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 Abstract: Parkinson’s disease (PD) is a heterogeneous disease involving a complex interaction be-
tween genes and the environment that affects various cellular pathways and neural networks. Several 
studies have suggested that environmental factors such as exposure to herbicides, pesticides, heavy 
metals, and other organic pollutants are significant risk factors for the development of PD. Among the 
herbicides, paraquat has been commonly used, although it has been banned in many countries due to 
its acute toxicity. Although the direct causational relationship between paraquat exposure and PD has 
not been established, paraquat has been demonstrated to cause the degeneration of dopaminergic neu-
rons in the substantia nigra pars compacta. The underlying mechanisms of the dopaminergic lesion are 
primarily driven by the generation of reactive oxygen species, decrease in antioxidant enzyme levels, 
neuroinflammation, mitochondrial dysfunction, and ER stress, leading to a cascade of molecular cross-
talks that result in the initiation of apoptosis. This review critically analyses the crucial upstream  
molecular pathways of the apoptotic cascade involved in paraquat neurotoxicity, including mitogen-
activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, 
mammalian target of rapamycin (mTOR), and Wnt/β-catenin signaling pathways. 
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1. INTRODUCTION 

 Parkinson’s disease (PD) is the second most common and 
progressive neurodegenerative movement disorder after Alz-
heimer’s disease, affecting 1% of the population older than 
the age of 65 worldwide [1]. PD is characterized by tremors, 
bradykinesia, rigidity, and postural instability, in addition to 
other non-motor characteristics manifesting in the form of 
cognitive and neuropsychiatric symptoms, such as cognitive 
deficits, dementia, anxiety, depression, and sleep disorders [2]. 
The motor features of PD are predominantly evident after ap-
proximately 70% of the dopaminergic neurons have been lost 
and are a consequence of the selective degeneration of the 
dopaminergic neurons located in the substantia nigra pars 
compacta [3]. However, it also may be due to the progressive 
loss of axons and synapses that result in reduced dopamine 
neurotransmission [3]. Pathologically, the presence of in-
traneuronal proteinaceous cytoplasmic inclusions known as 
Lewy bodies and Lewy neurites, along with the loss of dopa-
minergic neurons, is recognized as the main hallmark of PD 
[4]. The protein α-synuclein has been the primary component 
in Lewy pathology and is considered indispensable in the 
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formation of Lewy bodies and Lewy neurites [5]. To date, 
there is still no cure for PD. Historically, dopaminergic ther-
apies remained the gold standard for improving the motor 
function of PD patients by increasing extracellular dopamine 
concentration at the striatal regions. However, long-term 
dopamine-increasing treatments can lead to adverse effects 
such as dyskinesias, fluctuations, and loss of efficacy. 
Emerging therapies for PD have focused mainly on develop-
ing small-molecule drugs, gene therapies, and immunothera-
pies to target genes and proteins implicated in PD pathogen-
esis [6]. In addition, cellular therapies are currently being 
developed to slow the disease’s progression or replace do-
paminergic neurons [6, 7].  

 To date, the exact cause of PD is yet to be deciphered. 
Nonetheless, PD is a multifactorial disorder with intertwined 
interactions between genes and the environment affecting 
various cellular pathways and neural networks resulting in 
the initiation and development of the disease [8]. Only ap-
proximately 10% of PD cases are attributed to genetic fac-
tors, while the remaining idiopathic cases are linked to other 
environmental contributors, such as exposure to pesticides, 
herbicides, and heavy metals [9, 10]. PD, regardless of 
whether it is the idiopathic or genetic origin, is phenotypical-
ly heterogeneous in terms of clinical progression and symp-
toms [11]. 
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 N,N'-Dimethyl-4,4'-bipyridinium dichloride, more com-
monly known as paraquat, is an important member of the 
bipyridylium family of broad-spectrum herbicides and has 
been linked to the development of PD [12]. In a study in-
volving a sizeable agricultural cohort, AGRICAN (AGRIcul-
ture and CANcer), which was initiated in France to assess 
the relationship between agricultural exposures and cancer 
incidence and mortality, reported that an increased risk of 
PD was associated with farmers exposed to paraquat for one to 
46 years [13]. Similarly, paraquat exposure in the age group of 
> 70 years contributes to approximately 21-24% of PD cases 
in Taiwan [14]. Since the introduction of paraquat to the mar-
ket in the 1960s, fatality cases due to paraquat poisoning have 
increased [15]. Post-mortem investigation of the brains of 
eight patients who succumbed to paraquat poisoning showed 
cerebral changes, which include generalized edema, peri-
vascular necrosis, hemorrhages, and neuroinflammation in-
dicated by the activation of astrocyte and microglia [16]. 
Nonetheless, no studies showed a direct causational relation-
ship between paraquat exposure and PD [17]. 
 Paraquat has a similar molecular structure and biochemis-
try to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 
another common neurotoxin that has been demonstrated to 
reproduce parkinsonian features in cellular and animal PD 
models. Although both paraquat and MPTP exert their toxic 
effects via oxidative stress, paraquat elicits its harmful ef-
fects on dopaminergic neurons in a distinctive manner com-
pared to MPTP [18, 19]. Paraquat penetrates the blood-brain 
barrier into the brain through a neutral amino acid transporter 
and subsequently is transported into the neuronal cell in a 
sodium-dependent fashion [20]. Paraquat belongs to a class 
of redox cycling compounds that involves a process of alter-
nate reduction and reoxidation, resulting in the generation of 
reactive oxygen species (ROS) and reactive nitrogen species 
(RNS), including hydrogen peroxide (H2O2), superoxide ion 
(O2

•-), and peroxynitrite ion (ONOO-) [21-23].  

