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 Abstract: Central sensitization is an increased responsiveness of nociceptive neurons in the central 
nervous system to their normal or subthreshold afferent input.  
Aim: To explain how the notion of central sensitization has changed our understanding of pain condi-
tions, discuss how this knowledge can be used to improve the management of pain, and highlight 
knowledge gaps that future research needs to address.  
Methods: Overview of definitions, assessment methods, and clinical implications.  
Results: Human pain models, and functional and molecular imaging have provided converging evi-
dence that central sensitization occurs and is clinically relevant. Measures to assess central sensitiza-
tion in patients are available; however, their ability to discriminate sensitization of central from pe-
ripheral neurons is unclear. Treatments that attenuate central sensitization are available, but the limited 
understanding of molecular and functional mechanisms hampers the development of target-specific 
treatments. The origin of central sensitization in human pain conditions that are not associated with 
tissue damage remains unclear.  
Conclusion: The knowledge of central sensitization has revolutionized our neurobiological under-
standing of pain. Despite the limitations of clinical assessment in identifying central sensitization, it is 
appropriate to use the available tools to guide clinical decisions towards treatments that attenuate cen-
tral sensitization. Future research that elucidates the causes, molecular and functional mechanisms of 
central sensitization would provide crucial progress towards the development of treatments that target 
specific mechanisms of central sensitization. 
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1. INTRODUCTION 

 Central sensitization is defined by the International Asso-
ciation for the Study of Pain (IASP) as an increased respon-
siveness of nociceptive neurons in the central nervous system 
to their normal or subthreshold afferent input [1]. Historically, 
the discovery that injury at peripheral tissues induces hyperex-
citability of spinal cord nociceptive neurons [2] has prompted 
a massive research effort that has consistently confirmed en-
hanced responsiveness of central nociceptive pathways with 
different animal models [3]. Subsequently, human models of 
sensitization have been developed and applied to multiple 
pain conditions, demonstrating that human clinical pain is 
associated with altered indices of central sensitization [4]. 

 The purpose of this review article is to explain how the 
notion of central sensitization has changed our understanding 
of pain conditions, discuss how this knowledge can be used 
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to improve the management of pain and highlight knowledge 
gaps that future research needs to address. 

2. FROM ANIMAL TO HUMAN RESEARCH 

 Pre-clinical research on central sensitization has been 
extensive and has elucidated molecular and functional mech-
anisms underlying enhanced central nociceptive processes 
with different animal models. A review of these mechanisms 
is outside the scope of this article and can be found in previ-
ous papers [5-10]. Human research is obviously limited in its 
ability to study mechanisms of central sensitization. Never-
theless, human pain models, functional and molecular imag-
ing have provided converging evidence that central sensitiza-
tion occurs and is clinically relevant to patients with different 
pain conditions. 

2.1. Human Pain Models 

 Human pain models consist in applying a stimulus and 
recording a response related to pain. A recent systematic 
review has identified 269 studies using more than a dozen 
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human models of sensitization [11]. A variety of stimulus 
modalities have been used, most commonly pressure, heat, 
cold, and electrical stimulation [12, 13]. Capsaicin (topical, 
intradermal, or intramuscular) [14, 15], intramuscular hyper-
tonic saline [16, 17], and nerve growth factor (NGF) [18, 19] 
have been used to induce pain and hyperalgesia. While cuta-
neous pain has mostly been studied, models of muscle [18, 
20-22] and visceral [23-25] pain have been developed and 
applied to human research. Methods to record responses re-
lated to pain include pain thresholds (the intensity of a stimu-
lus that elicits pain), pain intensity after application of a 
standardized stimulus, area of pain, area of hyperalgesia, and 
tolerance time (time from application of a stimulus until the 
subject does not tolerate the pain) [12]. 
 Temporal summation explores how ongoing or repeated 
peripheral signals are enhanced in the central nervous sys-
tem, leading to the amplification of pain or pain with innoc-
uous stimuli. Temporal summation is the human correlate of 
the wind-up phenomenon documented in animals, which is 
an increase in the activity of spinal nociceptive neurons dur-
ing repeated stimuli of constant intensity [26]. Similarly, for 
temporal summation, repeated stimulation at constant inten-
sity evokes an increase in pain perception [27] and an in-
crease in the amplitude of the nociceptive withdrawal reflex 
[28]. Enhanced temporal summation has been detected in 
multiple pain conditions, and is considered a key mechanism 
of central sensitization [29, 30]. 

