased phosphorylation of extracellular signal–regulated
kinases 1 and 2 (ERK1/2) (Fig. 3G), which are activated by
PAK1 (64–66) and function as transducers of cardiac hyper-
trophy (67–69). Thus, zDHHC3-mediated S-palmitoylation
enhances Rac1 translocation to the sarcolemma and down-
stream activation of PAK1 and ERK1/2.
Overexpression of Zdhhc3 enhances RhoGTPase signaling

Remarkably, Zdhhc3 overexpression in the transgenic
mouse heart, but not the enzymatically dead mutant, had a
profound effect on all RhoGTPase family proteins, eliciting an
increase in the abundance of not just Rac1 but also RhoA,
Cdc42, and RhoGDI (Fig. 4A). There was also a concomitant
elevation in the levels of active, GTP-bound RhoA in addition
to Rac1 (Fig. 4B). These data are consistent with enhanced
Rac1 membrane translocation (Fig. 3, E and F) and effector
signaling (Fig. 3, G and H) observed in Zdhhc3-overexpressing
hearts. RasGTPase expression was unaffected by zDHHC3
activity (Fig. 4, B and C), suggesting the specificity for
RhoGTPase signaling. Indeed, protein levels of Rac1, RhoA,
and Cdc42, but not H-Ras, were elevated in both cytoplasmic
and membrane fractions isolated from Zdhhc3-overexpressing
hearts compared to tTA controls (Fig. 4C). RhoGDI serves as a
master regulator of RhoGTPase signaling homeostasis by
regulating the abundance, activity, and localization of all
RhoGTPase family proteins (11, 12, 70). We observed that
protein levels of RhoGDI were also substantially increased in
Zdhhc3-overexpressing hearts (Fig. 4, A and B), suggesting a
broad-spectrum effect of zDHHC3 activity on RhoGTPase
signaling.
Cardiac pathology by Zdhhc3 is not rescued by gene deletion
of selected S-palmitoylated targets

To directly examine the hypothesis that Zdhhc3 over-
expression in the heart drives hypertrophy and cardiomyopa-
thy through Rac1 signaling induction, we utilized Rac1-loxP-
targeted (Rac1f/f) mice crossed with αMHC promoter–driven
Cre transgenic animals to establish a cardiomyocyte-specific
deletion of Rac1 in the heart with zDHHC3 overexpression
(DTgZdhhc3 Rac1f/f-αMHCcre). However, deletion of Rac1 in the
heart did not alter the progression of Zdhhc3 overexpression–
driven cardiomyopathy (Fig. S5, A and B). Our proteomic
screen also identified Gα protein subunits q and 11 (Gαq and
Gα11) as targets of zDHHC3 palmitoylation (Table S1), which
support the previous findings of zDHHC3 and zDHHC7
knockdown resulting in reduced Gαq and Gα11 palmitoylation
and membrane localization (60). Moreover, activation of small
RhoGTPases including RhoA and Rac1 lie downstream of G
protein–coupled receptors that mediate Gαq and Gα11 acti-
vation (71). We utilized mice lacking Gna11 with Gnaq-loxP–
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Figure 4. Enhanced zDHHC3 activity induces signaling by all Rho family small GTPases in the heart.Western blotting for (A) the indicated RhoGTPase
family members in hearts overexpressing zDHHC3 or the enzymatically dead zDHHC3DHHS mutant protein (high line, 2 months of transgene expression in
the adult heart). tTA control hearts were also used. B, active (-GTP) and total levels of Rho small GTPases family members in transgenic hearts overexpressing
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for the indicated proteins. GAPDH is used throughout as a tissue processing and protein loading control. Itgβ1D, integrin β1D (to show membrane fraction
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Role of zDHHC proteins in cardiomyocyte signaling
targeted mice that were crossed with the Nkx2.5cre allele to
generate double Gnaq/Gna11 (72)–deleted mice that were
crossed with mice containing the Zdhhc3 transgene
(DTgZdhhc3 Gαq

f/f-Nkx2.5cre G11
−/−). However, no rescue of the

Zdhhc3 overexpression–driven cardiomyopathy was observed
in mice lacking Gαq and Gα11 in the heart (Fig. S5, C and D).

