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The phylum Rozellomycota has been proposed for a group of early-
branching holomycotan lineages representing obligate parasites and
hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their
predominantly intracellular lifestyle, rozellids are typically known from
environmental ribosomal DNA data, except for the well-studied Rozella species.
To date, the phylogenetic relationship between rozellids and microsporidians
(Microsporidia) is not fully understood and most reliable hypotheses are
based on phylogenomic analyses that incorporate the only publicly available
rozellid genome of Rozella allomycis. Here, we provide genomic data of three
new rozellid lineages obtained by single-cell sequencing from environmental
samples and show with a phylogenomic approach that rozellids form a mono-
phyletic group that is sister to microsporidians, corroborating the previously
proposed phylum Rozellomycota. Whereas no mitochondrial genes coding
for the respiratory Complex I could be found, we discovered a gene coding
for a nucleotide phosphate transporter in one of the three draft genomes.
The scattered absence of Complex I genes and scattered presence of nucleotide
transporter genes across diverse microsporidian and rozellid lineages suggest
that these adaptations to a parasitic lifestyle, which reduce the parasite’s
capability to synthesize ATP but enables it to steal ATP from its host, evolved
independently in microsporidians and rozellids.
1. Introduction
The early-branching holomycotan phylum Rozellomycota (rozellids) was pro-
posed based on a few formally described species of the genus Rozella as well as
on environmental sequences obtained by metabarcoding or by fluorescence
in situ hybridizations (FISH) combined with single-cell sequencing [1,–7], initially
named Cryptomycota [8]. Most of what is known about rozellids is deduced from
thewell-studiedRozella species,which are obligate parasites that disperse as flagel-
lated zoospores and feed by phagocytosis as wall-less endobiotic amoeboids
growing inside the host cell while adapting its cell wall and thereby shape to
form sporangia or alternatively resting spores [5,9]. InRozella, a reducedmitochon-
drion lacking Complex I was reported, causing a dependence on importing
nucleotides from the hosts [10,11], which are often parasites themselves
and belong to the zoosporic fungi Blastocladiomycota or Chytridiomycota
(chytrids), or to the Oomycota (Stramenopila) [2,5]. Other rozellids and rozellid-
associated lineages were suggested to parasitize phytoplankton and were shown
by FISH to comprise both endo- and epiparasites [3,12–15]. Environmental and
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Figure 1. Parasites and their hosts from environmental samples. Identifi-
cations were based on morphological characteristics in combination with
phylogenomic tree inference (see [36]) and with BLASTn and diamond
BLASTx searches against the SILVA SSU database [37] and the NCBI nr data-
base, respectively. Samples were collected from Lake Müggelsee (Berlin,
Germany). Scale bars: 25 µm. (a) Asterionella with sporangium; contained
Rozellid 19–20. (b) Putative Golenkinia with sporangium; contained Rozellid
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metabarcoding surveys showed that rozellids are ubiquitous in
different climates and various freshwater, marine and soil habi-
tats [3,4,6,7,16–19]. As parasites, they are hypothesized to
influence host populations [13,20,21] and their zoospores may
serve as a nutritious food source, as is known for other fungal
zoospores [22,23].

