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Abstract

Time-varying covariance is an important metric to measure the statistical dependence between 

non-stationary biological processes. Time-varying covariance is conventionally estimated from 

short-time data segments within a window having a certain bandwidth, but it is difficult to choose 

an appropriate bandwidth to estimate covariance with different degrees of non-stationarity. This 

paper introduces a local polynomial regression (LPR) method to estimate time-varying covariance 

and performs an asymptotic analysis of the LPR covariance estimator to show that both the 

estimation bias and variance are functions of the bandwidth and there exists an optimal bandwidth 

to minimize the mean square error (MSE) locally. A data-driven variable bandwidth selection 

method, namely the intersection of confidence intervals (ICI), is adopted in LPR for adaptively 

determining the local optimal bandwidth that minimizes the MSE. Experimental results on 

simulated signals show that the LPR-ICI method can achieve robust and reliable performance in 

estimating time-varying covariance with different degrees of variations and under different noise 

scenarios, making it a powerful tool to study the dynamic relationship between non-stationary 

biomedical signals. Further, we apply the LPR-ICI method to estimate time-varying covariance 

of functional magnetic resonance imaging (fMRI) signals in a visual task for the inference of 
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dynamic functional brain connectivity. The results show that the LPR-ICI method can effectively 

capture the transient connectivity patterns from fMRI.

Index Terms—

Dynamic functional connectivity; functional magnetic resonance imaging (fMRI); local 
polynomial regression; locally stationary processes; time-varying covariance

I. INTRODUCTION

BIOLOGICAL systems and signals are usually characterized as non-stationary with time-

varying structures, behaviors, and functions. For example, the human brain processes 

sensory and cognitive information evoked by an external stimulus in the order of 

milliseconds [1]. However, how to mathematically describe and identify non-stationary 

processes of biological systems is still largely an open question. Specifically, there are few 

studies on the theoretical treatment and estimation of time-varying covariance, which is 

an important metric to measure the statistical dependence between multiple non-stationary 

biological processes. The lack of theory and methods for non-stationary processes is mainly 

due to the fact that most of conventional statistical analysis tools (such as asymptotic 

analysis) are based on the assumption of stationarity and are not applicable to non-stationary 

processes. The theory of locally stationary process is an emerging and promising topic in 

statistics [2]. By assuming the non-stationary processes are stationary locally in time while 

there are still infinite number of samples in locally stationary intervals, classical asymptotic 

analysis can be well applied to non-stationary processes.

Estimation of locally stationary processes (including estimation of time-varying covariance 

between locally stationary processes) can usually be achieved by conventional stationary 

methods on windowed data segments where the assumption of stationarity holds, though 

alternative approaches, such as basis expansion and adaptive filtering, exist [3]. By using 

a window or kernel with a specific bandwidth to assign large weights on data around 

the current time and small weights on remote data, the parameters of interest (such as 

mean, variance, covariance, etc.) at the current time can be estimated from weighted data 

samples using conventional methods. By sliding the window along time, we can estimate 

the time-varying parameters of the non-stationary process. Such a sliding-window approach 

has been proved to be simple and effective in many applications [3]. But, one problem that 

has not been well addressed is how to select the appropriate window bandwidth to achieve 

the optimal estimation. This problem is not trivial because it stems from the fundamental 

bias-variance tradeoff problem in the estimation theory.

In statistics, an estimator with the least possible mean square error (MSE), which is the 

sum of squared bias and variance, is commonly considered as optimal. For locally stationary 

processes, even an estimator is asymptotically unbiased for stationary processes, it contains 

an excessive bias caused by neighboring data samples with different statistical properties. 

Generally, a longer window including more remote data increases the excessive bias due 

to non-stationarity but decreases the variance. On the contrary, a smaller window decreases 

the excessive bias at the expense of increased variance. Therefore, it is crucial to select 
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variable window bandwidth for optimal estimation (in the sense of minimum MSE) of 

locally stationary processes.

In our previous studies, we have investigated the statistical properties of several types 

of locally stationary processes, such as piecewise smooth signals and images [4] and 

[5], time-varying linear system [6] and time-varying autoregressive processes [7], and 

have proposed a local polynomial modeling method for estimating various parameters 

of these processes. We have also developed many practical applications by estimating 

real-world locally stationary processes. These applications include: image smoothing [5], 

time-frequency analysis of electroencephalography (EEG) [7], power quality monitoring [6] 

and [8], etc. However, above studies only focused on the estimation of one locally stationary 

process, and the investigation of relationship between two or more local stationary processes 

is still lacking.

In biomedical research, it is significant to explore the statistical relationship between 

multiple non-stationary biological signals or systems. Recent years have witnessed a major 

shift in biomedical research from functional segregation (i.e., how each biological system 

functions independently) towards functional integration (how biological systems coordinate 

to perform specific functions). For example, the study of functional connectivity (i.e. the 

statistical dependence) among distributed brain regions from neuroimaging data (such as 

EEG and functional magnetic resonance imaging [fMRI]) has been drastically advancing our 

knowledge on the organization of brain networks [9] and [10]. At present, covariance is still 

a fundamental and popular statistic to measure the relationship between multiple biological 

processes due to its simplicity and effectiveness. However, how to estimate time-varying 

covariance between multiple locally stationary processes is seldom explored. In [11]–[13], 

the sliding-window approach was employed to estimate time-varying covariance from short-

time data segments within a window. But the key issues to be addressed include what the 

asymptotic properties of the sliding-window covariance estimates are (more specifically, 

how the window bandwidth affects the bias and variance of the covariance estimate) and 

how to adaptively select the bandwidth for the optimal estimate.

This paper is aimed (1) to address above key issues by deriving asymptotic properties of 

the sliding-window-based local covariance estimation, and (2) to develop a new biomedical 

application (i.e., the interference of dynamic functional connectivity from fMRI data) of 

time-varying covariance estimation

Firstly, we adopt the local polynomial regression (LPR) method [14] and [15], which fits 

polynomials to the inner products of two non-stationary processes within a sliding window 

having variable bandwidth, to estimate time-varying covariance. We derive the asymptotic 

expressions for the bias and variance of the LPR estimator using the theory of locally 

stationary processes, and show that the bias increases while variance decreases as the 

bandwidth increases. Hence, there exists an optimal bandwidth to minimize the MSE of the 

time-varying covariance estimator locally. This asymptotic analysis is important to justify 

the applicability of conventional adaptive bandwidth selection methods for the estimation 

of time-varying covariance. Subsequently, we adopt an intersection of confidence intervals 

(ICI) technique [16]–[19] to adaptively select the optimal variable bandwidth for the LPR. 
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Extensive simulation results show that the LPR-ICI method can obtain robust and accurate 

estimation of time-varying covariance for various types of non-stationary processes and 

at different levels of noise. Therefore, the LPR-ICI method is particularly suitable for the 

analysis of biomedical signals, of which the characteristics (such as the amount of noise and 

the degree of non-stationarity) are unknown.