Our proteomic screen also identified multiple palmitoyla-
tion sites on the small GTPase regulatory protein galectin-1
with Zdhhc3 overexpression (Table S1). The structure of
galectin-1 is analogous to the prenyl-binding pocket of
RhoGDI that interacts with RhoGTPases (73) and galectin-1 is
known to function as a GDI-like chaperone to regulate H-Ras
activity and membrane localization (73–75), suggesting that
zDHHC3-mediated S-palmitoylation of galectin-1 may serve
as a molecular switch to control RhoGTPase signaling. To
determine if zDHHC3 palmitoylates galectin-1 in the heart, we
performed Acyl-RAC on transgenic hearts and immunoblotted
for galectin-1. We observed an increase in palmitoylated
galectin-1 as well as total galectin-1 protein with car-
diomyocyte overexpression of Zdhhc3 (Fig. S6A). Biochemical
fractionation (Fig. S6B) and immunocytochemistry (Fig. S6C)
demonstrated robust localization of galectin-1 to the car-
diomyocyte membrane in Zdhhc3-overexpressing hearts but
not hearts overexpressing the enzymatically dead Zdhhc3
mutant. However, Lgals1 (galectin-1) gene–deleted mice
containing the Zdhhc3 transgene (DTgZdhhc3 Lgals1−/−) did
not show alterations in the enhanced expression of RhoGT-
Pases (RhoA, Rac1, Cdc42, or RhoGDI) (Fig. S6D). More
importantly, deletion of Lgals1 did not impact cardiomyopathy
and the reduction in fractional shortening caused by Zdhhc3
overexpression (Fig. S6E).
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Deletion of Zdhhc3/7 impairs initiation of cardiac hypertrophy
in response to pressure overload and Rac1 S-palmitoylation
levels

To further probe the physiological role of zDHHC3 in the
heart, we generated Zdhhc3-loxP(f)–targeted mice (Zdhhc3f/f)
crossed with the Nkx2.5cre allele to establish cardiomyocyte-
specific deletion of the Zdhhc3 gene (Zdhhc3f/f-Nkx2.5cre)
(Fig. 5, A and B). We also examined Zdhhc7 gene–deleted
(Zdhhc7−/−) mice (Fig. 5C) that were crossed with the
cardiac-specific Zdhhc3-deleted mice to generate double nulls
(Zdhhc3f/f-Nkx2.5cre Zdhhc7−/−). We first assessed changes in
baseline function and morphology with deletion of Zdhhc7 by
comparing Zdhhc3f/f, Zdhhc3f/f Zdhhc7−/−, Nkx2.5cre,
Zdhhc3f/f-Nkx2.5cre, and Zdhhc3f/f-Nkx2.5cre Zdhhc7−/− mice
(Fig. 5D). No changes in cardiac function from 2 to 12 months
were observed as measured by echocardiography, HW/BW
ratio analysis, or morphology between any of the groups
(Fig. 5, E and F). Taken together, zDHHC3 and zDHHC7 are
not overtly required for baseline structure-function of the
mouse heart separately or in combination.

We observed increased endogenous protein levels of
zDHHC3 in the heart in response to 8 weeks of pressure
overload–induced hypertrophic stimulation (Fig. 1F) and a
prior study revealed upregulation of Zdhhc3 transcript levels
after 1 week of pressure overload (50). To determine whether
deletion of Zdhhc3 and/or Zdhhc7 contribute to the devel-
opment of hypertrophy and pathological signaling, we sub-
jected single- and double-targeted mice to transverse aortic
constriction (TAC). Both single- (Zdhhc3f/f-Nkx2.5cre or
Zdhhc7−/−) and double-deleted (Zdhhc3f/f-Nkx2.5cre Zdhhc7−/−)
mice showed similar increases in HW/BW ratios after 8 weeks
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of TAC compared with control groups (Fig. 6A) and a similar
reduction in cardiac function over these time points (Fig. 6B).
Moreover, cardiac hypertrophy in response to 2 weeks of
chronic angiotensin-II infusion was not significantly altered by
deletion of Zdhhc3 or Zdhhc7 alone or in combination
(Fig. S7). We also surveyed mRNA levels of other Zdhhc genes
and found no alterations in single- or double-deleted mice
(Fig. S8). However, we did observe a phenotype with pressure
overload in which Zdhhc3f/f-Nkx2.5cre Zdhhc7−/− mice showed a
modest but significant reduction in the degree of cardiac hy-
pertrophy with 1 week of TAC, as assessed by HW/BW
measurement (Fig. 6C). Pairwise comparison showed no
changes in sham mice between genotypes, while Zdhhc3f/f-
Nkx2.5cre, Zdhhc7−/− and double null mice showed a reduction
in HW/BW over 1 week of TAC compared with Nkx2.5cre
controls. (Fig. 6C). Consistent with these results, the palmi-
toylation levels of Rac1 are reduced in the hearts of both
single- (Zdhhc3f/f-Nkx2.5cre and Zdhhc7−/−) and double
(Zdhhc3f/f-Nkx2.5cre Zdhhc7−/−)-targeted mice at 8 months of
age (Fig. 6, D and E). Taken together, these results suggest that
zDHHC3/7 activity facilitates the cardiac hypertrophic
response during the first week of TAC and these enzymes can
dramatically alter Rac1 activity, but there after, other
compensatory effectors compensate to drive heart growth.
Discussion