Based on ribosomal DNA phylogenies, morphology and
metabolic characteristics, the early-branching holomycotan
phyla Aphelidiomycota (aphelids), Microsporidia (micro-
sporidians) and Rozellomycota were established [1,24,25]. Yet,
all these investigations have failed so far to infer their deep
phylogenetic relationships with confidence [9,26–29]. Only
when more genomic and transcriptomic data allowed for
phylogenomic analyses, the putative rozellids Paramicrospori-
dium saccamoebae and Mitosporidium daphniae [29,30] were
suggested to belong to the microsporidians [25,31,32], but
the delineation remained controversial [33,34]. So did the
position of the only safely assigned rozellid (R. allomycis) for
which genomic data have been made publicly available to
date and hence the relationship between microsporidians and
rozellids in general [31,35]. Here, we present genomic data of
three new rozellid lineages uncovered from environmental
single-cell samples and confirm the previously hypothesized
sister relationship of rozellids to microsporidians with full sup-
port throughout all phylogenomic analyses. We furthermore
report on a nucleotide transporter protein found in one of the
rozellid draft genomes and speculate on its possible function
in adapting to a parasitic lifestyle.
133–135. (c–d) Centric diatom with sporangium; contained Rozellid 233–234
plus chytrid Rhizophydiales sp.
2. Methods
Sampling, genome amplification, sequencing, assembly and tree
inference are described in detail elsewhere [36]. Briefly, surface
water samples from different stations in Lake Müggelsee
(Berlin) were pooled and screened for phytoplankton-infecting
parasites. Three host–parasite pairs were isolated by micromani-
pulation (figure 1 and electronic supplementary material, table
S1) and their genomic DNA was amplified with the REPLI-g
Advanced DNA Single Cell Kit (Qiagen). Library preparation
and whole genome sequencing (PE 150 bp, Illumina NovaSeq)
were carried out at Novogene Company Limited (Cambridge,
UK). For bioinformatic analyses, the high-performance comput-
ing infrastructure at ZEDAT, Freie Universität Berlin, was used
[38]. Reads were trimmed and merged using Trimmomatic
v. 0.39 [39] and PEAR v. 0.9.11. [40], respectively, and remaining
unmerged paired reads were quality filtered with Sickle v. 1.33
[41]. Genomes were then assembled with SPAdes v. 3.15.5 [42]
(electronic supplementary material, data) and protein-coding
genes were predicted with BUSCO v. 5.1.2 using the database
fungi_odb10 [43]. A subset of 265 proteins from two published
protein datasets encompassing a broad range of eukaryotic [44]
and fungal [31] diversity was chosen according to their presence
in the rozellid data and served as query to retrieve homologues
from the new data by BLASTp searches [45].

Paralogues and contaminants were removed from the new
proteindataset bymanual inspectionof265 single-proteinmaximum
likelihood (ML) trees with a high number of taxa (greater than 1000)
to facilitate their detection, as described elsewhere [36]. The resulting
datasetwas reduced to69 taxa toallow forcomputationallydemand-
ing phylogenomic analyses by removing non-targeted taxa and the
fastest-evolvingmicrosporidians (to also prevent long-branch attrac-
tion) and by merging taxa into consensus sequences representing
OTUs. This taxon-reduced dataset (electronic supplementary
material, data) was filtered with PREQUAL v. 1.02 [46], aligned
with MAFFT G–INS–I v. 7.475 [47] and further non-homologous
residues were removed with Divvier v. 1.01 [48]. Gaps were filtered
out (threshold 0.05) with trimAl v. 1.4.1 [49]. The resulting dataset
was concatenated into a single matrix using ScaFoS v. 4.42 [50]
(265 proteins; 113 816 amino acid positions; electronic supple-
mentary material, data). The newly sequenced Rozellid 19–20
showed a low average data completeness across all proteins of only
3% in thematrix andwas therefore removed from themain analysis,
resulting in 68 taxa for the final matrix.

Three different phylogenetic inference methods were applied
to uncover potential biases introduced by inference methods
or evolutionary models: (i) a summary coalescent tree was
built with ASTRAL-III v. 5.7.7 [51] using single-protein ML trees
inferred with IQ-TREE v. 1.6.12 [52] using best-fitting site-
heterogeneous mixture models according to the Bayesian infor-
mation criterion (BIC; electronic supplementary material, data); (ii)
an ML tree was computed with IQ-TREE from the concatenated
matrix under the best-fitting site-heterogeneous mixture model
LG+C60 + F +R9 and using the posterior mean site frequencies
(PMSF) approach [53] with 100 bootstrap replicates; (iii) a Bayesian
inference (BI) tree was reconstructed using PhyloBayes-MPI v. 1.8
[54] with the CAT+GTR+G4 model. For BI, three independent
Markov chainMonteCarlo (MCMC) chainswere run for 2000 gener-
ations. The evolution of the log-likelihood at each sampled cyclewas
monitored and cycles before the stationary phase were removed
(burnin = 1000). The three MCMC chains did not show global
convergence (maxdiff = 1 and meandiff = 0.0250627).