 Dopaminergic neurons are vulnerable to paraquat toxicity 
as these neurons express dopamine transporter (DAT). The 
monovalent cation form of paraquat, PQ+, is transported into 
dopaminergic neurons by DAT, which induces oxidative 
damage [24]. Paraquat has been observed to increase lipid 
peroxidation, impair mitochondrial function, increase α- 
synuclein expression and aggregation, and decrease the level 
of antioxidants such as glutathione and neuroinflammation, 
subsequently promoting apoptosis of dopaminergic neurons 
[25-28]. In this review, we will provide an overview of apop-
tosis and recapitulate evidence of paraquat to activate the 
apoptotic signaling pathway. Subsequently, we will focus on 
the upstream pathways of apoptosis affected by paraquat. 
The pharmacological effects of paraquat are summarised in 
Table 1. 

2. ACTIVATION OF APOPTOSIS SIGNALING 
PATHWAY 

 Apoptosis is the key mechanism of neuronal cell death in 
PD. The relevance of apoptosis in neurodegeneration, espe-
cially in PD, and its associated events have been extensively 
elaborated in our previous work [29]. The cell death process 
is characterized by changes in cellular morphology, such as 
cell shrinkage, chromatin condensation, nuclear fragmenta-

tion, and plasma membrane blebbing [30]. Apoptosis is vital 
in innumerable physiological processes in development and 
aging to maintain or eliminate undesired and superfluous cell 
populations in tissues [31]. During the development and 
maturation of the neurons, apoptosis is essential in shaping 
the nervous system and developing appropriate neuronal 
circuitry [32]. The initiation of apoptosis is a tightly regulat-
ed process mediated by an intracellular proteolytic cascade 
of proteases known as caspases [33]. Caspases are widely 
synthesized in the cells as procaspases, which are activated 
by proteolytic cleavage at the aspartic acid residues by an-
other member of the caspase family, thereby amplifying the 
proteolytic cascade [33]. Apoptotic caspases consist of initia-
tor caspases (caspase-8 and -9) that function to initiate the 
apoptotic machinery and executioner caspases (caspase-3, -6, 
and -7) that degrade cellular components by mass proteolysis 
[34].  

 Upstream of caspases, the BCL-2 family of intracellular 
proteins primarily regulates apoptosis by direct physical pro-
tein-protein interactions that modulate mitochondrial outer 
membrane permeabilization (MOMP). The BCL-2 family is 
divided into three groups; (1) anti-apoptotic proteins [i.e., 
BCL-2, BCL-XL, myeloid cell leukemia-1 (MCL-1)], (2) 
pro-apoptotic pore formers (i.e., BAX and BAK), and (3) 
pro-apoptotic BH3-only proteins (i.e., BAD, Noxa, BNIP3) 
[35]. Regulation of the balance between these pro- and anti-
apoptotic factors of the BCL-2 family is pivotal for deter-
mining whether the cell undergoes survival or death [33]. 
When the cells are committed to apoptosis, BH3-only pro-
teins bind to the mitochondrial outer membrane, increasing 
the binding affinity of BAX and BAK [36]. This will result 
in the oligomerization and insertion of BAX and BAK into 
the mitochondrial bilayer to form pores or MOMP [35]. Sub-
sequently, the pro-apoptotic intermembrane space proteins 
such as cytochrome c, apoptosis-inducing factor (AIF), and 
Smac/DIABLO are released from the mitochondria into the 
cytosol resulting in the recruitment and activation of caspa-
ses [37].  

 Apoptosis can be activated by extrinsic and intrinsic 
pathological stimuli, including ROS and RNS in the case of 
paraquat exposure [33]. Innumerable in vitro and murine 
models demonstrated neurotoxicity related to the exposure of 
paraquat conciliated by ROS-dependent apoptosis [23, 38-
41]. In addition, paraquat neurotoxicity has been observed to 
be mediated via a BAK-dependent mechanism involving 
BH3-only members, Noxa and BNIP3, which act upstream 
of BAK [42]. BAK is constitutively expressed on the mito-
chondrial surface, where it is inhibited by pro-survival pro-
teins such as MCL-1, BCL-2, and BCL-XL [43]. The bind-
ing of Noxa to MCL-1 and BNIP3 to BCL-2/BCL-XL caus-
es the disinhibition of BAK and activation of MOPS [44-46]. 
In a study performed by Fei et al. [42], exposure of SK-N-
SH cells to paraquat showed upregulation in the mRNA and 
protein expression of BAK, BNIP3, and Noxa, in addition to 
cytochrome c and cleaved caspase-3 levels, indicating the 
activation of the apoptotic cascade. Apart from cytochrome 
c, paraquat has also been demonstrated to release other pro-
apoptotic intermembrane space proteins, such as HtrA2/Omi 
and Smac/DIABLO, but not AIF and endonuclease G [28, 
38].  
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Table 1. Pharmacological effects of paraquat. 