S-palmitoylation plays critical roles in the pathophysiology
of cancer (76–81), inflammation (82–85), peripheral artery
disease (86), and thrombosis (87), yet few roles have been
established for this posttranslational modification in the
pathogenesis of cardiac hypertrophy and heart failure. Despite
S-palmitoylation of essential cardiac signal transducing pro-
teins (i.e., ⍺- and β-adrenergic receptors (88, 89)), endothelin
receptors (90–92), Gαq (60, 93), and Gαs (93, 94), little is
known of the functional effects of these lipid modifications
and the enzymes that mediate them. Here, we surveyed
zDHHC S-acyltransferase enzymes and observed that activity
of zDHHC3 and zDHHC7 at the cytoplasmic surface of the
Golgi promotes hypertrophic signaling and cardiomyopathy
in vivo. Further investigation identified Rac1 as a target of
zDHHC3 in the heart, and both Zdhhc3 and Zdhhc7 were
shown to be important in the initiation of cardiac hypertro-
phy with pressure overload stimulation. To date, only
zDHHC9 has been implicated in cardiac pathophysiology and
adaptation, where it represses atrial natriuretic peptide release
via S-palmitoylation of Rab3gap1 and impairment of the Rab3
GTPase cycle, and sustained zDHHC9 overexpression in
cardiomyocytes ultimately results in dilated cardiomyopathy
in late adulthood (95).
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Role of zDHHC proteins in cardiomyocyte signaling
Rac1 plays fundamental roles in cardiac homeostasis and
pathophysiology and is necessary and sufficient to induce
cardiac hypertrophy (6, 21, 96) and arrhythmia (62, 97).
Overexpression of constitutively active Rac1 results in lethal
dilated cardiomyopathy (21) and arrhythmogenesis (98), while
loss of Rac1 in cardiomyocytes ameliorates angiotensin II–
induced cardiac hypertrophy and oxidative stress (6). Rac1
canonically signals from lamellipodia and membrane ruffles in
nonmuscle cells (63, 99, 100) but how Rac1 functions in car-
diomyocytes with a relatively static cytoskeleton, limited
migration and proliferation, and unique sarcolemmal signaling
domains is not well understood. Here, we uncovered a novel
regulatory mechanism governing spatiotemporal control of
cardiomyocyte Rac1 signaling activity through zDHHC3-
mediated S-palmitoylation.
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Functions of small GTPases are regulated by their trans-
location to cellular membranes where they modulate signaling
by effector molecules that ultimately impact a host of cellular
processes including cell growth, proliferation, and migration
(13, 101). All Ras superfamily small GTPases (which include
Rho and Rab family GTPases) undergo prenylation on their C
terminus, the irreversible modification of cysteines with an
unsaturated isoprenyl fatty acid, which is critical for their
processing, trafficking, and ultimately membrane association
(102–104). Rho family GTPases (RhoA/C, Rac1, Cdc42) are
primarily regulated by RhoGDI, a Rho-specific chaperone
molecule that binds the prenylated C terminus of RhoGTPases
to regulate their delivery to and extraction from sites of action
at cell membranes (11, 12, 70). We uncovered zDHHC3-
regulated S-palmitoylation of Rac1 at Cys-178, adjacent to its
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C-terminal polybasic region and prenylated CAAX motif,
which has been shown to target Rac1 to higher ordered
cholesterol-rich membrane microdomains with increased
activation (17). These data suggest that zDHHC3-mediated
Rac1 S-palmitoylation compartmentalizes Rac1 at distinct
sarcolemmal signaling microdomains that likely underlie
pathological remodeling and hypertrophy. zDHHC3-
overexpressing hearts exhibit induction of the Rac1 effector
kinase, PAK1, and phosphorylation of ERK1/2, regulators of
hypertrophic cardiac growth (64, 66–68). These data collec-
tively suggest a working hypothesis whereby zDHHC3 activity
at the cardiomyocyte Golgi S-palmitoylates Rac1 to promote
its sarcolemmal translocation and signaling activity along with
induction of all small GTPases of the Rho family and RhoGDI,
which is associated with congestive heart failure in zDHHC3
transgenic mice that also phenocopies cardiac-specific over-
expression of RhoA or Rac1 (10, 21). However, genetic dele-
tion of Rac1 in the heart is unable to rescue cardiac
maladaptation observed with zDHHC3 overexpression, and
Zdhhc3 heart-specific null mice still show robust cardiac hy-
pertrophy over 8 weeks of TAC stimulation or 2 weeks of Ang-
II infusion. These data suggest that zDHHC3-regulated
signaling is more critically involved in the initiation of the
hypertrophic response, but that other pathways compensate
over longer periods of stimulation. Moreover, Zdhhc3 over-
expression in the heart undoubtedly induces the cardiac hy-
pertrophic response through many downstream effectors as
suggested in Table S1; hence it seems unlikely that deletion of
a single key effector gene (i.e., Rac1) would be sufficient to
attenuate the greater response over longer periods of time.