To reduce systematic biases caused by missing data and to
represent the previously excluded Rozellid 19–20 with a reason-
able percentage of data, a subset of 100 proteins was selected
(85 proteins for which at least one new rozellid sequence was pre-
sent and 15 proteins with the highest number of taxa; electronic
supplementary material, data). This resulted in a protein-reduced
matrix with 38 953 amino acid positions and 69 taxa (9% comple-
teness for Rozellid 19–20; electronic supplementary material,
table S1), which was analysed by ML as described above.
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Figure 2. Phylogenomic position of rozellids. (a) Bayesian tree inferred under the site-heterogeneous CAT + GTR + G4 model from the full matrix of 113 816 amino acid
positions (265 proteins) and 68 taxa. Newly sequenced rozellids are indicated in bold and percentages indicate data completeness in the concatenated alignment. Branches
that were fully supported by Bayesian posterior probability are indicated by black circles. (b) Maximum likelihood tree inferred under the site-heterogeneous LG + C60 +
F + R9-PMSF model from a 113 816 amino acid matrix (left) and coalescence tree inferred under best-fitting (according to BIC) site-heterogeneous models (right). Black
circles indicate full branch support (ML, non-parametric bootstrap support from 100 replicates; coalescence, quartet score support without bootstrapping). Percentages in
the polygons indicate branch length reductions. (c) Detail from an additional ML tree including all three rozellid lineages, which was inferred under the site-heterogeneous
LG + C60 + F + R9 model from the reduced matrix with 38 953 amino acid positions (electronic supplementary material, figure S3). Black circles indicate full branch
support inferred from ultrafast bootstraps based on 1000 replicates and percentages indicate data completeness in the alignment.
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To phylogenetically relate our new lineages to previously
reported rozellid sequences, an ML tree was inferred from a
concatenated SSU + LSU rRNA gene alignment. Sequences were
extracted from the new genomes with ITSx 1.1.3 [55] and BLASTn
searches using genes of described Rozella species as query. The
same query sequences were used to obtain all publicly available
rozellid sequences byBLASTn searches againstNCBI’s nt database.
Sequences were aligned with MAFFT FFT-NS-i and trimmed with
trimAl (gap threshold 0.05). AnML tree was inferred from the con-
catenated alignment using IQ-TREE (GTR+ F +R10 model) with
ultrafast bootstraps (1000 replicates) [56].

In the new rozellid draft genomes, contigs with potential mito-
chondrial genes were detected by BLASTn and BLASTp searches
against a selection of 266 mitochondrial genomes from a broad
diversity of holomycotan linages (excluding Ascomycota and Basi-
diomycota) available at NCBI. Putative mitochondrion-encoded
genes were annotated usingMFannot [57]. Nucleotide transporters
were searched for by tBLASTn using UniProt’s (www.uniprot.org)
microsporidian andRozella proteins as queries (PF03219), and taxo-
nomic origin of the predicted ORFs of potential hits was validated
by BLASTp searches against NCBI’s nr database.
3. Results
Phylogenomic analyses of new genomic data from three
early-branching holomycotan lineages revealed their close
relationship to R. allomycis (figure 2), supporting a mono-
phyletic rozellid clade that is sister to microsporidians.
Congruent rozellid topologies were inferred with maximum
support under site-heterogeneous mixture models using both
BI (CAT +GTR model; figure 2a) and ML (LG+C60 + F + R9-
PMSFmodel, figure 2b and electronic supplementary material,
figure S1) analyses of a protein matrix with 113 816 sites and 68
taxa and using a coalescence approach (figure 2b and electronic
supplementary material, figure S2) based on 265 single protein
trees (Rozellid 19–20 was inferred with ML only; see below).
The BI and ML topologies differed only within the micro-
sporidians, which has been scrutinized before [31]. Average
data completeness of the newly sequenced rozellids across
all proteins in the concatenated alignment was 7% (Rozellid
233–234) and 28% (Rozellid 133–135; electronic supplementary
material, table S1; for reference, R. allomycis: 97%). To unravel
the phylogenetic position of the third isolated rozellid lineage
that showed low data completeness in the alignment (Rozellid
19–20; 3%), we reconstructed an additional ML tree (LG +
C60 + F + R9 model) based on a reduced protein sampling to
minimize systematic biases caused by missing data (100 pro-
teins; 38 953 sites; 9% data completeness for Rozellid 19–20;
electronic supplementary material, table S1) [58]. This tree
recovered Rozellid 19–20 to be sister to R. allomycis—both
forming a well-supported sister group to the two other newly

http://www.uniprot.org
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isolated rozellids (figure 2c and electronic supplementary
material, figure S3). Based on the phylogenetic analysis of the
rRNA gene sequences, Rozellids 19–20 and 133–135 were
revealed to represent new lineages within the highly diverse
Rozellomycota (electronic supplementary material, figure S4).
For Rozellid 233–234, SSU/LSU rRNA gene sequences were
not detected.