References 
Type of 

Exposure 
Cell/Animal Model 

Paraquat 
Doses 

Route of  
Administration 

Treatment 
Duration 

Effects 

Shukla et al., 2014 
[23] 

In vivo 
Male Drosophila melanogaster 

(w1118) 
10 and 20 

mM 
Oral 12 and 24 h 

↑ p-JNK, ↑ pFOXO/FOXO,  
↑ cleaved caspase-3,  

↑ TUNEL-positive cells 

Wills et al., 2012 
[27] 

In vivo 
Male mice with a mixed 

C57BL/6 x 129S background  
(2-3 months) 

10 mg/kg Intraperitoneal 
Twice a week 
for 6 weeks 

↑ α-synuclein, ↑ p-tau, ↑ p-GSK-3β,  
↑ mTOR, ↓ autophagic flux 

Srivastav et al., 
2018 [41] 

In vivo 
Male Drosophila melanogaster 

(Oregon-R-P2) 
20 mM Oral 48 h 

↑ p-JNK, ↑ cleaved caspase-3,  
↑ Nrf2 

Niso-Santano  
et al., 2010 [51] 

In vitro 
Human neuroblastoma SH-SY5Y 

cells 
25-750 μM Not applicable 24 h 

↓ ASK1, ↓ p-ASK1ser83, 

↓ p-ASK1ser967, ↑ p-ASK1thr845,  
↑ p-MKK3/6, ↑ p-MKK4/7, ↑ p-p38,  

↑ p-JNK, ↑ p-c-Jun 

Niso-Santano  
et al., 2010 [53] 

In vitro 
Human neuroblastoma SH-SY5Y 

cells overexpressing wild-type 
ASK1 

100 μM Not applicable 24 h ↑ ER stress, ↑ autophagy 

Ju et al., 2019  
[62] 

In vitro 
Human neuroblastoma SH-SY5Y 

cells 
300 μM Not applicable 24 h 

↑ TUNEL-positive cells, ↑ p-p38,  
↑ p-JNK, ↓ p-ERK, ↑ p-c-Jun, ↑ p-p53,  

↑ BAD, ↑ BAX/BCL-2 ratio,  
↑ cytochrome C, ↑ caspase-9,  

↑ caspase-3, ↑ PARP, ↓ p-IGF1R,  
↓ p-PI3K, ↓ p-AKT 

Seo et al., 2014 
[70] 

In vitro 
Mouse NIH-3T3 embryonic 

fibroblasts 
100-1000 

μM 
Not applicable 24 h 

↑ p-Elk1, ↑ ERK1/2, ↑ cytochrome c,  
↑ DNA fragmentation 

Niso-Santano  
et al., 2006 [71] 

In vitro Rat brain neuroblasts (E18 cells) 25 μM Not applicable 24 h ↑ p-ERK1/2, ↑ p-JNK1/2, ↑ p-AKT 

Yang et al., 2018 
[119] 

In vitro 
Human neuroblastoma SH-SY5Y 

cells 
300 μM Not applicable 24 h 

↑ cleaved PARP, ↑cleaved caspase-3,  
↑ β-catenin, ↑ p-GSK-3ɑ/β, ↓ cyclin 

D1, ↑ BAK, ↑ cytochrome C,  
↑ DIABLO, ↑ HtrA2 

Abbreviations: ASK1, apoptosis signal-regulating kinase 1; DIABLO, direct inhibitor of apoptosis-binding protein with low pI; ER, endoplasmic reticulum; ERK, extracellular 
signal-regulated kinase; FOXO, Forkhead box transcription factors of the class O; GSK-3, glycogen synthase kinase-3; HtrA2, high-temperature requirement-A serine peptidase-1; 
IGF-1R, insulin-like growth factor 1 receptor; JNK, c-Jun N-terminal kinases; MKK, mitogen-activated protein kinase kinase; mTOR, mammalian target of rapamycin; Nrf2, nuclear 
factor erythroid 2-related factor 2; PARP, poly (ADP-ribose) polymerase; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; TUNEL, terminal deoxynucleotidyl transferase 
dUTP nick end labelling. 
 