Other critical effectors have also been shown to mediate
maladaptive signaling downstream of zDHHC3/7 in diverse
cellular systems. For example, disruption of signal transducer
and activator of transcription 3 (Stat3) S-palmitoylation
cycling by genetic deletion of Zdhhc7 or pharmacological in-
hibition of APT-2 ameliorates inflammatory gene expression
and colitis in an animal model of inflammatory bowel disease
(82). Thus, palmitoylation cycling of soluble signaling proteins
can provide a regulatory mechanism to garner sustained
signaling and activation of downstream transduction circuitry,
and the Golgi-localized zDHHC proteins appear to be critical
in such signaling. Here, we observed that zDHHC3 activity in
cardiomyocytes regulates S-palmitoylation of Rac1 and
consequently its translocation to the sarcolemma, GTP-
loading, and activation of downstream effectors, and
zDHHC3 is indispensable for maintaining Rac1 S-palmitoyla-
tion in the aged heart. These data suggest that zDHHC3-
mediated regulation of Rac1 S-palmitoylation cycling induces
pathogenic signaling, which could represent a new therapeutic
vantage point in cardiomyopathy and heart failure.

In summary, our data are the first to demonstrate a critical
role for dynamic S-palmitoylation in the heart as a regulator of
pathologic signal transduction that leads to hypertrophy and
maladaptive ventricular remodeling. Interestingly, statin drugs
commonly prescribed to treat cardiovascular disease repress
membrane localization, activation, and abundance of Rac1 in
cardiomyocytes (29, 105, 106) and similarly reduce cardiac
Rac1 activity and oxidative stress in human heart failure (23).
Indeed, the efficacy of statin drugs in heart failure treatment is
thought to be mediated in part through repression of Rac1 via
inhibition of prenylation and antagonism of maladaptive Rac1
signaling and oxidative stress (30, 105, 107–109). Inhibition of
Rac1 S-palmitoylation may thus provide an alternative thera-
peutic approach for cardiac disease treatment by inhibiting
maladaptive Rac1 signaling at the sarcolemma.
Experimental procedures

