
Vol.:(0123456789)1 3

The Journal of Physiological Sciences (2018) 68:333–343 
https://doi.org/10.1007/s12576-018-0604-x

MINI-REVIEW

Role of GABA in the regulation of the central circadian clock 
of the suprachiasmatic nucleus

Daisuke Ono1 · Ken‑ichi Honma2 · Yuchio Yanagawa3 · Akihiro Yamanaka1 · Sato Honma2

Received: 8 November 2017 / Accepted: 14 March 2018 / Published online: 20 March 2018 
© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Abstract
In mammals, circadian rhythms, such as sleep/wake cycles, are regulated by the central circadian clock located in the supra-
chiasmatic nucleus (SCN) of the hypothalamus. The SCN consists of thousands of individual neurons, which exhibit circadian 
rhythms. They synchronize with each other and produce robust and stable oscillations. Although several neurotransmitters 
are expressed in the SCN, almost all SCN neurons are γ-amino butyric acid (GABA)-ergic. Several studies have attempted 
to understand the roles of GABA in the SCN; however, precise mechanisms of the action of GABA in the SCN are still 
unclear. GABA exhibits excitatory and/or inhibitory characteristics depending on the circadian phase or region in the SCN. 
It can both synchronize and destabilize cellular circadian rhythms in individual SCN cells. Differing environmental light 
conditions, such as a long photoperiod, result in the decoupling of circadian oscillators of the dorsal and ventral SCN. This 
is due to high intracellular chloride concentrations in the dorsal SCN. Because mice with functional GABA deficiency, such 
as vesicular GABA transporter- and glutamate decarboxylase-deficient mice, are neonatal lethal, research has been limited 
to pharmacological approaches. Furthermore, different recording methods have been used to understand the roles of GABA 
in the SCN. The excitability of GABAergic neurons also changes during the postnatal period. Although there are technical 
difficulties in understanding the functions of GABA in the SCN, technical developments may help uncover new roles of 
GABA in circadian physiology and behavior.
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The central circadian clock: 
the suprachiasmatic nucleus (SCN)

Several physiological functions in our body exhibit oscil-
lations on various time scales, including electrical activity 
in the brain, heart rate, breathing, and the sleep/wake cycle. 
Among them, circadian rhythms are defined as approxi-
mately 24-h oscillations in physiology and behavior. In 

mammals, the suprachiasmatic nucleus (SCN) of the hypo-
thalamus is known as the central circadian pacemaker. Cir-
cadian behavioral rhythms were abolished by SCN lesions 
[71, 105], and restored by implantation of the SCN [56]. 
Importantly, the restored circadian period was identical to 
that of the donor, rather than the host [91, 107]. In addition, 
implantation of the SCN contained in a semipermeable poly-
meric capsule also restored circadian behavioral rhythms 
in SCN-lesioned hamsters, indicating that diffusible signals 
from the SCN control circadian behavior [102].

The SCN contains approximately 20,000 neurons [113] 
that have heterogeneous circadian properties. In dispersed 
SCN cell culture, individual SCN neurons exhibit autono-
mous oscillations. However, the circadian period, phase, 
and amplitude, differ from cell to cell [34, 37, 120]. In cul-
tured SCN slices, circadian rhythms of individual cells syn-
chronize with each other and they express stable circadian 
oscillations [33, 36, 79, 84] (Fig. 1). Cellular networks in 
the SCN are important for synchronization [121] and the 
stability of circadian oscillation in individual cells [59]. 
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Synchronized circadian rhythms within the SCN are respon-
sible for coordinating peripheral circadian oscillators [123], 
and exhibiting circadian behavior. In the SCN, there are mul-
tiple oscillators. Environmental light/dark conditions change 
the coupling between these regional oscillators in the SCN, 
which is critical for the output for the circadian behavior and 
peripheral clock [35, 41, 78, 82, 114].

Circadian rhythms of individual SCN cells are generated 
by transcription-translation feedback loops involving sev-
eral clock genes and protein products [93]. In this feedback 
loop, the positive elements, BMAL1 and CLOCK form a 
heterodimer that initiates the transcription of genes that con-
tain E-box enhancer sequences, including Period (Per) and 
Cryptochrome (Cry) [12, 23, 53]. The protein products of 
Per and Cry then suppress transactivation by the BMAL1/
CLOCK heterodimer [96, 100]. This clock machinery is 
widely observed on the single cell level.

