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Abstract
Periodontitis, which is caused by various oral organisms, predominantly affects adults, and is one of the main causes of 
tooth loss, as well as leading to progression of numerous systemic diseases. However, its relationship to sarcopenia (aging-
associated degenerative loss of skeletal muscle mass and function) remains unclear. The aim of this study was to investigate 
the effects of Porphyromonas gingivalis lipopolysaccharide (PG-LPS) on skeletal muscle in mice, and to establish the under-
lying mechanisms. Mice (C57BL/6) were injected with PG-LPS (0.8 mg/kg/day) for 4 weeks. This treatment significantly 
decreased the weight of fast-twitch skeletal muscles (masseter and tibialis anterior muscles), but not that of slow-twitch 
skeletal muscle (soleus muscle). The area of fibrosis was significantly increased in masseter muscle, but remained unchanged 
in the other two muscles. The number of apoptotic myocytes was significantly increased (approximately eightfold) in mas-
seter muscle. These data suggest that persistent subclinical exposure to PG-LPS might reduce the size of fast-twitch skeletal 
muscle, but not slow-twitch skeletal muscle. Masseter muscle appears to be especially susceptible to the adverse effects of 
PG-LPS, because muscle remodeling (muscle fibrosis and myocyte apoptosis) was induced solely in masseter muscle. Thus, 
periodontitis might be one of the major causes of oral sarcopenia.
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Introduction

Inflammation that extends deep into the tissues and causes 
loss of supporting connective tissue and alveolar bone is 
known as periodontitis. Periodontitis results in the forma-
tion of soft tissue pockets or deepened crevices between 
the gingiva and tooth root. Release of components such as 
lipopolysaccharides by the causative organisms causes a 
heightened host inflammatory response and is thought to 
contribute to the body’s overall inflammatory burden, wors-
ening conditions such as diabetes mellitus, cardiovascular 
disease, stroke, pulmonary disease and adverse pregnancy 
outcome [1]. According to a recent report by Centers for 
Disease Control and Prevention (CDC) about one in two 
American adults aged 30 or more (64.7 million people) have 
mild, moderate or severe periodontitis. Moreover, in adults 
aged 65 and older, the prevalence is as high as 70%, suggest-
ing that periodontitis is ubiquitous in elderly individuals [2].

Age-related inflammation is associated with reductions 
in skeletal muscle size and function (sarcopenia), leading 
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to a loss of independence and reduced quality of life [3]. In 
the context of skeletal muscle inflammation, inflammatory 
cytokines [tumor necrosis factor (TNF)-α and interleukin-6 
(IL-6)] are strongly induced by circulating LPS [4] and 
indeed, they are generally elevated in aged individuals [5, 
6]. Increased serum levels of TNF-α and IL-6 are involved 
in the pathogenesis of periodontitis [7]. Several studies have 
indicated that improving oral care through mechanical or 
chemical control of dental plaque biofilm formation might 
contribute to the prevention of systemic inflammation and 
cardiovascular disease [8]. These data suggest that periodon-
titis might lead to reduced skeletal muscle size and function, 
i.e., sarcopenia.

Porphyromonas gingivalis lipopolysaccharide (PG-LPS), 
a major pathogenic factor for periodontitis, was recently 
demonstrated to induce cognitive impairment in mice via the 
activation of Toll-like 4 receptor (TLR4) and the increase of 
inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) in 
the cortex [9]. However, to our knowledge, there has been no 
report on the effects of PG-LPS on skeletal muscle in vivo. 
We hypothesized that PG-LPS might play an important role 

in the development of sarcopenia. In this study, we tested 
this hypothesis in mice treated with PG-LPS at a dose equiv-
alent to the circulating level in periodontitis patients [10].

Materials and methods

Mice and experimental protocols

All experiments were performed on male 12-week-old 
C57BL/6 mice obtained from CLEA Japan (Tokyo, Japan). 
Mice were group-housed at 23 °C under a 12–12 light/dark 
cycle with lights on at 8:00 a.m. Both food and water were 
available ad libitum. This study was approved by the Animal 
Care and Use Committees of Tsurumi University.