3. MITOGEN-ACTIVATED PROTEIN KINASE 
(MAPK) PATHWAY 

 The MAPK pathway is one of the oldest and evolutional-
ly conserved families of serine/threonine protein kinases 
which plays a role in regulating cellular processes such as 
proliferation, stress response, immune defense, and apoptosis 
[47]. The signals from various extracellular stimuli are facili-
tated through a cascade of events in the cell, which phos-
phorylates and alters a myriad of substrate activities in the 
nucleus, cytoplasm, mitochondria, Golgi apparatus, and en-
doplasmic reticulum. MAPK signaling cascade includes an 
operating set of three succedent evolutionarily conserved 
groups of protein kinase comprised of MAPK, mitogen-
activated protein kinase kinase (MAP2K), and mitogen-
activated protein kinase kinase kinase (MAP3K) [48]. The 
activation of MAPK cascades occurs in a module of sequen-
tial phosphorylation of downstream MAPK, i.e., phosphory-
lation of MAP3K, followed by the phosphorylation of 
MAP2K, which in turn, activates MAPK, such as c-Jun N-

terminal kinases (JNK), p38, or extracellular signal-regulated 
kinase (ERK) [49].  
 In mammalian cells, three well-known MAPK pathways 
have been described: JNK, p38, and ERK1/2 [50]. All three 
MAPK pathways are implicated in in vitro and in vivo mod-
els of PD using paraquat. Niso-Santano et al. [51] analyzed 
the protein expression of apoptosis signal-regulating kinase 1 
(ASK1), a member of the MAP3K family, which is activated 
in response to various stimuli and relays signals to the stress-
activated protein kinase (SAPK). The study concluded a 
concentration-dependent decrease of p-ASK1Ser83 and p-
ASK1Ser967, in addition to an increase in p-ASK1Thr845 
protein expression upon exposure of SH-SY5Y cells to para-
quat (25 to 100 μM, 24 hours). This confirms that paraquat 
promoted the ASK1 activation by dephosphorylating Ser83 
and Ser967, and phosphorylating Thr845 residues. Activa-
tion of ASK1 has been linked to ER stress and the initiation 
of apoptosis and autophagy in several neurodegenerative 
diseases, including PD [52]. This was demonstrated by Niso-
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Santano et al. [53], where the protein expression of phos-
phorylated inositol-requiring transmembrane kinase/ endori-
bonuclease 1 (IRE1), a key activator of the unfolded protein 
response (UPR), was substantially higher in paraquat-treated 
SH-SY5Y cells overexpressing wild-type ASK1 when com-
pared to untransfected cells treated with the herbicide.  
 JNK has been widely known as one of the SAPKs based 
on their activation in response to a wide range of different 
stress factors, including inflammatory cytokines [54], oxida-
tive stress [55], and DNA damage [56]. The JNK pathway 
contributes to the control of cellular processes, including 
those involved in regulating cell proliferation, differentia-
tion, and apoptosis [57]. The role of JNK in cell proliferation 
and apoptosis is dependent on the cell type and stimuli in-
volved [58, 59]. JNK can be activated when upstream protein 
kinases of MAP2K family, including mitogen-activated pro-
tein kinase kinase (MKK)4 and MKK7, phosphorylates the 
Tyr183 and Thr185 residues of JNK [60]. MKK7 is essential 
for JNK activation upon stimulation by stresses, whereas 
MKK4 is required for optimal JNK activation [60]. The 
phosphorylation of JNK causes the translocation of JNK in 
the cytosol into the nucleus resulting in the activation of dif-
ferent transcriptional factors such as c-Jun and p53 tumor 
suppressor protein [61]. A concentration-dependent increase 
in protein expression of p-MKK4/7, p-JNK, and p-c-Jun in 
SH-SY5Y cells was observed upon exposure to 25-100 μM 
paraquat for 24 hours, indicating the activation of the JNK 
pathway [51, 62].  
 In cells undergoing stress, JNK-mediated phosphoryla-
tion can stabilize and activate p53 to initiate apoptotic cell 
death [63]. This was confirmed in a study by Niso-Santano et 
al. [51], where a significant increase in the percentage of 
cells undergoing apoptosis, indicated by increased levels of 
diffuse cytochrome c and active caspase-3 in JNK-activated 
SH-SY5Y cells treated with paraquat. In addition, pre-
treatment of the JNK inhibitor SP600125 before paraquat 
treatment attenuates cell death [51]. It has been reported in 
an in vivo Drosophila model that mRNA and protein expres-
sion levels of JNK and caspase-3 were increased in the brain 
upon exposure to paraquat [23, 41].  
 Another SAPK, p38, was detected in neurons with or 
without Lewy bodies located in the substantia niga pars 
compacta (SNpc) of post-mortem brain samples [64]. p38 is 
activated by the upstream protein kinases MAP2K family, 
i.e., MKK3 and MKK6 [65, 66]. These two MAP2K kinases 
are highly selective for p38 and do not activate JNK or ERK 
[67]. Niso-Santano et al. [51] demonstrated a concentration-
dependent increase in the p-MKK3/6 protein expression in 
SH-SY5Y cells upon exposure to paraquat (25-100 μM, 24 
hours). Similar to JNK, p38 also phosphorylates p53, which 
promotes the translocation to the nucleus, resulting in gene 
transcription of pro-apoptotic mediators such as BAX to ini-
tiate the apoptotic machinery [68]. This can be seen in a 
study by Ju et al. [62], where increased protein expression of 
p-38 (~1.4-fold), p53 (~1.5-fold), and apoptotic mediators 
such as BAX/BCL-2 ratio, caspase-3, and caspase-9 were 
observed in SH-SY5Y cells treated with paraquat (300 μM, 
24 hours).   