Animals

Cardiomyocyte-specific transgenic mice overexpressing
zDHHC3 were generated by subcloning mouse Zdhhc3 cDNA
(Dharmacon, #MMM1013-202763213) into the re-engineered
tetracycline-inducible αMHC promoter expression vector that
permits tetracycline/doxycycline-extinguishable expression in
the presence of a second transgene expressing the tTA
expressed by the unmodified αMHC promoter expression
vector (51). The DNA construct was digested with Not I re-
striction endonuclease and the promoter-cDNA fragment gel
purified for oocyte injection at the Cincinnati Children’s
Hospital Transgenic Animal and Genome Editing Core Facility
as described previously (110, 111). Enzymatically dead Zdhhc3
mutant transgenic mice overexpressing Zdhhc3DHHS in car-
diomyocytes were generated by site-directed mutagenesis of
the α-MHC-Zdhhc3 promoter-transgene construct using the
QuikChange II XL Site- Directed Mutagenesis Kit (Agilent) to
encode a mutation of Cys-157 in mouse zDHHC3 protein to
Ser. Primers used for mutagenesis were Forward 50-GCAA-
GATGGATCACCACAGTCCTTGGGTCAACAAC-30 and
Reverse 50-GTTGTTGACCCAAGGACTGTGGTGATCCAT
CTTGC-30. Transgenic mice were generated on the FVB/N
genetic background. To induce transgene expression in the
adult heart, transgenic mice were bred on doxycycline-
containing chow (625 mg/kg diet, Cincinnati Lab Supply,
#TD1811541) to repress transgene expression until 3 weeks of
age when experimental mice were weaned from the dams and
placed on a normal lab chow diet. All molecular analyses were
performed in the high-expressing line of Zdhhc3 transgenic
mice 2 months following induction of transgene expression
(removal of doxycycline) in the adult heart unless otherwise
stated.

Cardiac-specific Zdhhc3 gene–deleted mice were gener-
ated as previously described (112), using embryonic stem
cells with a knockout first allele of the Zdhhc3 gene
(Zdhhc3tm1a(EUCOMM)Hmgu) obtained from the European
Mouse Mutant Cell Repository that was used in aggregation
with 8-cell embryos to generate chimeric mice. Germline
male chimeras were then crossed with Rosa26-FLPe females
(Jackson Laboratory, #9086) to remove the neomycin cassette
and generate a conditional allele with loxP (f) sites flanking
exon 3 of Zdhhc3. Cardiac-specific deletion of Zdhhc3 was
achieved by crossing Zdhhc3-loxP mice with mice containing
the Nkx2.5cre allele (B6129S1-Nkx2-5tm1(cre)Rjs/J, JAX strain
030047). Rac1f/f (JAX; strain 005550) (113) and Lgals1 gene-
targeted (JAX; strain 006337, C57BL/6NJ background) (114)
J. Biol. Chem. (2023) 299(12) 105426 9
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mice were obtained from Jackson Laboratory. Rac1 cardiac-
specific deletion mice were generated by crossing Rac1f/f

mice with Tg(Myh6-cre [called αMHCcre here])1Jmk mice
(JAX stock #009074) (115), and because the αMHCcre
transgene is on the X-chromosome only, male mice were
used to avoid chimerism due to X-linked inactivation. Gnaq-
Gna11– (72) (Gαq and Gα11 proteins, respectively) targeted
mice were also employed. Zdhhc7- (116) targeted mice were
characterized and previously described. All mice were in the
C57BL/6J background unless otherwise noted.

AAV9 was generated by subcloning full-length mouse
Zdhhc cDNAs (kind gift of Dr Masaki Fukata, National Insti-
tute for Physiological Sciences, such as Zdhhc3, 5, 6, 7, 13) (41)
with 2× hemagglutinin (HA) epitopes on the N terminus into
the pAAV-MCS vector (Agilent) and AAV9 was produced by
Vigene. Mouse pups were injected in the chest cavity at
postnatal day 6 with 1 × 1012 viral genomes of the indicated
AAV9 as described previously (117) with the exception of
Zdhhc3 and Zdhhc7 that were injected at lower doses of 0.5 ×
1012 or 1 × 1011 viral genomes per pup, respectively, due to
lethal cardiomyopathy associated with robust expression.
Controls were injected with 1 × 1012 viral genomes of empty
AAV9 vector or sterile 1× PBS. AAV studies were performed
in CD1 mice with the exception of Figure S1 studies that were
performed in the FVB/N genetic background.

Echocardiography was performed as described previously
(118, 119). Mortality was defined as a mouse being found dead
in the cage or veterinarian-recommended euthanasia due to
symptoms of congestive heart failure.

Ethics approval and rigor

All animal procedures were approved by the Cincinnati
Children’s Hospital Institutional Animal Care and Use Com-
mittee and conformed to the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health in the
USA. Randomization of mouse groups was not performed
given that they were genetically identical and the same ages of
mice were used in comparison studies. ARRIVE guidelines
were followed in all mouse experimentation. No human ma-
terials or subjects were used. Blinding of animal groups was
performed where possible. No data were excluded in the
analysis of all figures and tables used in this report.