PG-LPS (Wako, Osaka, Japan) was dissolved in saline 
to prepare a 0.6 mg/ml stock solution, and the appropriate 
volume of this solution to provide the desired dose (0.8 mg/
kg) was added to 0.2 ml of saline to prepare the solution for 
intraperitoneal (i.p.) injection once daily for 4 weeks; control 
mice received an identical volume of saline only (Fig. 1a) 
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Fig. 1   Experimental procedure and changes of body and muscle 
weights during chronic PG-LPS infusion in mice. a PG-LPS was 
administered once daily for 4  weeks (4w) via intraperitoneal injec-
tion (i.p.) at a dose of 0.8  mg/kg in saline. Age-matched control 
mice (Control) received an identical volume of saline only. PG-LPS; 
Porphylomonas gingivalis lipopolysaccharide, MA; masseter mus-
cle, TA; tibials anterior muscle, SOL; soleus muscle, CSA; cross-

sectional area, b Control and PG-LPS groups showed similar body 
weight (BW) at 4  weeks after the PG-LPS infusion (P = NS, not 
significant). c–e Masseter muscle (MA) weight per tibia length (TL) 
ratio (c) and tibialis anterior muscle weight (TA) per TL ratio (d) 
were significantly decreased by PG-LPS treatment. Soleus muscle 
(SOL) weight per TL ratio (e) was similar before and after PG-LPS 
treatment (*P < 0.05, **P < 0.01 vs control)
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[10]. The dose of PG-LPS used in this study is consistent 
with the circulating levels in periodontitis patients, indicat-
ing that this model is not a sepsis model, and no mortal-
ity was observed [10]. After the completion of treatment, 
mice were anesthetized with isoflurane and the masseter 
(MA), tibialis anterior (TA) and soleus muscles (SOL) were 
excised and weighed, frozen in liquid nitrogen, and stored 
at − 80 °C. The ratio of muscle mass (mg) to tibia length 
(mm) was used as an index of muscle growth. After tissue 
extraction, the mice were killed by cervical dislocation [11].

Cross‑sectional area of muscle fibers

The MA, TA and SOL, each excised as a whole muscle, were 
embedded in Tissue-Tek OCT compound (Sakura Finetec, 
Torrance, CA, USA) in a slightly stretched state so as to 
maintain a length close to the resting length (L0), and stored 
at − 80 °C until sectioning, as reported [12]. Cross sections 
(10 μm) were cut from the middle portion of each muscle 
with a cryostat (CM1900, Leica Microsystems, Nussloch, 
Germany) at − 20 °C. The sections were air-dried and fixed 
with 4% paraformaldehyde in 0.1 M PBS (pH 7.5). The sec-
tions were then stained with hematoxylin and eosin (HE) 
and observed under a light microscope (BX61, Olympus 
Co., Tokyo, Japan). Micrographs were taken with a digital 
camera (DP-72, Olympus Co.) connected to a personal com-
puter. The cross-sectional size of muscle fibers was evalu-
ated by measuring the cross-sectional area (CSA) [13, 14]. 
The CSAs of 100 muscle fibers in the superficial portion 
were measured with image analysis software (Image J 1.45) 
and averaged to obtain the mean values in each mouse.

Evaluation of fibrosis

Interstitial fibrosis was evaluated by Masson-trichrome 
staining using the Accustatin Trichrome Stain Kit (Sigma, 
St. Louis, Mo, USA) in accordance with the manufacturer’s 
protocol. Interstitial fibrotic regions were quantified using 
image software analysis (Image J 1.45) to determine the 
percentage of blue area in the Masson-trichrome-stained 
sections [15].

Evaluation of apoptosis

Apoptosis was determined by terminal deoxyribonucleotidyl 
transferase-mediated biotin-16-deoxyuridine triphosphate 
nick-end labeling (TUNEL) staining using an Apoptosis 
in situ Detection Kit (#293-71501; Wako, Osaka, Japan). 
TUNEL-positive nuclei per field of view were manually 
counted in six sections of two groups (Control and PG-LPS) 
over a microscopic field of 20 ×, averaged and expressed as 
the ratio of TUNEL-positive nuclei (%) [14, 15]. Limiting 
the counting of total nuclei and TUNEL-positive nuclei to 

areas with a true cross section of myocytes made it possi-
ble to selectively count only those nuclei that were clearly 
located within myocytes.