 Endogenous inhibition of nociceptive processes is im-
portant in the homeostatic regulation of pain. Substantial pre-
clinical research has elucidated mechanisms of endogenous 
inhibition, involving, among others, a top-down control by 
the endogenous supraspinal opioid system via descending 
noradrenergic and serotoninergic pathways [31]. Dysfunc-
tion of endogenous inhibition leads to pain amplification 
[32]. Endogenous pain inhibition is studied in humans by the 
conditioned pain modulation model [33]. Two painful stimu-
li are applied at two distant body areas: a “test” stimulus, and 
a “conditioning” stimulus. If endogenous inhibition is well 
functioning, the conditioning stimulus will reduce the pain 
response caused by the test stimulus. Dysfunction of condi-
tioned pain modulation has a high prevalence in chronic pain 
[34] and is thought to be an important determinant of central 
sensitization and pain. 

 All the above models rely on self-report and are therefore 
subjective in nature. This is not necessarily a limitation, as 
pain is a subjective experience. Objective models have com-
plemented the information obtained with self-report measures, 
and include the recording of spinal reflexes and cerebral evoked 
potentials. The nociceptive reflex is an electromyographic re-
sponse of the lower limb following electrical stimulation, and 
has been used to study spinal nociceptive responses [35-38]. 
The use of brain evoked potentials has allowed the recordings 
of cerebral activity after painful stimulation [39-42]. 

 With few exceptions, studies using human pain models 
have found that patients with different pain conditions dis-
play enhanced pain and nociceptive responses, compared 
with pain-free subjects. The findings have been summarized 
in a recent review [4]. 

2.2. Functional and Molecular Imaging 

 Neuroimaging has provided substantial progress in our 
understanding of the mechanisms of human pain. Overviews 
of neuroimaging studies in pain can be found in previous 
reviews [43-47]. 
 In brief, functional and molecular imaging has been ap-
plied in conjunction with human pain models to understand 
cerebral mechanisms of augmented pain and nociceptive 
processes. Several studies that have used sensitization mod-
els in conjunction with functional magnetic resonance imag-
ing (fMRI) have documented activation of pain-related brain 
areas, such as the primary somatosensory cortex, insula, an-
terior cingulate cortex, and prefrontal cortex [48-51]. 
 Changes in brain chemistry have been revealed by mag-
netic resonance spectroscopy (MRS). Associations between 
enhanced pain responses and increased brain levels of the 
excitatory neurotransmitter glutamate have been detected in 
patients with fibromyalgia [52] and healthy volunteers [53], 
suggesting that enhanced glutamatergic signaling in brain-
promoting areas is involved in central sensitization. Pain sen-
sitivity has been shown to be negatively correlated with brain 
levels of the inhibitory neurotransmitter γ-aminobutyric acid 
(GABA) in patients with fibromyalgia [54] and healthy vol-
unteers [53], suggesting that reduction in cerebral inhibitory 
processes is involved in central sensitization. 
 Neuroinflammation is associated with central sensitiza-
tion in animal models [55-58]. Human studies using Positron 
Emission Tomography (PET) have detected neuroinflamma-
tion in the brain of patients with fibromyalgia [59] and 
chronic low back pain [60], and in the spinal cord/nerve 
roots of patients with radicular pain [61]. 