 Another signaling cassette that is central to the MAPK 
pathway is ERK. In contrast to JNK and p38, which are acti-

vated primarily by the stress response, activation of the ERK 
cascade has always been thought to inhibit apoptosis in re-
sponse to mitogenic stimuli leading to the production of pro-
teins required for cell growth and differentiation [69]. Expo-
sure of SH-SY5Y cells to paraquat (300 μM, 24 hours) has 
been observed to downregulate the protein expression of p-
ERK by 1.3-fold, leading to an increased proportion of cells 
undergoing apoptosis [62]. Nonetheless, an increase in pro-
tein expression of ERK1/2 and cytochrome C release has 
been demonstrated in mouse NIH3T3 embryonic fibroblasts 
treated with paraquat, indicating such differential effects of 
the ERK pathway could reflect cell-type specificity [70]. 
Another study conducted by Niso-Santano et al. [71] using 
rat E18 neuroblasts concluded low concentration of paraquat 
increases protein expression of p-ERK1/2 from the very ear-
ly beginning of 2.5 to 10 minutes, with the maximal protein 
expression of p-ERK1/2 at 5 minutes. This indicates that 
time could play an essential role in the protein expression of 
ERK. A moderate ERK immunoreactivity was observed in 
the Lewy body of the SNpc and other nuclei of the brain 
stem from post-mortem PD brain samples [64]. Moreover, 
SNpc neurons from post-mortem brain samples displayed 
unusual coarse, discrete, granular accumulation of p-ERK in 
the cytoplasm and mitochondria, which were absent in the 
age-matched control group [72, 73].  

4. PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE 
3-KINASE (PI3K)/AKT SIGNALING PATHWAY 

 Upon its discovery in the 1980s, PI3K/AKT intracellular 
signal transduction pathway has been involved in regulating 
multiple cellular processes such as cell proliferation, differ-
entiation, survival, growth, and metabolism [74]. The PI3K/ 
AKT pathway consists of two components: PI3K and its 
serine/threonine downstream molecule, AKT [75]. As a ma-
jor downstream molecule of receptor tyrosine kinase (RTK) 
and G protein-coupled receptors, PI3K functions to trans-
duce signals from various neurotrophic factors, hormones, 
and cytokines into intracellular messages by generating 
phospholipids, which in turn activates AKT and various oth-
er extracellular matrix molecules and cytokines [74]. One of 
the well-known neurotrophic and anti-apoptotic pro-survival 
factors is insulin�like growth factor 1 (IGF-1) [76]. The bind-
ing of IGF-1 to its corresponding RTK receptor, IGF-R1, 
triggers the downstream PI3K/AKT pathway that promotes 
cell proliferation [77]. Upon activation, AKT then translo-
cates from the plasma membrane to the cytoplasm or nucle-
us, phosphorylating its target proteins. Accumulating evi-
dence has strongly suggested that activation of the PI3K/ 
AKT pathway promotes the survival and growth of dopa-
minergic neurons by inhibiting apoptosis and hence being 
dysregulated in PD patients [50, 78]. Post-mortem investiga-
tion of dopaminergic neurons in PD patients showed dimin-
ished levels of p-AKT [79]. In addition, a recent study 
showed that AKT and p-AKT are significantly reduced in the 
SNpc of PD patients [80]. Ju et al. [62] demonstrated a de-
crease in the protein expression of the p-IGF-1 receptors by 
25% upon exposure of SH-SY5Y cells to paraquat (300 μM, 
24 hours), resulting in a decrease in cell viability by 25%. 
Moreover, a reduction in p-PI3K and p-AKT protein expres-
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sion by 40% and 10%, respectively, were also observed in 
the study.  
 As the primary molecule downstream of the PI3K signal-
ing pathway, AKT has been shown to inhibit apoptosis by 
negatively regulating the function and expression of pro-
apoptotic proteins and processes [81]. Several mechanisms 
have been elucidated by which AKT intervenes in the apop-
totic cascade to promote cell survival. One of the most well-
studied mechanisms is the direct phosphorylation of pro-
apoptotic proteins such as BAD, BAX, and caspase-9 by 
AKT, resulting in the inhibition of the apoptosis cascade [82-
84]. BAD protein is a pro-apoptotic member of the BCL-2 
family, which plays a role in initiating apoptosis. When non-
phosphorylated, the BAD protein mediates apoptosis by se-
lectively dimerizing anti-apoptotic members of the same 
family, such as BCL-XL and BCL-2, resulting in the dis-
placement of the pro-apoptotic protein BAX [85, 86]. This 
allows BAX to be free to initiate mitochondrial membrane 
permeability and recruitment of caspases to initiate apopto-
sis. When phosphorylated by AKT, BAD cannot dimerize 
with anti-apoptotic BCL-XL or BCL-2; hence apoptosis is 
inhibited [87]. Furthermore, AKT directly inhibits the con-
formational change of BAX and its subsequent translocation 
to mitochondria resulting in the inhibition of cytochrome c 
release [88]. Another mechanism by which AKT inhibits 
apoptosis is by directly maintaining the mitochondrial integ-
rity to inhibit the release of cytochrome c from mitochondria 
[89]. Ju et al. [62] reported downregulation of AKT protein 
expression contributes to the initiation of apoptosis in SH-
SY5Y cells treated with paraquat. Indeed, apoptotic markers 
such as BAD, BAX/BCL-2, caspase-9, and cytochrome c 
protein expression levels were increased significantly [62]. 
The downregulation of AKT might also be due to the cross-
talk between AKT and p53 pathways. Under conditions lead-
ing to an irreversible apoptotic commitment, such as oxida-
tive stress, p53 activation contributes to the initiation of 
apoptosis by inhibiting AKT [90]. An increase in the protein 
expression of p53 was also observed [62].  
 Another target protein of AKT is Forkhead box transcrip-
tion factors of the class O (FOXO), an evolutionally con-
served transcription factor family that plays a significant role 
in many cellular processes, such as proliferation, differentia-
tion, and survival, in addition to mediating DNA repair and 
apoptosis [91]. FOXO controls cell proliferation and survival 
by regulating the expression of genes involved in the cell-
cycle progression and apoptotic pathway. FOXO is present 
in the cytosol and nucleus, and its activity has been reported 
to function differently according to its upstream regulator, 
post-translational modification, and cellular environment 
[92]. Phosphorylation of FOXO by AKT can inhibit apopto-
sis by sequestration from the nucleus away from the death-
inducing genes to the cytoplasm to be degraded by the ubiq-
uitin-proteasome pathway [93]. However, the downregula-
tion of AKT in in vitro and in vivo studies pertaining to the 
use of paraquat suggests that FOXO can be phosphorylated 
by other proteins. Accumulating evidence suggests that 
phosphorylation of FOXO by JNK enhances the transloca-
tion of FOXO to the nucleus and increases its activity to ac-
tivate pro-apoptotic genes [94]. Indeed, paraquat increased 
the expression of p-JNK, p-FOXO, and cleaved caspase-3 in 
the brain of Drosophila flies [23].  

 Growing functional evidence has suggested a close func-
tional relationship between AKT and MAPK cascades, in 
which increased phosphorylation activity of AKT has been 
shown to suppress the JNK/p38 SAPK pathway in many cell 
systems, thus inhibiting apoptosis [81]. This can be con-
firmed in a study by Ju et al. [62], where a decrease in the 
phosphorylated AKT was accompanied by an increase in p-
JNK and p-p38 upon exposure of SH-SY5Y cells to paraquat 
(300 μM, 24 hours). Moreover, it has been demonstrated that 
AKT regulates ASK1 since ASK1 contains an AKT-specific 
phosphorylation site [95]. Therefore, ASK1 is one of the 
convergence points between PI3K/AKT and SAPK/MAPK 
cascades.  

5. MAMMALIAN TARGET OF RAPAMYCIN (MTOR) 
SIGNALING PATHWAY 

 mTOR is a highly conserved serine/threonine protein 
kinase that belongs to the member of the PI3K-associated 
kinase protein family. mTOR is expressed in most mammali-
an cell types overseeing multiple functions, including cell 
survival, metabolism, and cytoskeletal organization [96]. 
mTOR functions in two multiprotein complexes with distinct 
subunit composition and regulation of downstream targets. 
mTORC1 lies downstream of AKT and is activated by p-
AKT [74]. mTORC1 responds to signaling from glucose, 
amino acid, and growth factors, which promotes protein and 
lipid synthesis, in addition to nucleotide biogenesis required 
for cell proliferation and maintenance [97]. On the contrary, 
mTORC2 lies upstream of AKT and is regulated strictly un-
der the control of growth factors such as insulin [98]. 
mTORC2 functions to phosphorylate and activate AKT to 
promote cell survival [97]. Both mTOR1 and mTOR2 signal-
ing pathway is activated by extracellular and intracellular 
cues when conditions are favorable for proliferation and 
growth.  