Western blotting

The MA excised from the mice (Fig. 1a) was homogenized 
in a Polytron (Kinematica AG, Lucerne, Switzerland) in ice-
cold RIPA buffer (Thermo Fisher Scientific, Waltham, MA: 
25 mM Tris–HCl (pH 7.6), 150 mM NaCl, 1% NP-40, 1% 
sodium deoxycholate, 0.1% SDS) without addition of inhibi-
tors [16], and the homogenate was centrifuged at 13,000×g 
for 10 min at 4 °C. The supernatant was collected and the 
protein concentration was measured using a DC protein 
assay kit (Bio-Rad, Hercules, CA). Equal amounts of pro-
tein (5 μg) were subjected to 12.5% SDS–polyacrylamide gel 
electrophoresis and blotted onto 0.2 mm PVDF membrane 
(Millipore, Billerica, MA).

The primary antibodies against Akt (#9272), phospho-
Akt (Ser-473, #9721), p44/42MAPK (ERK) (#4695), phos-
pho-ERK (Thr-202/Tyr-204, #4370), microtubule-associated 
protein light chain 3 (LC3)-II (#12741), p70-kDa ribosomal 
S6 kinase (p70S6 K) (#9202), phospho-p70S6 K (Thr-389, 
#9205), eukaryotic initiation factor 4E-binding protein 1 
(4E-BP1) (#9644), phospho-4E-BP1 (Thr-37/46, #2855), 
Smad2/3 (#8685) and phospho-Smad2 (Ser-465/467)/3 
(Ser-423/425) (#8828) were purchased from Cell Signaling 
Technology (Boston, MA, USA), while the primary antibod-
ies against GAPDH (sc-25778) were purchased from Santa 
Cruz Biotechnology (Santa Cruz, CA, USA).

Statistical analysis

All data are expressed as the mean ± SEM. Comparison of 
data was performed using Student’s t-test. Differences were 
considered significant when P < 0.05.

Results

Effects of PG‑LPS on body weight and weight 
of masseter, tibialis anterior and soleus muscles

The control and PG-LPS groups showed similar body 
weight (BW) at 4 weeks after the PG-LPS infusion [Control 
(n = 6) vs PG-LPS (n = 6): 28 ± 0.8 g vs 27 ± 0.7 g, P = not 
significant (NS) vs control] (Fig. 1b). We next evaluated 
hypertrophy of MA (fast-twitch muscle) (Fig. 1c), TA (fast-
twitch muscle) (Fig. 1d) and SOL (slow-twitch muscle) 
(Fig. 1e) in terms of the ratio of muscle weight per tibia 
length (mg/mm). This ratio was significantly decreased in 
fast-twitch muscle, i.e., MA [control (n = 5) vs PG-LPS 
(n = 5): 7.7 ± 0.3 mg/mm vs 6.3 ± 0.3 mg/mm P < 0.01 vs 
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control] (Fig. 1c) and TA [control (n = 5) vs PG-LPS (n = 5): 
3.5 ± 0.1 mg/mm vs 3.2 ± 0.1 mg/mm, P < 0.05 vs control] 
(Fig. 1d), but not in SOL [control (n = 6) vs PG-LPS (n = 5): 
0.5 ± 0.04 mg/mm vs 0.6 ± 0.03 mg/mm, P = NS] (Fig. 1e).

These data suggest that PG-LPS treatment under the 
experimental conditions used in this study does not affect 
growth, but might induce muscle atrophy in fast-twitch mus-
cle (MA and TA), though not in slow-twitch muscle (SOL).

Effects of PG‑LPS on CSA of MA, TA and SOL muscles

Next, to confirm the difference between the effects of PG-
LPS on MA, TA and SOL muscle mass, we performed 
HE staining and measured the fiber CSA. The CSA was 
significantly decreased in the MA [control (n = 5) vs PG-
LPS (n = 5): 1664 ± 61 μm2 vs 1470 ± 59 μm2, P < 0.05 vs 
control] (Fig. 2a) and TA muscles [control (n = 4) vs PG-
LPS (n = 4): 1711 ± 42 μm2 vs 1536 ± 47 μm2, P < 0.05 
vs control] (Fig. 2b). However, it was unchanged in SOL 

muscle [control (n = 6) vs PG-LPS (n = 6): 1332 ± 50 μm2 
vs 1417 ± 39 μm2, P = NS vs control] (Fig. 2c).

These data support the idea that PG-LPS treatment under 
the experimental conditions used in this study might induce 
atrophy in fast-twitch muscles (MA and TA), but not in 
slow-twitch muscle (SOL) (Fig. 1).