3. ARE WE MEASURING CENTRAL SENSITIZA-
TION? 

 Human models have consistently shown enhanced re-
sponses in patients, compared with pain-free subjects [4]. 
The crucial question is whether these responses specifically 
reflect central sensitization. The IASP terminology for cen-
tral sensitization specifies that changes in function have to 
occur in central neurons only, and peripheral neurons are 
functioning normally [1]. Increased responsiveness of pe-
ripheral neurons is the feature of peripheral sensitization, 
which is defined by the IASP as an increased responsiveness 
and reduced threshold of nociceptive neurons in the periph-
ery to the stimulation of their receptive fields [1]. Peripheral 
sensitization is a key determinant of pain and hyperalgesia 
following peripheral events, such as trauma or inflammation 
[62-64]. The relationships between peripheral and central 
sensitization are illustrated in Fig. (1). 
 Thus, an increased pain response to peripheral stimula-
tion in human models can be the result of peripheral sensiti-
zation, central sensitization, or both. For measures to be spe-
cific to central sensitization, they should be able to measure 
increased responsiveness in central neurons, while ruling out 
increased responsiveness of peripheral nociceptive neurons 
(pathways 2 and 3 of Fig. 1). Human pain models cannot 
provide this information. The nociceptive withdrawal reflex 
mentioned above is thought to reflect spinal nociceptive 
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Fig. (1). Nociceptive inputs from peripheral tissues can produce sensitization of peripheral neurons (peripheral sensitization) and sensitization 
of central neurons (central sensitization). Central sensitization can be induced also via sensitization of peripheral neurons (pathway 1). Central 
sensitization is observed also in pain conditions without evident pathology of peripheral tissues (pathway 3). (A higher resolution/colour ver-
sion of this figure is available in the electronic copy of the article).
 
activity, but strictly speaking also this model does not direct-
ly measure the responsiveness of nociceptive neurons. 

When human pain models are applied to an area of inju-
ry, they cannot distinguish between peripheral and central 
sensitization, as the enhanced pain response can be the result 
of hyperactivity of both peripheral and central neurons. 
When however the stimulus is applied to a distant and 
healthy body site, one can argue that the increased pain re-
sponse should be the result of central mechanisms [65]. For 
instance, for patients with neck pain after a cervical trauma, 
enhanced pain responses have been documented with stimu-
lation of areas distant from the neck [66-68]. Because such 
areas are not injured and not painful, one can assume that the 
hypersensitivity is the result of enhanced responsiveness of 
central neurons.
 Caveats apply to this assumption. A recent systematic 
review found evidence for raised inflammatory markers in 
patients with neck pain, and some markers were associated 
with clinical variables [69]. Circulating inflammatory media-
tors could sensitize peripheral nociceptors not only at the site 
of injury, but also at distant sites. Another study found signs 
of small fiber pathology, thermal hypoesthesia and hypersen-
sitivity in neck pain [70], which can also cause generalized 
peripheral sensitization. Therefore, it is possible that periph-
eral mechanisms contribute to the hypersensitivity recorded 
after stimulation of non-injured and non-painful areas.
 Overall, the current methods to assess central sensitiza-
tion in humans are surrogate measures of uncertain validity. 
While they likely reflect, at least in part, central sensitiza-
tion, their interpretation should be cautious. 

4. NOCIPLASTIC PAIN 

 The IASP has recently introduced the term “nociplastic 
pain”: pain that arises from altered nociception despite no 
clear evidence of actual or threatened tissue damage causing 
the activation of peripheral nociceptors or evidence for dis-
ease or lesion of the somatosensory system causing the pain 
[1]. Clinical criteria to identify nociplastic pain have been 
proposed [71]. Some of them overlap with signs of central 
sensitization, but differences apply. The criteria for nociplas-
tic pain require that the symptoms are not entirely explained 