Pathological hypertrophy models

Transverse aortic constriction procedures were performed
as previously described (119). Briefly, two-month-old mice
were anesthetized with 3% isoflurane and intubated with an
18-gauge catheter. During surgery, mice were continuously
anesthetized using a mouse ventilator (SomnoSuite, TSE Sys-
tems) at 1.7% isoflurane. Mice were thoracotomized, followed
by isolation of the transverse aorta. Constriction of the
transverse aorta was achieved by tying a suture around both
the transverse aorta and a 26-gauge needle; the needle was
removed to generate the constriction. The thoracic incision
was sutured and sealed with GLUture (Zoetis, Butler Schein,
#034418). Post extubation, mice were treated with sustained-
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release buprenorphine (0.2 mg/kg) injected subcutaneously.
For chronic angiotensin-II infusion, two-month-old mice were
subcutaneously implanted with osmotic pumps containing
saline or AngII (3 μg/g/day, Alzet #1002) for 2 weeks. Mice
and incisions were monitored daily following surgery. Sham
surgeries or installation of saline pumps were performed in the
same manner. Hearts were harvested for the indicated times
after surgery.
Western blotting, immunoprecipitations, membrane
fractionation, and GTPase activity

For evaluation of small GTPase activity and small GTPase
protein levels, hearts were homogenized in assay buffer
(25 mM Hepes pH 7.5, 150 mM NaCl, 1% NP-40, 10 mM
MgCl2, 1 mM EDTA, and 2% glycerol) with protease inhibitors
(Roche) and lysates were cleared by centrifugation. RhoA ac-
tivity was evaluated by affinity purification of RhoA-GTP using
rhotekin agarose beads (Cell Biolabs), and the activity of Rac1
and Cdc42 were assessed by affinity purification using mag-
netic beads coupled to the p21-binding domain of PAK (Mil-
lipore) that specifically binds the active (GTP-bound) forms of
Rac1 and Cdc42. Following affinity purification, GTP-bound
small GTPases were eluted from beads for SDS-PAGE by
boiling in Laemmli buffer.

Western blotting was performed as described previously.
Mouse hearts were homogenized in radioimmunoprecipitation
assay (RIPA) buffer (50 mM Tris�HCl pH 7.4, 1% Triton X-
100, 1% sodium deoxycholate, 1 mM EDTA, 0.1% SDS) con-
taining Halt protease and phosphatase inhibitor cocktail
(Thermo Fisher Scientific 78442) and then sonicated, clarified
by centrifugation, and boiled in Laemmli buffer. For detection
of zDHHC proteins, RIPA lysates were used without boiling
(Fig. S2) or cardiac lysates were made in 50 mM Tris�HCl pH
7.6, 10 mM Na4PO2O7�10H2O, 6 M urea, 10% glycerol, and 2%
SDS. Biochemical fractionation of mouse hearts into mem-
brane and cytosolic fractions was performed exactly as
described elsewhere (120). HA-tagged zDHHC proteins were
immunoprecipitated from cardiac lysates with anti-HA mag-
netic beads (Pierce, #88836) and eluted by boiling in Laemmli
buffer. Samples were separated by SDS- PAGE and transferred
to polyvinylidene difluoride membranes (Millipore Immobilon-
FL, #IPVH00010) for immunoblotting. Polyvinylidene difluor-
ide membranes were blocked in 5% dry milk diluted in Tris-
buffered saline with 0.1% tween-20 (TBST), incubated with
primary antibodies diluted in 5% milk in TBST overnight at 4
�C followed by incubation with LiCor IRDye secondary anti-
bodies diluted 1:10,000 in 5% milk in TBST with 0.02% SDS for
2 h at room temperature, and imaged on a Li-Cor Odyssey CLx
imaging system. Primary antibodies used were calnexin
(Abcam, #ab22595, 1:1000), Cdc42 (Abcam, #ab64533, 1:500),
phos-ERK1/2 (Cell Signaling Technology, #4370, 1:500), ERK1/
2 (Cell Signaling Technology, #9102, 1:500), galectin-1 (Abcam,
#EPR3205, 1:1000), GAPDH (Fitzgerald, #10R-G109A,
1:50,000), HA (Abcam, #ab9110, 1:1000), integrin β1D (Milli-
pore, #MAB1900, 1:1000), PAK1 (Cell Signaling Technology,
#2602, 1:500), Rac1 (BD Transduction Laboratories, #610650,
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1:500), pan-Ras (Thermo Fisher Scientific, #MA1-012, 1:1000),
H-Ras (Santa Cruz Biotechnology, #sc-29, 1:500), RhoA (Cell
Signaling Technology, #2117, 1:500), RhoGDIα (BD Trans-
duction Laboratories, #610255, 1:4000), α-tubulin (Sigma,
#T5168, 1:1000), zDHHC3 (Abcam, #ab31837, 1:500), and
zDHHC7 (Abcam, #ab138210, 1:500).