Effects of PG‑LPS on fibrosis in MA, TA and SOL 
muscles

We next focused on skeletal muscle remodeling, which 
we evaluated in terms of fibrosis and myocyte apoptosis, 
because such remodeling might lead to progressive sar-
copenia [17, 18]. We examined the effects of PG-LPS on 
fibrosis in MA, TA and SOL muscles by means of Masson-
trichrome staining (Fig. 3). PG-LPS significantly increased 
the area of fibrosis in MA [control (n = 6) vs PG-LPS 
(n = 6): 2.5 ± 0.2 μm2 vs 4.3 ± 0.3 μm2, P < 0.01 vs control] 
(Fig. 3a). However, PG-LPS did not alter the area of fibro-
sis in TA or SOL muscle [TA: control (n = 6) vs PG-LPS 
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(n = 6): 1.8 ± 0.3 μm2 vs 2.1 ± 0.2 μm2, P = NS vs control; 
SOL: control (n = 6) vs PG-LPS (n = 6): 2.2 ± 0.2 μm2 vs 
2.4 ± 0.5 μm2, P = NS vs control].

These data indicated that MA might be more suscepti-
ble to PG-LPS-mediated fibrosis, compared to lower limb 
muscles such as TA and SOL.

Effects of PG‑LPS on myocyte apoptosis in MA

We next examined the effects of PG-LPS on myocyte 
apoptosis in MA by means of TUNEL staining (Fig. 4a). 
Myocyte apoptosis in MA was significantly increased by 
PG-LPS [control (n = 6) vs PG-LPS (n = 6): 0.9 ± 0.06% 
vs 7.3 ± 0.8%, P < 0.01 vs control] (Fig. 4a).

These data indicated that PG-LPS might induce myo-
cyte apoptosis in MA.

ERK signaling was activated in the MA 
of PG‑LPS‑treated mice

ERK activation was reported to be involved in LPS-medi-
ated cardiac and hepatic failure via induction of fibro-
sis and apoptosis [19, 20]. Therefore, we examined the 
amount of phospho-ERK (Thr-202/Tyr-204) in MA of 
PG-LPS-treated mice and found that ERK phosphoryla-
tion was significantly increased [control (n = 4) vs PG-
LPS (n = 4): 100 ± 11% vs 257 ± 57%, P < 0.05 vs control] 
(Fig. 4b).

Thus, PG-LPS-mediated MA fibrosis and myocyte 
apoptosis might be mediated, at least in part, through the 
activation of TLR4-ERK signaling.
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Smad2/3 phosphorylation was increased in the MA 
of PG‑LPS‑treated mice

Smad2/3 phosphorylation is located downstream of TGF-β 
signaling and is critical for the induction and maintenance 
of fibroblast activation in cardiac and skeletal muscle 
[21, 22]. There is extensive evidence that activation of 
cells through LPS is mediated by TLR4 and other mol-
ecules including TGF-β-Smad2/3 [23, 24]. Therefore, we 

examined the amount of phospho-Smad2 (Ser-463/467)/
Smad3 (Ser-423/425) in MA of PG-treated mice. We found 
that Smad2/3 phosphorylation was significantly increased 
in the MA of PG-LPS-treated mice [control (n = 6) vs PG-
LPS (n = 6): 100 ± 2.6% vs 143 ± 6.7%, P < 0.01 vs con-
trol] (Fig. 4c).

These data suggest that PG-LPS-induced MA fibrosis 
might be mediated through the activation of TGF-β-Smad2/3 
signaling in addition to TLR4-ERK signaling.
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Autophagy in MA was decreased by chronic PG‑LPS 
infusion

We next investigated the effects of PG-LPS on autophagy 
in the MA, because autophagy is important in maintaining 
muscle homeostasis physiologically and in response to stress 
[25]. We found that LC3-II, an autophagosome marker, 
was significantly decreased in the MA of PG-LPS-treated 
mice [control (n = 4) vs PG-LPS (n = 4): 100 ± 10.5% vs 
59 ± 7.2%, P < 0.05 vs control] (Fig. 4d).

These data suggest activation of autophagy in MA might 
be attenuated by PG-LPS [26].

Akt/mTOR signaling was activated in MA 
of PG‑LPS‑treated mice

We then examined the phosphorylation of Akt in MA, since 
the Akt-mTOR pathway directly phosphorylates 4E-BP1 at 
threonine 37/46, as well as p70S6 K at threonine 389, and 
these changes inhibit autophagy in cells, including skeletal 
myocytes [27].