Secondly, we develop an important application of time-varying covariance estimation: 

to infer dynamic functional connectivity of fMRI data in task-related experiments. In 

fMRI study, the functional connectivity is often inferred from temporal dependency (e.g., 

covariance, correlation, mutual information) between fMRI time-series data in different 

brain regions [20] and [21]. Conventional functional connectivity analysis approaches 

implicitly assume sustained changes of connectivity throughout the experiments. This 

assumption seriously limits our understanding of the dynamic functional organization of 

brain network, because dynamics of functional connectivity could be prominent during a 

task and even in the resting state [22]. In the present study, we use the proposed LPR-ICI 

method to adaptively estimate the time-varying covariance among fMRI signals from brain 

regions activated in a visual task, and to verify whether task related connectivity changes 

can be reliably detected. Compared with our previous work in [23], the present study (1) 

provides an asymptotic analysis of the bias and variance of the time-varying covariance 

estimator; (2) extends the kernel smoothing estimator in [23] to LPR (kernel smoothing is 

equivalent to LPR with an order of 0); (3) adopts a faster ICI method instead of the plug-in 

method in [23] for adaptive bandwidth selection.

The rest of this paper is organized as follows. The theory of locally stationary processes and 

the asymptotic properties of sliding-window covariance estimation are introduced in Section 

II. In Section III, we adopt the LPR method for estimating the time-varying covariance 

and the ICI technique for adaptively selecting the variable bandwidth in LPR. Section 

IV is devoted to the practical applications of the LPR-ICI method to biomedical research 

(specifically, in the inference of connectivity from fMRI). The performance of LPR-ICI is 

tested on various simulated signals in Section V. In Section VI, we extend this method to 

estimate dynamic functional connectivity from fMRI in a visual task. Finally, conclusions 

are drawn in Section VII.

II. LOCAL COVARIANCE ESTIMATION

A. Locally Stationary Processes

As mentioned in the Introduction, conventional asymptotic analysis usually investigates 

limiting behaviors of a stationary process by considering the number of samples in the 

process approaches infinity. In order to extend such asymptotics to non-stationary processes, 

we need new ways to describe such non-stationary processes and investigate their properties 

and connections with conventional stationary approaches so that one can proceed with their 

estimation and characterization. One such approach is called the theory of locally stationary 

processes, which is based on the framework of infill asymptotics, in which time is rescaled 

to the unit interval and the unit interval is sampled over a finer and finer grid as the sampling 

points grow denser and denser. That is to say, the asymptotic consideration that the number 

of samples tends to infinity does not mean extending the samples to the future, but means 
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that we have more and more samples for each value of the process. By assuming the 

non-stationary processes are stationary locally in time while there are still infinite number 

of samples in locally stationary intervals, infill asymptotics can resolve the contradiction 

between time-varying statistics of non-stationary processes and the assumptions of infinity 

and homogeneity in asymptotics. As a consequence, asymptotic analysis can be applied to 

locally stationary processes for a rigorous theoretical investigation of statistical properties of 

such processes.

The definition of locally stationary processes in terms of the time-varying spectral 

representation is given in [2]. A sequence of stochastic process Xn, N , n = 1, · · · , N , is 

called locally stationary with transfer function A if there exists a representation

Xn, N =
−π

π

exp iλn An, N λ dξ λ , (1)

where ξ λ  is a stochastic process on −π, π  with ξ λ = ξ −λ · ξ λ  satisfies 

cum dξ λ1 , · · · , dξ λJ = η j = 1
J λj gk λ1, · · · , λJ − 1 dλ1 · · · dλJ, where cum ⋯  denotes the 

cumulant of Jth order, g1 = 0, g2 λ = 1 , gk λ1, · · · , λJ − 1 ≤ constJ for all J and 

η λ = j = ∞
∞ δ λ + 2πj  is the period 2π extension of the Dirac delta function. In addition, 

there exists a constant L (independent of T ) and a 2π-periodic function A : 0, 1 × ℜ ÇtC
with A u, λ = A u, − λ  and sup

n, λ
An, N λ − A n/N, λ ≤ LN−1 for all N, which is needed 

for rescaling and to impose necessary smoothness conditions. That is, by denoting 

u = n/N ∈ 0, 1 , A u, λ  is assumed to be smooth and continuous in the rescaled time u, 

which guarantees (asymptotically) that the process has a locally stationary behavior. The 

function f u, λ = A u, λ 2 is called the time-varying spectral density of the process. More 

details about the definition and assumptions of locally stationary processes can be referred to 

[2].

B. Asymptotics of Time-varying Covariance of Locally Stationary Processes

Suppose we have two locally stationary processes: Xn, N
1  and Xn, N

2  with transfer functions 

A i  and time-varying spectral densities f i u, λ = A i u, λ 2
, i = 1, 2 respectively. In 

addition, the time-varying cross-spectrum of Xn, N
1  and Xn, N

2  is g u, λ = A 1 u, λ A 2 u, λ . 

The time-varying covariance (or, more precisely, cross-covariance) between Xn, N
1  and Xn, N

2  at 

time u with lag l is defined as

c u, l =
−π

π

exp iλl g u, λ dλ, (2)

and can be estimated from windowed neighboring samples as
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c N u, l = 1
N n

Kℎ
n
N − u Xn, N

1 Xn + l, N
2 , (3)

where Kℎ
n
N − u = 1

ℎK 1
ℎ

n
N − u  is a window used to control the number and weights 

of neighboring samples around u on the estimation of c N u, l . Kℎ ·  can be obtained by 

scaling a basis window K ·  by a bandwidth parameter ℎ. Here, we assume K x dx = 1
and xK x dx = 0.

We are interested in the asymptotic expressions of the bias and variance as functions of 

the bandwidth ℎ when the number of samples is sufficiently large. To this end, we allow 

ℎ to tend to zero so that we can employ the Taylor series expansion to reveal their order 

of dependence as ℎ 0. Meanwhile, N is still assumed to be large so that ℎN ∞ to 

guarantee there are infinite data samples locally for asymptotic analysis. We will further 

assume the time-varying cross-spectrum g u, λ  is twice differentiable in u with uniformly 

bounded derivative. Then, the expectation of c N u, l  can be calculated as

E c N u, l = 1
ℎN n

K 1
ℎ

n
N − u

×
−π

π

exp iλl An, N
1 λ An + l, N

2 λ dλ

= 1
ℎN n

K 1
ℎ

n
N − u

×
−π

π

exp iλl A 1 n
N , λ A 2 n + l

N , λ dλ + O N−1

= 1
ℎN n

K 1
ℎ

n
N − u

×
−π

π

exp iλl g n
N , λ dλ + O N−1 .

(4)

By a second order Taylor series expansion of g u, λ  around u, we have

E c N u, l = 1
ℎN t

K 1
ℎ

n
N − u

×
−π

π

exp iλl g u, λ + n
N − u g′ u, λ

  + 1
2

n
N − u

2
g″ u, λ + o n

N
2

dλ

+O N−1 .

(5)
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Next, making x = 1
ℎ

n
N − u  and using the assumptions of K x dx = 1 and xK x dx = 0, 

one gets

E c N u, l = c u, l + 1
2ℎ2

−∞

∞

x2K x dx
−π

π

exp iλl g″ u, λ dλ

+ o ℎ2 + O T −1

= c u, l + 1
2ℎ2ϕc″ u, l + o ℎ2 + O T −1 ,

(6)

where c″ u, l =
−π

π
exp iλl g″ u, λ dλ and ϕ =

−∞

∞
x2K x dx. So, the bias of the local 

covariance estimator (3) is

Bias c N u, l = E c N u, l − c u, l

= 1
2ℎ2ϕc″ u, l + o ℎ2 . (7)

It can be seen that the bias depends on the non-stationary term c″ u, l  and the bandwidth ℎ. 