Immunocytochemistry

Immunocytochemistry was performed on adult car-
diomyocytes in suspension exactly as described previously
(111). Cardiomyocytes were isolated from mouse hearts by
Langendorff perfusion, fixed with 4% paraformaldehyde for
15 min at room temperature, incubated in blocking solution
(1× PBS, 5% goat serum, 1% bovine serum albumin, 1% glycine,
0.2% Triton X-100) for 1 h at room temperature, and then
immunostained with Rac1 (BD Transduction Laboratories,
#610650), zDHHC3 (Abcam, #ab31837), or galectin-1 (Abcam,
#ab58085). Primary antibodies diluted 1:50 in blocking solu-
tion overnight at 4 �C. Cardiomyocytes were then washed in
1× PBS with 0.1% NP-40, incubated with Alexa Fluor sec-
ondary antibodies (Molecular Probes) diluted 1:1000 in
blocking solution for 2 h at room temperature, washed again in
1× PBS with 0.1% NP-40, and mounted on slides with Prolong
Diamond Antifade Mountant with 40,6-diamidino-2-
phenylindole (Molecular Probes). Imaging was performed us-
ing a Nikon A1 Confocal microscope.

Acyl-RAC and mass spectrometry

S-palmitoylated proteins were purified from cardiac lysates
by Acyl-RAC as described previously (54). Briefly, cardiac ly-
sates were made in RIPA buffer as described above, diluted
with 100 mM Hepes pH 7.4, 1 mM EDTA to a concentration
of 2.5% SDS, and free thiols were blocked with 0.2% methyl
methanethiosulfonate at 42 �C for 20 min. Proteins were then
acetone precipitated at −20 �C and samples centrifuged for
10 min at 10,000g. Protein pellets were washed four times in
70% ice cold acetone to remove excess methyl meth-
anethiosulfonate and protein pellets were dried and solubilized
in 100 mM Hepes pH 7.4, 1% SDS, and 1 mM EDTA with
protease inhibitors at 37 �C. Protein concentration was
quantified and samples diluted to an equal concentration. For
affinity purification of S-palmitoylated proteins, 450 μl lysate
was combined with 200 μl of 100 mM Hepes pH 7.4 with
1 mM EDTA, 300 μl of 1M NH2OH pH 7.4 or 150 mM
Tris�HCl pH 7.4 as a negative control, and 30 μl thiopropyl
sepharose (Sigma) and incubated at room temperature for 3 h.
Thiopropyl sephaarose beads were then washed four times in
100 mM Hepes pH 7.4, 0.3% SDS with 1 mM EDTA, and S-
palmitoylated proteins were eluted from thiopropyl sepharose
by boiling in Laemmli buffer.

Stable NIH3T3 cells (ATCC CRL-1658, certified myco-
plasma free and authentic) overexpressing zDHHC3 or GFP as
a control were generated using the pLVX lentiviral system
(Clontech). Cells were labeled by SILAC by passaging at least 9
times in Dulbecco’s Modified Eagle Medium for SILAC lacking
lysine and arginine (Thermo Fisher Scientific) containing 10%
dialyzed fetal bovine serum (Thermo Fisher Scientific) and
supplemented with [13C6,