We first examined the Akt phosphorylation (Ser-473) in 
MA and found that it was significantly increased in the PG-
LPS group [control (n = 6) vs PG-LPS (n = 6): 100 ± 15.5% 
vs 143 ± 11.0%, P < 0.05 vs control] (Fig. 4e). We next 
examined the amounts phospho-p70S6 K (Thr-389) (Fig. 4f) 
and phospho-4E-BP1 (Thr-37/46) (Fig. 4g) in the MA of 
PG-LPS-treated mice, and found that both phosphoryla-
tions were significantly increased (p70S6 K (Thr-389): con-
trol (n = 6) vs PG-LPS (n = 6): 100 ± 13.2 vs 170 ± 27.8%, 
P < 0.05; 4E-BP1 (Thr-37/46): control (n = 5) vs PG-LPS 
(n = 5): 100 ± 20.4% vs 210 ± 40.4%, P < 0.05).

These data indicated that activation of Akt/mTOR/
p70S6 K or 4E-BP1 signaling might be important for MA 
remodeling through inhibition of autophagy during chronic 
PG-LPS exposure.

Discussion

In this study, we examined the effects of chronic PG-LPS 
infusion on fast-twitch (MA and TA) and slow-twitch (SOL) 
skeletal muscle in mice at a dose consistent with the cir-
culating levels in periodontitis patients [10]. A significant 
reduction of muscle mass was observed in fast-twitch skel-
etal muscle (MA and TA), but not in slow-twitch muscle 
(SOL). Moreover, significant histological abnormalities, i.e., 
fibrosis and myocyte apoptosis, were also observed in MA, 
concomitantly with the decrease of muscle mass.

Sarcopenic dysphagia is a recently defined condition that 
is characterized by loss of mass and function of the swallow-
ing muscles, including MA, and is also associated with loss 
of skeletal muscle mass and function throughout the body 

[28]. Although it is not yet fully established whether sarco-
penia is associated with periodontitis, another age-related 
disease, it was recently reported that reduced MA function 
was correlated with the severity of periodontitis [29]. Our 
findings here indicate that susceptibility to PG-LPS-induced 
muscle atrophy is dependent upon the muscle fiber-type, 
and fast-twitch muscle is especially susceptible, as is also 
the case for other muscle-wasting diseases, such as cancer 
cachexia, starvation, sepsis and acute diabetes [30].

Skeletal muscle consists of myofibers (the contractile 
part of the muscle), connective tissue or extracellular matrix 
(ECM), and the blood capillaries and nerves supplying the 
muscle [31]. ECM forms up to 10% of the skeletal muscle 
weight [32] and it plays a principal role in force transmis-
sion, maintenance, and repair of muscle fibers following 
injury [33]. Skeletal muscle has a high regeneration capa-
bility, but this can be compromised by excessive deposition 
of ECM, which results in muscle fibrosis [33]. The exces-
sive deposition of fibrous tissue impairs muscle function, 
and affects muscle fiber regeneration after injury, as well 
as muscle susceptibility to re-injury [18]. Here, we found 
that muscle fibrosis, measured in terms of Masson-trichrome 
staining, was significantly increased in MA, but not in TA 
or SOL. This result indicates that the functional decline of 
MA might be more severe than that of lower limb muscles 
in mice treated with PG-LPS.

Autophagy is critical for maintaining skeletal mus-
cle mass in both young and aged mice, and insufficient 
autophagy can lead to an accumulation of dysfunctional 
mitochondria, which promotes skeletal muscle remodeling 
and impairs muscle function [34]. Here, we found that 
expression of LC3-II protein, an autophagosome marker, 
was significantly decreased, while the Akt-mTOR pathway, 
a negative regulator of autophagy, was significantly activated 
in the MA of PG-LPS-treated mice [27].

This study, to our knowledge, is the first to demonstrate 
a relationship between a periodontics-associated patho-
gen and sarcopenia, in addition to uncovering the under-
lying mechanisms. Notably, we found that MA, a major 
swallowing-related muscle, appears to be more susceptible 
than TA or SOL muscles to the adverse effects of PG-LPS. 
This is important, because it has been reported that the 
consequences of dysphagia in hospitalized patients with 
cardiovascular disease, pneumonia and stroke may include 
increased length of hospital stay and a worse prognosis 
[35–37]. Thus, improvement of oral health education and 
services for the hospitalized elderly might decrease the inci-
dence of periodontitis and it might concomitantly improve 
morbidity, mortality, and quality of life.
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