Actually, by considering (3) as a Nadaraya-Watson kernel regression estimator of samples 

Xn, N
1 Xn + l, N

2  and making use of the assumption of sup
n, λ

An, N λ − A n/N, λ ≤ LN−1, the 

asymptotic bias can be directly obtained from the well-established asymptotic properties 

of kernel estimation [14].

The asymptotic variance of the local covariance estimate can be obtained similarly as

Var c N
2 u, l = 1

ℎN ψσ2 u, l + o ℎ−1 , (8)

where ψ =
−∞

∞
K(x)2dx and σ2 u, l = var Xu, N

1 Xu + l, N
2 .

The asymptotic expressions of bias (7) and variance (8) are meaningful since they illustrate 

how the components involved affect the bias and variance of the local covariance estimation. 

Importantly, the bias is an increasing function of the bandwidth ℎ, while the variance is a 

decreasing function of ℎ. As a result, there exists an optimal bandwidth to minimize the 

MSE

MSE c N
2 u, l = Bias2 c N

2 u, l + V ar c N
2 u, l

= 1
4ℎ4ϕ2 c″ u, l 2 + 1

ℎT ψc2 u, l + o ℎ4 + ℎ−1 .
(9)

By setting the derivative of MSE c N
2 u, l  with respect to ℎ to zero, we get the optimal 

bandwidth as

Fu et al. Page 7

IEEE Trans Biomed Circuits Syst. Author manuscript; available in PMC 2023 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℎopt u, l = ψ
ϕ2 · σ2 u, l

c″(u)2

1/5
. (10)

In above equation, ψ and ϕ are determined by the window type and are easy to calculate. 

However, since quantities σ2 u, l  and c″(u, l) are unknown and difficult to be approximated, 

it is still difficult to calculate the optimal bandwidth directly from (10). In the next section, 

we will introduce a more general local polynomial regression method to estimate the 

time-varying covariance and an empirical bandwidth selection method to approximate the 

variable optimal bandwidth.

III. LOCAL POLYNOMIAL REGRESSION AND VARIABLE BANDWIDTH SELECTION

A. Local Polynomial Regression

The time-varying covariance estimator of (3) can be considered to belong to a more 

general local polynomial regression (LPR) method [15]. That is, the time-varying covariance 

estimate can be obtained by locally fitting a pth degree polynomial to the samples Xn, N
1 Xn + l, N

2 , 

and the estimator of (3) is actually equivalent to the LPR estimator with p = 0.

In LPR, we regard the samples m n, l = Xn, N
1 Xn + l, N

2  as being generated from the following 

model

m n, l = c n, l + e n, l , (11)

where e(n, l) is the estimation residual with zero mean and variance σ2 n, l  and it is 

independent of c(n, l). Since c(n, l) is assumed to be a smooth function, we can approximate 

it locally as a degree-p polynomial at time τ as

c n, l ≈
k = 0

p 1
k! c k τ, l (n − τ)k

=
k = 0

p βk τ, l (n − τ)k
, (12)

where βk τ, l = c k τ, l /k! k = 0, 1, ⋯, p  is the kth polynomial coefficient.

By minimizing a locally weighted least-squares (WLS) solution criterion as

n = 1

N − 1

Kℎ n − τ Xn, N
1 Xn + l, N

2 −
k = 0

p βk τ, l (n − τ)k 2, (13)

one gets the estimates of the polynomial coefficients as

β = Y TW Y −1Y TW m, (14)
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where β = β0,β1, ⋯,βp
T

, 

m = X1, N
1 X1 + l, N

2 , ⋯, XN − l, N
1 XN, N

2 T , Y =

1 1 − τ ⋯ 1 − τ p

1 2 − τ ⋯ 2 − τ p

⋮ ⋮ ⋱ ⋮

1 N − l − τ ⋯ N − l − τ p

and

W = diag Kℎ 1 − τ , ⋯, Kℎ N − 1 − τ . Note that β, X, W , and m are all functions of time 

τ and lag l, but the indices τ and l are omitted in (14) and in the following for notational 

simplicity when there is no ambiguity. The covariance at time τ with lag l is finally obtained 

as c τ, l = β 0 τ, l .

Since the asymptotic analysis of the classical LPR estimator in [15] is applicable to the local 

covariance estimator of (14), here we only provide the asymptotic bias and variance of β
without proof. The asymptotic bias and variance are expressed as

B β = H−1S−1cpβp + 1ℎp + 1 1 + oP 1 , (15)

V β = σ2 τ, l
d τ NℎH−1S−1S*S−1H−1 1 + oP 1 , (16)

where H = diag 1, ℎ, ⋯, ℎp , S = μj + l 0 ≤ j, l ≤ p with μj = xjK x dx, S* = vj + l 0 ≤ j, l ≤ p with 

vj = xjK2 x dx, cp = μp + 1, ⋯, μ2p + 1
T , βp + 1 = c p + 1 / p + 1 !, and d τ  is the sampling 

density around τ. It can be clearly seen that the bias increases while variance decreases 

as ℎ increases. So, at each time τ, there exists a locally optimal (in the sense of minimum 

MSE) bandwidth for the LPR-based covariance estimator. Because the unknown quantities 

in (15) and (16) make it difficult to directly calculate the optimal bandwidth, we will adopt 

an empirical data-driven technique for variable bandwidth selection.

B. Variable Bandwidth Selection

The intersection of confidence intervals (ICI) method [16] is employed in this study to 

determine the optimal bandwidth in the LPR covariance estimator at each time point and 

each lag. The ICI method was originally proposed in [16] for adaptive window selection in 

LPR, and such a LPR-ICI estimator has been proved to be nearly optimal by asymptotic 

analysis in [16]. The LPR-ICI method was firstly applied in the field of signal processing 

in [17] to filter a signal given with an additive noise. Because of its effectiveness in 

adaptively selecting suitable window size for local estimation, the LPR-ICI method has 

gained popularity in many related fields, in particular, image processing [18] and [19]. The 

theory and derivation of the ICI method are omitted to save space, and the readers can be 

referred to [17] for details. Here, we only briefly introduce the algorithm of the ICI method.