by nociceptive or neuropathic mechanisms. According to the 
IASP, nociceptive pain arises from actual or threatened dam-
age to non-neural tissue and is due to the activation of noci-
ceptors; neuropathic pain is caused by a lesion or disease of 
the peripheral or central somatosensory nervous system. In 
clinical conditions, it is frequently challenging to determine 
that nociceptive and neuropathic mechanisms entirely ex-
plain the pain. In addition, the criteria for probable nociplas-
tic pain include co-morbidities such as sensitivity to sounds, 
sleep disturbances, fatigue, and cognitive disorders. These 
characteristics are not typically part of the neurobiological 
processes involved in the determination of central sensitiza-
tion, and not part of the definition of the IASP for central 
sensitization. 

5. CLINICAL IMPLICATIONS 

5.1. Assessing Central Sensitization

 As outlined above, several surrogate methods to assess 
central sensitization in humans are available, but none of 
them is a validated diagnostic tool. In addition, most meth-
ods are time-consuming and some of them require expensive 
equipment, strongly limiting clinical applicability. Neverthe-
less, clinicians can use simple methods that can be embedded 
in clinical practice without significant time consumption and 
costs. These tests include the assessment of mechanical pain 
sensitivity using pressure algometers [72], allodynia to brush 
and cold [73], and pain areas using body maps [74]. Although 
a valid diagnosis of central sensitization is not feasible, find-
ings of enhanced mechanical pain sensitivity outside the site 
of primary pain/injury, allodynia, wide referred pain areas, 
and multi-site pain are strongly suggestive of altered noci-
ceptive/pain processes associated with central sensitization. 

5.2. Explaining Pain 

 The notion that peripheral injuries of different natures 
induce enhanced nociceptive processes in the central nervous 
system has dramatically changed the way we explain pain. 
Before this knowledge was available, it was challenging to 
explain the frequent discrepancy between the magnitude of 
tissue damage and clinical manifestations. It is indeed com-
mon to observe severe pain and disability in patients with 
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very limited evidence of peripheral lesions, or even without 
any detectable injury. While psychosocial components con-
tribute to explaining pain with limited or no tissue damage, 
the notion of central sensitization has crucially improved our 
ability to provide patients with explanations for their condi-
tion. This is of great value to patients, who are as interested 
in having an explanation of their pain problem as they are in 
a cure or relief of their pain [75]. 

5.3. Treating Pain 

 Fig. (2) proposes a diagnostic and therapeutic pathway 
that makes use of indices of central sensitization to deter-
mine a treatment plan. This plan is supported by the current 
understanding of the pathophysiology of central sensitiza-
tion, but warrants evaluation by clinical trials. 

 Patient education on the role of central sensitization 
should be considered part of the treatment. Understanding 
the role of central sensitization is of great importance to in-
crease awareness of the multidimensional nature of pain, and 
can reduce the focus on tissue damage as the main or sole 
cause of pain. This can avoid perseverance in pursuing pro-
cedures or surgeries to remove a putative pain generator, 
when no such generator can be reliably identified. Accord-
ingly, acceptance of treatments that act on the central nerv-
ous system, such as antidepressants, can be increased. 
 Both pharmacological and non-pharmacological treat-
ments potentially reduce central sensitization. Among medi-
cations with central modulating action, the most widely used 
are antidepressants and anticonvulsants. Systematic reviews 
on antidepressants [76-80] and anticonvulsants [77, 81-83] 
have mostly demonstrated efficacy in different pain condi-
tions, although the level of evidence was generally low and 
the effect size modest. 
 Opioids have an established role in the treatment of acute 
pain, but their benefits for chronic pain remain controversial, 
while there is evidence for harm [84, 85]. Opioids may in-
duce hyperalgesia [86, 87], and can therefore enhance central 
sensitization. Based on the current knowledge, the use of 