Mitochondrial genes of Complex I were not found in
any of the three draft genomes, but a nucleotide phosphate
transporter similar to that present in R. allomycis [10]
was found in one of the three rozellids (Rozellid 133–135;
electronic supplementary material, data).
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4. Discussion
By including new genomic data of uncultured rozellid lineages
into a robust phylogenomic framework, we show that the
sister relationship of rozellids and microsporidians remained
fully supported throughout all analyses, corroborating the
previously proposed phylum Rozellomycota [1,8]. This
relationship has been inferred before by studying the phyloge-
netic position of the single rozellid genome of R. allomyciswith
concatenation-based ML and BI analyses [10,31,33,59] but
remained controversial in coalescence-based analyses [31,35].
Interestingly, another study [60] on fungal evolution that
included additional data of, however, hitherto unpublished
rozellid genomes discovered their sister relationship to M.
daphniae and P. saccamoebae—two species, for which we here
confirm their proposed assignation to microsporidians [26,31].

The here supported phylogenetic distinction of microspor-
idians and rozellids corresponds to themicrosporidian-specific
loss of the flagellum and to the gain of the polar filament,
which is involved in spore extrusion when entering the host
[25,32] (inP. saccamoebae such polar filament is present but inac-
tive [1]). However, the divergence is incongruent with other
morphological and cell biological traits that are shared between
R. allomycis and most but not all microsporidians, such as the
loss of the mitochondrial Complex I [25,30,32,61], which
is retained in P. saccamoebae that has a complete electron trans-
port chain [33]. The sister relationship of microsporidians and
rozellids therefore supports the hypothesis of independent
losses of Complex I that occurred after their divergence
[26,32,33]. Nevertheless, findings of nuclear genes coding for
an alternative internal (and external—R. allomycis only)
NADH dehydrogenase and an alternative oxidase [10,25]
suggest that both R. allomycis and the early-branching micro-
sporidium M. daphniae are capable of producing low
amounts of ATP, and are therefore not fully dependent on
their hosts’ ATP like later-diverging microsporidians that pos-
sess more reduced, genome-less mitosomes derived from
mitochondria [61]. In this context it is noteworthy that the
machinery for nucleotide import, which allows microspori-
dians to steal their hosts’ ATP [11,62,63], is also present in R.
allomycis but absent not only in P. saccamoebae (with Complex
I) but also in M. daphniae and metchnikovellids (without
Complex I) [10,25,33,34], supporting differential retentions of
the ATP transporter acquired via horizontal gene transfer
from bacteria in the common ancestor of rozellids and micro-
sporidians [62–64]. In line with these previous findings,
NADH dehydrogenase genes (Complex I) were not found in
any of our new rozellid draft genomes, but a potential nucleo-
tide phosphate transporter was found in one (Rozellid 133–
135). Yet, the fragmented character of the new genomes does
not allow final conclusions regarding the hypothesized
absence of Complex I or whether our other two rozellids pos-
sess a nucleotide transporter. Nevertheless, the documented
findings suggest that the here newly presented rozellid
lineages, just as R. allomycis, produce only low amounts of
ATP but compensate for the lack of energy by stealing their
hosts’ ATP.

Whether our newly isolated rozellids are parasites of
phytoplankton or hyperparasites of chytrids that parasitized
the phytoplankton cannot be determined from the obtained
data. Rozellids were observed to parasitize phytoplankton
hosts before [3,12–15], although it was proposed that the
separation of the clade containing rozellids and microspori-
dians from the ancestral holomycotan lineage involved
adaptations to an opisthokont host in contrast to its
ancestrally phytoplankton-associated sister lineage [65].

In conclusion, we show the phylogenetic sister relationship
of rozellids andmicrosporidians to be robust across all analyses
with the inclusion of new genomic data. Our results further
corroborate that the evolutionary transition from a functional
mitochondrion to a fully reduced mitosome happened
independently during early rozellid and microsporidian
evolution and that the ancestrally acquired nucleotide trans-
porters as an alternative means to import energy from the
host were differentially retained.
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