Given a finite set of bandwidth parameters in an ascending order as

H = ℎ1 < ℎ2 < ⋯ < ℎΓ , (17)
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where Γ is the number of candidate bandwidths, the ICI method selects the best bandwidth 

from H by comparing the confidence intervals of the estimate β k τ, l; ℎγ  with different 

bandwidths ℎγ, γ = 1, 2, ⋯, Γ, in H. Consider a series of confidence intervals Dγ = Lγ, Uγ

with

Uγ = β k τ, l; ℎγ + κ ⋅ SD β k τ, l; ℎγ , (18)

Lγ = β k τ, l; ℎγ − κ ⋅ SD β k τ, l; ℎγ , (19)

where SD β k τ, l; ℎγ  are the square roots of the diagonal elements of V β τ, l; ℎγ , and κ
is a threshold to adjust the width of the confidence intervals and can be chosen by the 

cross-validation criterion [16]. The ICI method examines the following quantities from the 

confidence intervals

Lγ = max Lγ − 1, Lγ ,  for   γ = 2, 3, ⋯, Γ,
U γ = min U γ − 1, Uγ ,   for   γ = 2, 3, ⋯, Γ,

L1 = U1 = 0, for   γ = 1.
(20)

Lγ is the largest upper bound of the confidence interval for bandwidth up to ℎγ, while Uγ

is the corresponding lower bound. The largest γ for which Uγ ≥ Lγ gives the ICI-selected 

optimal bandwidth ℎk
opt τ, l . When ℎ is increased beyond ℎk

opt τ, l , the bias will suddenly 

increase while the variance will gradually decrease. Hence, the confidence intervals will no 

longer intersect above ℎk
opt τ, l .

In the ICI method, V β τ, l  has to be approximated to construct the confidence intervals 

in (18) and (19). Assuming local homoscedasticity, a finite sample approximation of the 

covariance matrix of β (τ and l are omitted for notational simplicity) can be derived from 

(14) as

V β = E β − E β β − E β T

= Y TW Y −1 Y TW E c − m (c − m)T W Y Y TW Y −1

= Y TW Y −1 Y TW ΣσW Y Y TW Y −1

= Y TW Y −1 Y TW W Y Y TW Y −1σ2,

(21)

where c = [c 1, l ,⋯, c N − l, l ]T  and 
σ

= diag σ2 1, l ,⋯,σ2 N − l, l . The residual 

variance σ2 τ, l  can be estimated as the normalized weighted residual sum of squares [15]

σ2 u, τ =
W m − Y β

2

2

tr W − W Y Y TW Y −1Y TW
. (22)
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With (21) and (22), the variance of β k τ, l; ℎγ  can be obtained and the ICI technique can be 

implemented to select a nearly optimal bandwidth from the set H. It is important to note 

that, there is a local ICI bandwidth parameter ℎk
opt τ, l  for each kth derivative at each time τ

and for each lag l.

As observed in [4], the variable optimal bandwidth estimated by the ICI technique usually 

exhibits considerable variability since it is based on a finite sample approximation of the 

local noise variance. Hence, ℎk
opt τ, l  should be slightly smoothed (say, using a window with 

the minimum bandwidth in H ) in the time domain to reduce the variance.

C. LPR-ICI

Now we summarize the LPR with ICI (LPR-ICI) method for the estimation of time-varying 

covariance between two locally stationary processes in the following table.

It should be noted that the LPR-ICI is applicable to signals that satisfy the following 

requirements: the bias of window-based local estimation is an increasing function of 

the window bandwidth while the estimation variance is a decreasing function of the 

bandwidth. This paper has proved an asymptotic analysis of the second-order statistics 

(i.e., covariance) to show that LPR-ICI is applicable to the estimation of time-varying 

covariance. Although it is plausible that the sliding window-based estimation of local 

higher-order statistics also satisfies the requirements of LPR-ICI, an asymptotic analysis 

of the relationship between local estimation of higher-order statistics and bandwidth (i.e., 

to derive asymptotic expressions of estimation bias and variance as functions of bandwidth) 

is very difficult. Therefore, we have not pursued such a direction in the current study. The 

LPR-ICI method can also be used for variance estimation, and the results are provided in 

Appendix I of the Supplementary Materials (http://www.eee.hku.hk/~zgzhang/publication/

tbiocas2013_supp.pdf).

IV. BIOMEDICAL APPLICATIONS

We now study the practical applications of the LPR-ICI method for estimating time-varying 

covariance of real-world biomedical signals. Several practical issues such as parameter 

selection and complexity will be discussed first. Then, we will introduce the application of 

the LPR-ICI method for the inference of functional connectivity from fMRI.

A. Practical Issues

1) Computational Complexity: The arithmetic complexity of the LPR estimator in 

(14) at each time point is O N , where N is the number of samples in the whole period. This 

complexity of LPR can be reduced if the window has a limited support so that the number of 

actual samples included in the window is finite. Denote the number of samples included in 

Kℎ x  as NK, then the complexity of the LPR estimator is O NK . Since NK increases with the 

bandwidth parameter ℎ, a large bandwidth will increase the computational complexity. The 

LPR-ICI method has a complexity of γ = 1
Γ O NK

γ + O NK
opt , where γ = 1

Γ O NK
γ  is the total 

complexity to calculate LPR with each bandwidth in the bandwidth set H and O NK
opt  is the 
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complexity to calculate LPR with the optimal bandwidth ℎk
opt

. The elapsed time of LPR-ICI 

and other methods in simulation is provided in Appendix II of the Supplementary Materials.

In addition, it is possible to extend the LPR-ICI method for online calculation by using 

one-sided window in LPR and recursively updating the adaptive bandwidth of the windows 

used in the ICI method [5]. This recursive implementation of LPR-ICI can decrease the 

processing time and memory requirement caused by excessive buffering of the data in 

conventional LPR with two-sided windows.

2) Parameter Selection in LPR: We now consider the window type and model order in 

LPR. In the study we employ the Epanechnikov window

K x =

3
4 1 − x 2 x < 1,

0 x ≥ 1,
(23)

because it has high efficiency and is with finite support [15]. The property of finite support 

is particularly favored because it can reduce the computational complexity of LPR. For an 

Epanechnikov window with bandwidth ℎ, Kℎ x = 1
ℎK x/ℎ , only the samples included in 

the interval(x − ℎ, x + ℎ) are used for local estimation. Other types of windows, such as 

Gaussian and Hanning windows, can also be used in LPR, but it has been shown in [15] that 

the window type has very limited impact on the performance of LPR.

The only parameter to be pre-specified in LPR is the model order p. A larger p gives 

the polynomial more approximation power and hence a smaller bias. However, it also 

increases the variability of the estimates because more variables (namely p + 1 ) are to be 

estimated. On the other hand, the number of variables should be smaller than the number of 

measurements NK in the smallest window to make sure (14) is solvable. Hence, a large p also 

requires a larger window. As recommended in [15], an appropriate selection of model order 

is p = v + 1, where ν is the order of derivative of interest.

3) Parameter Selection in ICI: The variable bandwidth ℎk
opt τ, l  and the threshold 

parameter Γ used in ICI are both automatically determined from a grid of candidate 

parameters. The grid should cover possible ranges of parameters to make sure the optimal 

parameter is in the range defined by the grid. As a result, the parameter selection problem 

is reduced to how to determine a grid of parameters. For the threshold parameter Γ in ICI, 

the values of the grid can be {0.67 0.84 1.04 1.28 1.44 1.65 1.96 2.58 2.81 3.29}, which are 

associated with confidence levels of {50.0 60.0 70.0 80.0 85.0 90.0 95.0 99.0 99.5 99.9}% 

[8].