 However, a growing body of evidence has highlighted 
the role of ER stress-induced activation of mTORC1 result-
ing in the reduced phosphorylation of AKT as a negative-
feedback mechanism and, subsequently, induction of the 
IRE1-JNK pathway and apoptosis [99, 100]. Moreover, induc-
tion of ER stress also results in the phosphorylation of  
the mTORC2 subunit, rapamycin-insensitive companion of 
mammalian target of rapamycin (RICTOR), by glycogen syn-
thase kinase-3 (GSK-3)β, which suppresses AKT activation 
[101]. The downregulation of AKT induced by mTORC2 
phosphorylation also provides a positive feedback loop to 
mTORC1 for the induction of the IRE1-JNK pathway and, 
subsequently, apoptotic cell death [101].  

 In recent years, evidence has suggested the dysregulation 
of mTOR signaling in PD. Dijkstra et al. [102] studied the 
transcriptomic changes of the post-mortem SNpc of PD pa-
tients using microarray analysis and unsurprisingly observed 
the mRNA levels of mTORC1 and mTORC2 were upregu-
lated even in the early pathological stages of PD and re-
mained impaired in the later stages of the disease. Moreover, 
both mTOR and p-mTOR levels were upregulated in neurons 
with α-synuclein accumulation isolated from the post-
mortem temporal cortex [103]. In line with these studies, 
paraquat has been demonstrated to increase the protein ex-
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pression levels of p-GSK-3β and GSK-3β by 40% and 60%, 
respectively, in mouse striata [27]. In addition, the authors 
have concluded a 1.6-fold upregulation in the mTOR protein 
expression in the striata. 

 mTOR also plays a vital role in regulating mitochondrial 
dynamics and autophagy [104, 105]. Autophagy can promote 
cell survival by preventing cells from undergoing apoptosis. 
Impaired autophagy has been suggested to contribute to neu-
ronal cell loss in PD [106]. mTOR signaling has been associ-
ated with the inhibition of autophagy [104]. It has been 
shown in a study using SH-SY5Y cells that paraquat-induced 
apoptosis was accelerated when autophagy was suppressed 
using autophagy inhibitor 3-methyladenine [107]. Mitochon-
drial damage plays an essential role in paraquat-induced cell 
death [108]. The inability to clear the dysfunctional mito-
chondria due to autophagy impairment has been linked to the 
development of PD [109]. 

6. WNT/ββ-CATENIN SIGNALING PATHWAY 

 The Wnt/β-catenin signaling pathway has emerged as 
one of the most important ancient and evolutionally con-
served signaling pathways in the development and mainte-
nance of physiological function in the adult brain [110]. The 

Wnt signaling pathway also significantly regulates different 
aspects of embryonic development, including cell fate de-
termination, migration, polarity, neural patterning, and em-
bryonic development [111]. In the absence of extracellular 
Wnt ligand binding to the seven-pass transmembrane Friz-
zled receptor and its associate co-receptor low-density lipo-
protein-related receptors 5 and 6 (LRP5/6) at the plasma 
membrane, cytoplasmic β-catenin is phosphorylated by the 
components in the multiprotein destruction complex, such as 
casein kinase 1, GSK-3α, and GSK-3β [112]. This targets β-
catenin for ubiquitination and subsequent proteolytic degra-
dation by the proteasomal machinery. Upon binding of the 
Wnt ligand to its receptor complex inhibits the phosphoryla-
tion of β-catenin for destruction [110]. Subsequently, β-
catenin accumulates in the cytoplasm and translocates to the 
nucleus. It activates specific transcription genes such as cyclin 
D1 and c-myc that are involved in cell proliferation, survival, 
differentiation, neurogenesis, and inflammation [113].  
 Recent findings have highlighted the prominent role of 
the Wnt/β-catenin signaling pathway in the development and 
maintenance of dopaminergic neurons [114-116]. A microar-
ray study showed that β-catenin gene expression was down-
regulated in the SNpc of post-mortem PD patients [117]. β-
catenin was also hypermethylated, in addition to reduced 

 
 