opioids in patients with chronic pain and features of central 
sensitization does not seem appropriate. 
 Non-pharmacological treatments may produce pain relief 
also by reducing central sensitization. A recent meta-analysis 
found physical therapy to decrease temporal summation and 
enhance conditioned pain modulation [88]. Exercise can in-
duce hypoalgesia, but can also exacerbate pain in patients 
with marked central sensitization [89]. While increasing 
physical activity may increase pain tolerance [90], there is 
some evidence that features of central sensitization, such as 
widespread mechanical and cold hyperalgesia, are associated 
with poor response to physical therapy [91]. The balance 
hypo-/hyperalgesia after exercise may depend on individual 
factors that are still to be clarified. Future research could 
address the question whether reducing central sensitization 
improves the efficacy of physical therapy. Psychological 
interventions can reduce pain [92]. Whether this effect is 
mediated by enhanced endogenous inhibition is an interest-
ing matter of future research. 

6. KNOWLEDGE GAPS 

 Despite substantial progress in the understanding of 
modulatory mechanisms leading to central sensitization, 
much work needs to be done to translate the current 
knowledge into benefits for patients. Crucial questions re-
main unanswered. 

6.1. What Causes Central Sensitization? 

 When patients display enhanced pain responses after pe-
ripheral stimulation, we still do not know the cause. In anal-
ogy with animal studies, we assume that for patients with a 
documented peripheral pathology, such as osteoarthritis, the 
nociceptive input from the damaged tissue induces and main-
tains central sensitization. However, this does not explain 
central sensitization in many other clinical situations. For 
instance, what causes central sensitization when tissue pa-
thology has apparently healed, such as after surgery or trau-
matic injury? What causes central sensitization when there 
has never been any documented source of peripheral noci-

 
 

Fig. (2). Proposed clinical assessment and treatment of central sensitization, based on current understanding of pathophysiology and availa-
ble treatment modalities. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
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ception, such as in fibromyalgia (pathway 3 of Fig. 1)? In 
such conditions, primary dysfunctions of central modulatory 
processes may be the determinants of central sensitization, 
but again, where do they come from? 
 The original models of central sensitization have been 
developed in animals by inducing peripheral tissue damage 
and recording central responses. This model does not seem 
to apply in many clinical pain conditions, where tissue dam-
age is not documented or does not correlate with the clinical 
manifestations. Clinical pain is substantially different from 
experimental pre-clinical pain, and therefore warrants the 
development of different models to study central sensitiza-
tion. 

6.2. What are the Molecular and Functional Mechanisms 
of Central Sensitization? 

 Our current methods to study central sensitization in hu-
mans provide very limited insights into molecular and func-
tional mechanisms. As mentioned above, functional and mo-
lecular imaging have provided progress. However, we have 
just started to scratch the surface. The mechanisms are likely 
to be different for different pain conditions and, within pain 
conditions, are likely different across patients. We still lack 
sensitive methods to understand mechanisms of central sen-
sitization, and are even further away from being able to un-
derstand the pathophysiology at the individual level. This 
knowledge gap hampers the development of mechanisms-
specific treatments. 

CONCLUSION 

 The knowledge of central sensitization has revolutionized 
the way we understand pain by providing a neurobiological 
explanation for common clinical conditions. Measures to 
assess central sensitization in patients are available. Howev-
er, they lack validity in discriminating central from peripher-
al sensitization and, with few exceptions of demanding and 
costly procedures, do not provide information on functional 
and molecular mechanisms. Despite these limitations, clini-
cal tools are available to identify central sensitization as a 
potential contributor to pain. Although the validity and diag-
nostic confidence are unknown and likely limited, it is ap-
propriate to use the knowledge gained by clinical assessment 
to guide clinical decisions towards treatments that attenuate 
central sensitization. Future research that elucidates the 
causes, molecular and functional mechanisms of central sen-
sitization would provide crucial progress towards the devel-
opment of treatments that target specific mechanisms of cen-
tral sensitization. 
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