The candidate bandwidth set H could largely influence the performance of the LPR-ICI 

method and should be carefully specified. The minimum bandwidth, ℎ1, in H should be 

chosen to ensure that the number of samples in the interval (τ − ℎ1, τ + ℎ1) is equal to or 

larger than the number of variables to be estimated,(p + 1), so that the least-squares solution 
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to (14) exists. Suppose the signal is uniformly distributed at a sampling rate of fs, then we 

get the following condition for the bandwidth: ℎ ≥ p + 1 / 2fs . On the other hand, the 

maximum bandwidth ℎΓ can be arbitrarily large (say, to make the estimation window as 

large as the recording time), but too large a bandwidth will result in a high computational 

complexity. It was suggested in [15] that the maximum bandwidth ℎΓ could be set as half of 

the recording time so that the resulting Epanechnikov window can cover all data samples. 

In practice, the maximum bandwidth could be determined from the prior knowledge about 

the transient properties of the processes under study. For example, in task fMRI study, the 

largest bandwidth can be chosen to cover one full cycle of the stimulation, because data 

from one cycle should be sufficient to estimate meaningful dynamics with the lowest degree 

of non-stationarity.

In addition, we generally select 3–4 bandwidths between ℎ1 and ℎΓ for generating H to 

achieve a tradeoff between performance and complexity. Intensive experimental results show 

that the proposed selection of parameters gave satisfactory results in practice.

4) Estimation of Covariance Matrix and Correlation: Finally, it should be noted 

that the LPR-ICI method can also be applied to estimate auto-covariance of a locally 

stationary process. The time-varying covariance matrix of multiple (> 2) locally stationary 

processes can also be estimated using LPR-ICI by calculating pairwise covariance. Although 

it is reasonable to use different bandwidth parameters for elements that have different 

degrees of variations in the covariance matrix of multiple processes, the positive definiteness 

of the whole covariance matrix may not be guaranteed. As a result, the correlation (cross-

covariance normalized by auto-covariance) may be out of the range[−1, 1]. To partially solve 

this problem, we can approximate a universal bandwidth for the whole covariance matrix 

as the average of the ICI-selected optimal local bandwidths for all elements in the matrix. 

A theoretically optimal bandwidth selection method that can handle different degrees of 

variations of elements while keeping the time-varying covariance matrix positive-definite 

will be left for future study.

B. Application to Dynamic Connectivity Analysis of fMRI

Functional connectivity is an important tool to characterize brain mechanisms and 

investigation of functional connectivity from fMRI has been drawing increasing interests 

recently [9]. However, the conventional connectivity analysis approaches, such as 

psychphysiological interaction [24] and dynamic causal modeling [25], are usually model-

based and implicitly assume a sustained change of connectivity throughout the task 

condition. Hence, conventional functional connectivity analysis based on the assumption 

of stationarity may not be sufficient to capture the dynamic characteristics of functional 

connectivity and seriously limits our understanding of the dynamic functional organization 

of the brain. A non-parametric data-driven method, which does not assume any prior 

structural or biophysical knowledge, is needed to justify whether connectivity changes in 

the task is sustained over time.

Covariance is a commonly used measure of functional connectivity, and the sliding-window 

approach is a simple but useful technique to estimate the time-varying covariance between 
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fMRI signals. The selection of window size is critical to the inference of dynamic functional 

connectivity. A short window can help detect more transient events but, because of only a 

few samples used, its variability may be large, which implies spurious transient events may 

also be detected. A long window could decrease the variability of functional connectivity at 

a higher risk of smoothing out meaningful transient patterns. The window bandwidth should 

be adaptively and locally selected so that important dynamic information of the connectivity 

will not be overlooked while spurious patterns will not be wrongly identified. To the best of 

our knowledge, current sliding-window analyses of dynamic functional connectivity in the 

resting state all rely on an empirically-selected constant window size, ranging from 30 s to60 

s [22], while there is no study of dynamic functional connectivity in a task. In this study, the 

LPR-ICI method is used to estimate the time-varying covariance between fMRI from brain 

regions activated by a visual task. The LPR-ICI method, which is more “data-driven”, has an 

evident advantage over other “model-based” functional connectivity analysis methods when 

a prior model is not precisely given or unavailable.

The proposed dynamic connectivity analysis of fMRI data in task-related experiments 

consists of three steps: (1) data pre-processing (realignment, coregistration, normalization, 

smoothing, etc.); (2) identification of activation regions using the general linear model 

(GLM); (3) estimation of time-varying covariance between fMRI signals of activation 

regions using the LPR-ICI method.

The first two steps are processing routines for task fMRI signals and can be easily 

implemented using popular software such as SPM. The third steps can be implemented 

using the LPR-based algorithm in Table I.

In the framework of LPR-ICI [16], it is assumed that the signal to be estimated is a 

p-differentiable smooth function where p is the order of LPR) while the additive noise is a 

zero-mean Gaussian process. In the application of covariance estimation of fMRI signals, it 

is reasonable to assume the covariance of two fMRI signals is a smooth function because the 

hemodynamic response function is smooth so that fMRI signals in response to stimulation or 

events as well as their covariance are smooth. Although it is difficult to accurately describe 

the property of noise component in the covariance estimation of fMRI signals, it has been 

demonstrated in [26] that the ICI method can still achieve accurate and reliable results even 

in the cases of some heavy-tailed types of noise, such as the Laplacian noise and uniform 

noise. Therefore, we conclude that the LPR-ICI method is applicable to the problem of 

time-varying covariance estimation of fMRI signals.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the LPR-ICI method on simulated signals 

with different types of time-varying covariance structures and at different levels of signal-to-

noise ratio (SNR).

A. Signals with Jumping Covariance

We first test the LPR-ICI method using simulated signals with jumping covariance, as shown 

in Fig. 1 (c). Signals Xn, N
1  and Xn, N

2  are both piecewise constant functions with N = 500. 
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The covariance between Xn, N
1  and Xn, N

2  contains extreme types of variations (constant and 

jump discontinuity) so that this simulation can effectively illustrate the results of variable 

bandwidth selection for estimating covariance with different degrees of variations.

Zero mean white Gaussian noise with SNR (0dB, 0dB, 5dB, 10dB, or 20dB) is added to 

Xn, N
1  and Xn, N

2  independently to assess the performance of the LPR-ICI under different noise 

scenarios.

Note that since the product of two independent zero mean Gaussian variables also has a 

zero mean, the assumption for the residual in (11) (zero mean and independence of Xn, N
1 Xn, N

2 ) 

holds in the simulation. The Epanechnikov kernel is employed and the bandwidth set for ICI 

is chosen as H = 2, 4, 8, 16, 32 . The polynomial order used in LPR is p = 0, 1, or 2. The 

LPR-ICI method is compared with LPR using a constant bandwidth 2, 4, 8, 16, or 32 in the 

whole period. Only the covariance at zero lag l = 0  is estimated.

Fig. 1 illustrates the time-varying covariance estimates and the variable bandwidth selection 

in one realization of the simulation with an SNR of 10dB and an LPR order of 1. It can be 

clearly seen from Fig. 1 that: 1) a small bandwidth ℎ = 2  can accurately estimate the jump 

changes of covariance, but it leads to large estimation variations for constant covariance; 2) 

a large bandwidth ℎ = 32  can obtain smooth estimates when the covariance varies slowly 

or even remains constant, but it cannot well estimate the fast changes of covariance; 3) the 

LPR-ICI method could obtain satisfactory results for both slowly-varying covariance and 

fast-varying covariance by employing small bandwidths for jump discontinuities and large 

bandwidths for constant covariance.