15N2] L-lysine and [13C6,
15N4] L-

arginine (Thermo Fisher Scientific) for “heavy” 3T3-Zdhhc3
cells or normal L-lysine and L-arginine (Thermo Fisher Sci-
entific) for “light” 3T3-eGFP cells. Mass spectrometry
sequencing of S-palmitoylated peptides was performed
essentially as described previously (54) with slight modifica-
tions. Protein extracted from SILAC-labeled 3T3-Zdhhc3 and
3T3-eGFP cells was mixed 1:1, and S-palmitoylated proteins
were purified by Acyl-RAC as described. Following the final
wash, thiopropyl sepharose beads were incubated overnight at
37 �C with 2 μg trypsin Gold (Promega, #V5280) in 50 mM
NH4HCO3, 1 mM EDTA. After on-resin trypsin digestion,
thiopropyl sepharose beads were washed five times in 100 mM
Hepes, 1% SDS, 1 mM EDTA, then washed four times in
10 mM NH4HCO3, and once in 50 mM NH4HCO3. Captured
peptides were then eluted from thiopropyl sepharose by in-
cubation with 100 mM DTT (Roche) in 50 mM NH4HCO3 at
70 �C for 45 min and further processed for mass spectrometry
sequencing at the University of Cincinnati Proteomics Labo-
ratory (121). Eluted peptides were alkylated with 200 l of
400 mM iodoacetamide in 25 mM NH4HCO3 at 37 �C for 2 h
and loaded onto C18 stage tips made from 3M Empore
extraction disks, washed twice with 50 μl of 0.1% formic acid,
and stage tips were then eluted three times with 50 μl of 80%
acetonitrile/0.1% formic acid by centrifuging through the
column at 1600g for 5 min. Elutions were pooled, dried, and
reconstituted in 6 ml of 0.1% formic acid, and peptides were
sequenced by nanoscale liquid chromatography coupled to
tandem mass spectrometry and searched using the Protein
Pilot program (Sciex).

Mouse embryonic fibroblasts were isolated as described
previously (122) from homozygous Zdhhc3 loxP-targeted
littermate embryos at approximately embryonic day 12,
immortalized by lentiviral transduction with large T antigen
(123), and then transduced with recombinant adenovirus to
express beta-galactosidase as a control or Cre recombinase to
delete Zdhhc3. SILAC labeling, Acyl-RAC, and mass spec-
trometry sequencing were then performed as described above.
Acyl biotin exchange

Acyl biotin exchange was performed as previously described
(94, 124). Briefly, hearts were minced in 1% β-D-maltoside in
1× PBS, supplemented with HALT protease-phosphatase in-
hibitors and ML211 (acyl protein thioesterases inhibitor,
10 mM, Cayman Chemicals), and mechanically homogenized
(Omni Tissue Master 125). Lysates were spun down at 21,000g
for 30 min at 4 �C. Equal quantities of proteins were incubated
with 50 mM N-ethylmaleimide (Thermo Fisher Scientific,
23030) overnight at 4 �C on a rotator. Samples underwent
three rounds of precipitation with chloroform-methanol, fol-
lowed by incubation with freshly made 400 mM hydroxyl-
amine pH 7 (Sigma 159417) and 1 mM biotin-HPDP (Cayman
Chemicals 16459) for 50 min at 37 �C with gentle mixing.
Negative controls were incubated with 400 mM NaCl. Samples
underwent an additional three rounds of chloroform-methanol
J. Biol. Chem. (2023) 299(12) 105426 11
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precipitation followed by incubation with streptavidin agarose
with gentle mixing overnight at 4 �C. Beads were then washed
four times with wash buffer (150 mM NaCl, 50 mM Tris pH7,
5 mM EDTA, 0.2% TritonX-100, 0.1% SDS) and eluted with
elution buffer (400 mM Tris pH 6.8, 40% glycerol, 1% bro-
mophenol blue, 5% SDS) for 15 min at 80 �C with mixing.
Eluted proteins are run on SDS gels followed by transfer to
nitrocellulose (Bio-Rad 162-0112) and Western blotting. Pal-
mitoylation levels of calnexin were used as a control (94).

Statistical analyses

All statistical analyses were performed using GraphPad
Prism (graphpad.com) with a p-value < 0.05 considered sig-
nificant. Tests between two groups with only one variable were
conducted with unpaired t-tests. Analysis between more than
two groups were analyzed by a one- or two-way ANOVA with
Holm Sidak’s multiple comparison test for post hoc pairwise
comparisons. Data are reported at mean ± SEM.

Data availability

The datasets generated during and/or analyzed during the
current study are available in this study or the supporting in-
formation that are provided.
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