Fig. (1). The upstream signal transduction pathways associated with paraquat-induced apoptosis. (1) MAPK, (2) PI3K/AKT, (3) mTOR, and 
(4) Wnt/b-catenin signaling pathways. Abbreviations: AIF, apoptosis-inducing factor; APAF1, apoptotic protease activating factor 1; APC, 
adenomatous polyposis coli; CKIα, casein kinase I alpha; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; FOXO, 
Forkhead box transcription factors of the class O; GSK-3, glycogen synthase kinase-3; IGF-1, insulin-like growth factor 1; IGF-1R, insulin-
like growth factor 1 receptor; JNK, c-Jun N-terminal kinases; LRP5/6, low-density lipoprotein-related receptors 5 and 6; MAPK, mitogen-
activated protein kinase; MCL-1, myeloid cell leukemia-1; MKK, mitogen-activated protein kinase kinase; MOMP, mitochondrial outer 
membrane permeabilization; mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PQ, paraquat; 
SMAC, second mitochondria-derived activator of caspase; TCF/LEF, T-cell factor/lymphoid enhancer factor. (A higher resolution/colour 
version of this figure is available in the electronic copy of the article). 
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expression of the β-catenin gene [118]. Notably, the immu-
noreactivity of β-catenin was almost abolished in the nuclei 
of the PD SNpc dopaminergic neurons. Nevertheless, Yang 
et al. [119] demonstrated that the canonical Wnt/β-catenin 
signaling pathway was activated in paraquat-treated SH-
SY5Y cells (300 μM, 24 hours), as evidenced by the time-
dependent increase in β-catenin and p-GSK-3α and -3β. The 
phosphorylation of GSK-3 by proteins such as AKT causes 
inhibition of its kinase activity, thus, hampering the phos-
phorylation of β-catenin for proteasomal degradation [120-
122]. However, as mentioned earlier, paraquat was shown to 
decrease AKT protein expression; therefore, phosphorylation 
of GSK-3 is unlikely to be mediated by the PI3K/AKT 
pathway. GSK-3 can phosphorylate LRP6, indicating the 
possibility of activating Frizzled and LRP co-receptors by 
paraquat [123]. In addition, ROS such as H2O2 has been 
demonstrated to activate the Wnt/β-catenin signaling path-
way [124]. Furthermore, Bernkopf and Behrens [125] have 
reported the activation of the Wnt/β-catenin signaling path-
way intrinsically via a signaling axis from mitochondria to β-
catenin. Loss of ΔΨm in damaged or stressed mitochondria 
trigger the cleavage of mitochondrial phosphatase phospho-
glycerate mutase 5 (PGAM5) by presenilin-associated  
rhomboid-like protein (PARL) [126]. The release of PGAM5 
from the damaged mitochondria to the cytosol interacts with 
the multiprotein destruction complex, enhancing direct 
dephosphorylation of β-catenin and counteracting GSK3-
mediated β-catenin phosphorylation [127]. Thus, the genera-
tion of ROS and the loss of ΔΨm upon exposure to paraquat 
may indirectly activate the Wnt/β-catenin signaling pathway. 

 The Wnt/β-catenin signaling pathway has also been 
linked to cell apoptosis [128]. Yang et al. [119] demonstrat-
ed the time-dependent increase in β-catenin and pro-
apoptotic protein BAK, in addition to a decrease in cyclin D1 
protein expression upon exposure of SH-SY5Y cells to PQ 
(300 μM, 24 hours). Cyclin D1 is a member of the cyclin 
protein family that positively regulates the G1/S transition – 
the only checkpoint in the cell cycle when cells can commit 
to another round of division or exit the cell cycle [129]. The 
expression of cyclin D1 is upregulated when growth factors 
and mitogens are present in the cellular environment [130]. 
β-catenin activates the transcription factor from the cyclin 
D1 promoter resulting in the expression of cyclin D1 to initi-
ate the cell cycle progression [131]. However, Yang et al. 
[119] showed that the activation of β-catenin resulted in the 
inhibition of cyclin D1 expression, suggesting a crosstalk 
between the Wnt/β-catenin signaling and another important 
signaling pathway to regulate the expression of cyclin D. An 
increasing number of literature has demonstrated the in-
volvement of the MAPK pathway in the regulation of cyclin 
D1 promoter [132]. Cyclin D1 promoter activity can be acti-
vated by the ERK cascade; however, it can also be inhibited 
by p38 and JNK pathways via various mechanisms [132]. 
Since paraquat has been reported to downregulate ERK and 
upregulate p38 and JNK protein expression, these mecha-
nisms may be responsible for the downregulation of cyclin 
D. Thus, paraquat could cause dysregulation in the cell cycle 
by arresting the cells in the G1/S phase on top of initiating 
the apoptotic mechanism [133].  

CONCLUSION 

 Paraquat-induced neurotoxicity has been demonstrated to 
involve many cellular mechanisms, including oxidative 
stress, abnormal protein degradation and aggregation, altered 
dopamine catabolism, mitochondrial dysfunction, and ER 
stress that ultimately culminate in the initiation of apoptosis. 
However, the molecular targets in the proximal events lead-
ing to the core apoptotic machinery have yet to be described 
elsewhere. The synthesized review demonstrated the effect 
of paraquat in initiating apoptosis via different upstream 
crosstalk pathways, i.e., MAPK, PI3K/AKT, mTOR, and 
Wnt/β-catenin signaling pathways. The convergence points 
between the signaling transduction mechanisms are illustrat-
ed in Fig. (1). In conclusion, paraquat induces apoptotic cell 
death by activating MAPK, mTOR, and Wnt/β-catenin 
pathways while suppressing PI3K/AKT. The ability of para-
quat to modulate the signaling molecules in mTOR and 
PI3K/AKT pathways reinforces the notion that autophagy 
and apoptosis are indeed interrelated. Deciphering the prox-
imal biochemical cascades leading to apoptosis by paraquat 
may translate fruitful insights into potential neuroprotective 
therapies for PD. Therefore, the regulation of apoptosis with 
inhibitors targeted against these proximal signaling cascades 
can be further explored as it provides a new therapeutic ap-
proach for this debilitating disease. 
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