The MSE for covariance estimate at each time sample can be approximated by means of 

Monte-Carlo simulations. Suppose we perform M independent Monte-Carlo realizations of 

the simulation, and denote c n , c n;m , and c n  respectively as the true covariance, the 

estimated covariance, and the average of the estimated covariance c n = 1
M m = 1

M
c n;m  at 

time n of the mth realization. The bias, variance, and MSE of the covariance estimates at 

time n can be approximated from M independent realizations as

Bias n = c n − c n , (24)

MSE n = 1
M m = 1

M c n; m − c n 2, (25)

The squared bias, variance, and MSE approximated from 50 independent Monte-Carlo 

realizations are illustrated in Fig. 2. We can see that, the estimation bias for a small ℎ is 

much smaller than that for a large ℎ around jump discontinuities (sample 100, 200,300, and 

400); while at flat areas the estimation bias is rather small. On the other hand, the estimation 

variance for a large ℎ is much smaller than that for a small ℎ. For the MSE, we can see that 

a small ℎ has small MSE values around the jump discontinuities, while a large ℎ has small 

MSE values on the flat areas. The local variable bandwidths, which are small around the 
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jump discontinuities and large on the flat areas, can obtain satisfactory results for the whole 

period.

Furthermore, we calculate the ensemble MSE (EMSE) of the mth realization as

EMSE m = 1
N n = 1

N

c n − c n; m 2, (26)

for quantitatively comparing the performance of various methods in the whole time period. 

Table II shows the EMSE values averaged from 50 independent Monte-Carlo realizations. 

First, we can see from Table II that the “optimal” global bandwidth (with the minimum 

EMSE under one certain SNR) decreases with the SNR. That is, when the amount of noise 

is large, the optimal bandwidth should be large, which agrees with the theoretical results 

of (10) (where the optimal bandwidth is proportional to the noise variance). Second, the 

LPR-ICI method can always achieve good results that are not far from the “optimal” one 

under different testing scenarios. The robust and consistent performance of the LPR-ICI 

method is very useful for practical applications, where the ground truth is unknown and 

there is no means to find the optimal bandwidth. Third, a small p is more suitable for a 

signal with a low SNR, because large noise could be incorrectly modeled by using excessive 

order. Forth, the LPR with the plug-in method for bandwidth selection can also achieve good 

performance but its computational complexity is much higher than LPR-ICI (see Appendix 

II in the Supplementary Materials)

B. Signals with Randomly Varying Covariance

We further test the performance of the LPR-ICI method on more general signals with 

randomly varying covariance. Signal Xn, N
1  and Xn, N

2  are generated by filtering white Gaussian 

signals with zero mean and unit variance using low-pass filters. The resultant signals (with 

N = 500 ) and their covariance vary randomly over time and the degree of variations is 

determined by the cutoff frequency of the low-pass filter. Four cutoff frequencies fc:0.005, 

0.01, 0.02, and 0.05, are used to simulate different degrees of covariance variations. These 

examples can be used to demonstrate the effectiveness of the LPR-ICI method in estimating 

randomly varying covariance, which is more similar to real-world signals. Zero mean white 

Gaussian noises with different SNRs (0, 5, 10, and 20 dB) are added to simulate different 

noise conditions. Here, we also compare the LPR-ICI method with LPR using a constant 

bandwidth (2, 4, 8, 16, or 32). Other parameters for the LPR are the same as those in the 

previous simulation.

Table III lists the EMSE values of different methods averaged over 50 independent Monte-

Carlo realizations, and Fig. 3 shows the estimation results of different methods for signals 

generated with fc = 0.01 and SNR = 10   dB in one realization. It can be seen from Fig. 

3 that a large bandwidth over-smooths fast-varying covariance while a small bandwidth 

results in large variance in the covariance estimation. The LPR-ICI method can avoid the 

deficits of using a constant bandwidth and obtain more accurate estimates of time-varying 

covariance. We can further observe the following from Table III. First, for signals with one 

certain degree of variations (indicated by fc ), the “optimal” constant bandwidth (having the 

minimum EMSE) increases with the amount of noise, which is similar to the observation 
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in previous simulation. Second, at a certain noise level, the “optimal” fixed bandwidth 

decreases with the degree of the signal variations (indicated by fc ). That is, if the variation 

of signals is large, the “optimal” fixed bandwidth is small, which can be seen from the 

theoretical result of (10) (where the optimal bandwidth is inverse proportional to c″ u , the 

second-order derivative of covariance). Third, even at large noise level and signal variation, 

the LPR-ICI method provides good estimation results, which are not far from the best results 

from an “optimal” fixed bandwidth. Forth, a higher p can achieve better performance when 

the signal has a higher degree of non-stationarity and the additive noise is small. But in most 

scenarios, a model order of p = 1 can achieve good performance, which agrees with the 

recommendation in the literature [15].

To sum up, we can see from these simulation results that the LPR-ICI method can 

adaptively select variable bandwidths so that it can achieve good performance for signals 

with different degrees of covariance variations and under different SNR. Although LPR 

with a fixed bandwidth may outperform the LPR-ICI method for certain signals and SNRs, 

its performance is limited in practice especially when the signal property is varying or 

unknown. Therefore, the LPR-ICI method provides a reliable and accurate estimator for 

estimating time-varying covariance in practical applications.

VI. APPLICATION TO INFER DYNAMIC BRAIN CONNECTIVITY

In this section, we use the LPR-ICI method to explore visually induced connectivity changes 

when subjects were viewing checkerboard flickering. The fMRI data from the enhanced 

Nathan Kline Institute (NKI)/Rockland sample of the international neuroimaging data-

sharing initiative (INDI) (http://fcon_1000.projects.nitrc.org/indi/enhanced/) are analyzed. 

Only the visual checkerboard data with a TR of 645 ms and the MPRAGE (magnetization-

prepared rapid acquisition with gradient echo) anatomical images are used in the current 

analysis. The enhanced NKI Rockland sample consists of a community sample of originally 

181 subjects. We include 26 subjects (8 females) who do not have any mental or physical 

disease that could affect brain functions. Age range is restricted to 18 to 60 years (mean 

of 31.7 years). Subjects’ data with large head motions (> 3 mm or 3°) are also deleted. 

As a result, 26 subjects’ data are included in the current analysis (8 females). The mean 

age of the subjects is 31.7 years (18.4 – 59.9 years). The task used for this data set is a 

simple checkerboard visual task. The checkerboard stimuli are presented in the center of 

the screen with a flickering frequency of 4 Hz. With a block design, the scan starts with 

a 20 s rest condition and then a 20 s checkerboard condition with three repetitions. After 

the third checkerboard block, there is a 35 s rest condition. The total scan time is about 

2 m 35 s with totally 240 images acquired. The MPRAGE images are scanned using the 

following parameters: TR, 1900 ms; TE, 2.52 ms; flip angle, 9 deg; voxel size, 1 mm3 

isotropic. The fMRI data are scanned using the following parameters: TR, 645 ms; TE, 30 

ms; flip angle, 60 deg; voxel size, 3 mm3 isotropic, 40 slices. In particular, the TR of fMRI 

is relatively shorter than conventional fMRI studies and is more suitable for studying the 

dynamic connectivity.

The fMRI data are preprocessed using SPM8 (h)ttp://www.fil.ion.ucl.ac.uk/spm/)) under 

MATLAB (version 7.6, MathWorks) environment. First, the first 14 functional images are 
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discarded (9 s). The remaining images are motion corrected, and coregisterd to subject’s 

high resolution anatomical image. The anatomical images are segmented using the new 

segment routine in SPM8. Then, the deformation field obtained from the segmentation step 

is applied to the functional images to normalize them into standard MNI space (Montreal 

Neurological Institute). Finally, all the functional images are smoothed using an 8 mm 

Gaussian kernel. GLM is used to get activations relating to the checkerboard condition. 

Based on the activation maps (Fig. 4), four ROIs are defined: the right middle occipital gyrus 

(MOG), left MOG, right fusiform gyrus (FuG), and left FuG. The fMRI time series data 

from the four ROIs are extracted after removing head motion parameters and signals from 

the white matter and cerebrospinal fluid.

Next, the LPR-ICI method is used to estimate pairwise time-varying covariance between 

each pair of the ROIs during the whole scan and for each subject. The bandwidth set for 

ICI is chosen as cycles (one cycle of stimulation has a period of 40 s: 20 s checkerboard 

viewing and 20 s rest). The largest bandwidth of 1/2 cycle is selected to make the largest 

window cover a full cycle of stimulation, while the smallest bandwidth of 1/16 cycle is 

set to ensure the least-squares solution exist. Other parameters for the LPR are the same 

as those in the previous simulation. Here, we compare the LPR-ICI method with LPR 

using a fixed bandwidth (1/16 or 1/2). Fig. 5 shows BOLD signals and the time-varying 

covariance estimates averaged across three repetitions and all subjects and the time interval 

under analysis is the pre-stimulus rest condition (−10 s to 0 s, the baseline interval) and 

the whole checkerboard condition (0 s to 20 s, the activation interval). It can be seen 

that the time-varying covariance estimated by LPR-ICI is very stable in the pre-stimulus 

interval (which is reasonable because there is no stimulation before stimulation and the 

functional connectivity should be in a steady state) and shows prominent dynamic patterns 

and tendency in the activation interval (transient increases shortly after the stimulus onset 

and decreases afterwards can be observed from time-varying covariance of most pairs of 

ROIs). A large bandwidth (ℎ = 1/2) results in very flat covariance estimates, so it is difficult 

to see any dynamic pattern in the activation interval from the over-smoothed results. On the 

other hand, a small bandwidth (ℎ = 1/16) has large variations in the covariance estimates 

and thus some meaningless transient information may mislead our understanding of the 

brain connectivity. For example, the covariance estimates obtained with ℎ = 1/16 exhibits 

considerable variations in the pre-stimulus rest interval, which is difficult to be interpreted. 

As the functional connectivity in the pre-stimulus rest interval should be stable, it is highly 

possible that such large temporal variation in functional connectivity is caused by using LPR 

with a too short window. Considering the LPR-ICI method can achieve robust performance 

in different simulation scenarios, we conclude that the LPR-ICI method has more accurate 

estimates than the LPR with a fixed bandwidth for real-world fMRI signals in task-related 

experiments.

Further, we take a close examination of the time-varying covariance between left MOG 

and left FuG (lower and higher visual areas in the same hemisphere) in Fig. 6. To find 

out whether and when the fMRI signals and time-varying covariance within the activation 

interval are significantly different from those within the baseline interval, the following 

statistical analysis is performed. For each fMRI signal or time-varying covariance (averaged 
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across three repetitions and all subjects), the probability density function of the samples in 

the baseline interval (−10 s to 0 s) is estimated using kernel density estimation [26]. For 

each sample within the activation interval (0 s to 20 s), its significance level, indicating the 

rejection of the null hypothesis of no change in the sample compared to the baseline interval, 

is obtained by locating it under the probability density function estimated from the baseline 

interval. To address the problem of multiple comparisons, the p-value is corrected using a 

false discovery rate (FDR) procedure [28].

The fMRI data show a hemodynamic delay about 4–5 s after stimulation, which has been 

repeatedly observed in literature. It can be clearly seen that the time-varying covariance 

estimated using LPR-ICI exhibits a dynamic pattern: a quick increase after the stimulus 

onset followed by a decrease. The transient connectivity changes may reflect adaptation or 

decreases of predictive values of the visual stimuli. Most interestingly, the adaption only 

occurs on functional connectivity, but the fMRI activities sustain over the block for all the 

regions.

All these results suggest that the LPR-ICI method could be a powerful technique to estimate 

dynamic changes of connectivity and to avoid arbitrarily selection of window bandwidth that 

may lead to misleading and uninterpretable results. Importantly, these results provide the 

first evidence that the functional connectivity in a task condition measured by fMRI is not 

stationary but highly dynamic.

VII. CONCLUSIONS

This paper examines the asymptotic properties of time-varying covariance between two 

non-stationary processes and shows that there exists a local optimal bandwidth to achieve 

the best bias-variance tradeoff. To adaptively select the variable bandwidth for the optimal 

estimate of time-varying covariance, the LPR-ICI method is adopted. We use extensive 

simulation results to show that the LPR-ICI method offers good performance for signals 

with various degrees of covariance variations and under different SNRs. Since covariance 

is essential for many data analysis techniques, such as principal component analysis and 

factor analysis, the LPR-ICI method has the potential to improve the performance of these 

data analysis techniques, in which covariance estimation is essential, when dealing with non-

stationary processes. The LPR-ICI method offers an effective method to address the difficult 

problem of window selection and time-varying estimation such as the covariance in practical 

biomedical applications as it is more consistent and reliable than using constant bandwidth 

which may lead to un-interpretable or misleading results. To illustrate the usefulness of the 

LPR-ICI method, it is further applied to the analysis of dynamic functional connectivity 

from fMRI in a visual task. We found that the functional connectivity, which is usually 

assumed as static in most of conventional fMRI studies, is remarkably dynamic during 

the task. The dynamics of functional connectivity may convey important information about 

the underlying physiological and psychological states of the subjects. We believe that the 

proposed time-varying covariance estimation based the LPR-ICI method is expected to find 

various applications in biomedical signals and systems, such as estimating the dynamic 

connectivity between multimodal biomedical signals.
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Fig. 1. 
Estimation of time-varying covariance between two signals with jumping covariance and 

an SNR of 10dB : (a) Simulated signal Xn, N
1 , (b) Simulated signal Xn, N

2 , (c) Time-varying 

covariance estimated by different methods; (d) Variable bandwidths used in LPR-ICI. The 

model order for LPR is p = 1.
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Fig. 2. 
(a) Squared bias, (b) variance and (c) MSE of time-varying covariance estimates between 

two signals with jumping covariance and an SNR of 10dB. The model order for LPR is 

p = 1.
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Fig. 3. 
Estimation of time-varying covariance between two signals with randomly varying 

covariance (fc = 0.01) and an SNR of 10dB: (a) simulated signal Xn, N
1 , (b) simulated signal 

Xn, N
2 , (c) time-varying covariance estimated by different methods; (d) variable bandwidths 

used in LPR-ICI.
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Fig. 4. 
The group activation map for the checkerboard stimuli. Four ROIs identified by GLM are 

labeled.
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Fig. 5. 
fMRI signals from four ROIs and their time-varying covariance estimates in the baseline 

interval (−10 s to 0 s) and the activation interval (0 s to 20 s ). All the fMRI signals and 

time-varying covariance estimates are averaged across three repetitions and 26 subjects.
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Fig. 6. 
Statistical difference between samples in the activation interval (0 s to 20 s) and samples 

in the baseline interval (−10 s to 0 s) in the fMRI signals from left MOG and left FuG 

and in their time-varying covariance. Samples with significant difference (p < 0.05, FDR 

corrected) with respect to baseline interval are indicated by gray background.
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TABLE I

THE LPR-ICI METHOD FOR TIME-VARYING COVARIANCE ESTIMATION

Step 1. Calculate the inner product of two locally stationary processes as m n, l = Xn, N
1 Xn + l, N

2

Step 2. At each time instant τ, estimate β k τ, l; ℎγ  as in (14) by a pth order LPR with each bandwidth ℎγ in the set H.

Step 3. Approximate the residual variance σ2 τ, l  and the covariance V β τ, l  as in (21) and (22).

Step 4. Calculate the optimal bandwidth ℎk
opt τ, l  using the ICI method as in (18 – 20).

Step 5. Smooth ℎk
opt  τ, l  slightly to reduce the variance, resulting in a smoothed variable bandwidth ℎk

opt  τ, l .

Step 6. Perform a pth order LPR with bandwidth ℎk
opt τ, l  to obtain β k τ, l; ℎk

opt  τ, l . β 0 τ, l; ℎ0
opt  τ, l  is the final estimate of 

time-varying covariance c τ, l .
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TABLE II

EMSES OF DIFFERENT COVARIANCE ESTIMATION METHODS FOR TWO SIGNALS WITH JUMPING COVARIANCE (UNIT: 

DECIBELS)

Methods SNR = 0 SNR = 5 SNR = 10 SNR = 20

LPR (p = 1, ℎ = 2) 38.00 31.94 26.65 17.53

LPR (p = 1, ℎ = 4) 34.74 28.78 23.83 17.50†

LPR (p = 1, ℎ = 8) 31.88 26.39 22.56† 19.44

LPR (p = 1, ℎ = 16) 29.45 25.35† 23.27 22.11

LPR (p = 1, ℎ = 22) 28.54† 26.21 25.39 25.06

LPR-ICI (p = 0) 28.75* 25.32* 22.89 19.86

LPR-ICI (p = 1) 29.23 25.35 22.52* 19.53

LPR-ICI (p = 2) 35.73 30.01 24.88 16.60*

LPR w. plug-in (p = 1) 28.58 25.36 22.27 15.85

†
The minimum EMSE of LPR over all fixed bandwidths under one certain SNR is marked with

*
The minimum EMSE of LPR-ICI over all model orders under one certain SMR is marked with.
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TABLE III

EMSES OF DIFFERENT COVARIANCE ESTIMATION METHODS FOR TWO SIGNALS WITH RANDOMLY VARYING COVARIANCE 

(UNIT: DECIBELS)

Methods
fc = 0.005

SNR = 0 SNR = 5 SNR = 10 SNR = 20

LPR (p = 1, ℎ = 2) −39.98 −46.13 −51.67 −61.75

LPR (p = 1, ℎ = 4) −43.31 −49.63 −55.06 −65.09

LPR (p = 1, ℎ = 8) −46.20 −52.76 −57.98 −67.87†

LPR (p = 1, ℎ = 16) −48.76 −55.53† −59.98† −65.95

LPR (p = 1, ℎ = 22) −49.99† −54.48 −55.51 −56.20

LPR-ICI (p = 0) −49.21 −54.59 −57.61 −63.14

LPR-ICI (p = 1) −49.27* −55.08* −58.68* −66.88*

LPR-ICI (p = 2) −42.51 −48.44 −53.85 −63.92

LPR w. plug-in (p = 1) −49.14 −55.20 −59.49 −67.79

Methods
fc = 0.01

SNR = 0 SNR = 5 SNR = 10 SNR = 20

LPR (p = 1, ℎ = 2) −40.41 −46.66 −51.92 −62.10

LPR (p = 1, ℎ = 4) −43.79 −49.98 −55.28 −65.34

LPR (p = 1, ℎ = 8) −46.76 −52.83 −57.92† −65.55†

LPR (p = 1, ℎ = 16) −48.87† −53.38† −55.94 −57.32

LPR (p = 1, ℎ = 22) −46.70 −47.75 −48.08 −48.19

LPR-ICI (p = 0) −47.74 −51.67 −55.35 −59.91

LPR-ICI (p = 1) −47.89* −52.47* −56.81* −64.36*

LPR-ICI (p = 2) −42.94 −48.85 −54.02 −64.07

LPR w. plug-in (p = 1) −48.34 −53.60 −58.04 −65.36

Methods
fc = 0.02

SNR = 0 Methods SNR = 0 Methods

LPR (p = 1, ℎ = 2) −27.82 −33.86 −39.36 −49.44

LPR (p = 1, ℎ = 4) −31.17 −37.27 −42.70 −51.81†

LPR (p = 1, ℎ = 8) −33.99 −39.42† −43.19† −45.94

LPR (p = 1, ℎ = 16) −34.07† −36.10 −36.73 −36.95

LPR (p = 1, ℎ = 22) −30.77 −31.20 −31.30 −31.32

LPR-ICI (p = 0) −32.92 −36.38 −39.41 −43.10

LPR-ICI (p = 1) −33.17* −37.10* −40.95 −47.46
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Methods
fc = 0.005

SNR = 0 SNR = 5 SNR = 10 SNR = 20

LPR-ICI (p = 2) −30.10 −35.92 −41.13* −50.75*

LPR w. plug-in (p = 1) −33.59 −38.85 −43.55 −51.74

Methods
fc = 0.005

SNR = 0 SNR = 5 SNR = 10 SNR = 20

LPR (p = 1, ℎ = 2) −18.75 −24.77 −30.37 −39.45†

LPR (p = 1, ℎ = 4) −21.80 −27.07† −30.69† −33.24

LPR (p = 1, ℎ = 8) −22.10† −24.19 −24.87 −25.13

LPR (p = 1, ℎ = 16) −20.97 −21.66 −21.83 −21.90

LPR (p = 1, ℎ = 22) −20.81 −21.19 −21.27 −21.30

LPR-ICI (p = 0) −21.43 −22.87 −24.97 −25.14

LPR-ICI (p = 1) −21.54* −23.52 −27.53 −32.04

LPR-ICI (p = 2) −20.61 −25.76* −30.32* −34.48*

LPR w. plug-in (p = 1) −21.03 −25.93 −30.96 −38.64

†
The minimum EMSE of LPR over all fixed bandwidths under one certain SNR is marked with.

*
The minimum EMSE of LPR-ICI over all model orders under one certain SMR is marked with.
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