Anatomical properties of the SCN

The SCN is divided into dorsal (shell) and ventral (core) 
subdivisions. Retinal projections to the ventral SCN [11, 
108] and dorsal SCN [29] are observed. The SCN contains 
several neurotransmitters located within specific regions 
(Fig.  2). This general organization has been studied in 
hamsters, mice, rats, and humans [1, 14, 62, 74]. Arginine 
vasopressin (AVP) neurons are located in the SCN shell. 
Conversely, the SCN core expresses several neuropeptides, 

such as vasoactive intestinal peptides (VIP), gastrin-releas-
ing peptide (GRP), and calbindin [1, 103].

Remarkably, almost all SCN neurons express γ-amino 
butyric acid (GABA) [1, 73]. GABAergic neurons in the 
SCN contain GABA vesicular transporters (VGAT), [8] and 
GABA synthesizing enzymes, such as glutamate decarboxy-
lase (GAD) [73, 83]. Two distinct isoforms of GAD (GAD65 
and GAD67) are found within the SCN, and they have dif-
ferent molecular weights and subcellular distributions. A 

Fig. 1   PER2::LUC rhythms in dispersed SCN cells, SCN slices, and 
the SCN of freely moving mice. Per2 protein fusion luciferase activ-
ity was measured using bioluminescence imaging from dispersed 
(left) and slice (middle) SCN culture using an EM-CCD camera. 
Circadian rhythms of individual SCN cells in dispersed (lower left) 
and slice (lower middle) cultures are expressed as pseudo colors, in 

which red and blue indicate peak and trough circadian rhythm phases. 
PER2::LUC rhythms in the SCN in freely moving mice were meas-
ured using an optical fiber under constant darkness for 4 days. Neu-
ronal networks are important for SCN cellular circadian rhythm syn-
chronization. Scale bars represent 200 μm

Fig. 2   Schematic diagram of circadian organization in the SCN. Light 
input is transmitted to the ventral SCN through the retinohypotha-
lamic tract (RHT). Several neuropeptides are expressed in the SCN 
and almost all SCN cells are GABAergic neurons. Circadian rhythms 
in individual SCN cells synchronize via neurotransmitters, and syn-
chronized circadian rhythms in the SCN regulate behaviors such as 
sleep and wake cycles
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study using immunohistochemistry determined that GAD65 
and GAD67 are highly expressed in the ventral SCN of rats, 
similar to the distribution of VGAT [8]. GABA receptors, 
GABAA and GABAB, are also found in the SCN [8, 21, 106]. 
GABAB receptors are mainly expressed in the dorsal area in 
the SCN, which generally corresponds to the region of AVP 
positive neurons [8].

The timing of GABA synthesis, trafficking, and release 
are important for the modulation of circadian rhythms in 
the SCN. It was reported that mRNA levels of the GABA 
synthesizing enzyme GAD65 were higher in the light than in 
the dark period, but mRNA levels of GAD67 were not rhyth-
mic in the SCN [38]. Another group also reported that both 
GAD65 and GAD67 mRNA showed circadian oscillations 
under constant darkness [13]. VGAT contents in the SCN 
did not exhibit circadian rhythms, but expression levels were 
attenuated under constant darkness compared with light dark 
conditions [18]. Furthermore, intercellular signals, such as 
VIP, could modulate GABA release in the SCN [24, 44].

Excitatory and/or inhibitory effects of GABA 
in the SCN

Although the effects of GABA on cellular activity in the 
SCN have been studied for more than 30 years, results 
remain controversial. For example, one study demonstrated 
that GABA had inhibitory effects on almost all SCN neu-
rons [65], while several studies have reported that GABA 
has both excitatory and inhibitory effects in the SCN [15, 
22, 57, 101, 116]. Wanger et al. reported that in SCN tissue 
slices, the application of GABA decreased firing frequency 
at night, and increased firing frequency during the day. This 
result indicates that the effects of GABA in SCN neurons 
are dependent on the circadian phase [116]. However, some 
investigators have reported no difference in the excitatory 
and inhibitory effects of GABA during the subjective day 
compared to night [15, 26, 57, 58, 65]. Similar to the appli-
cation of GABA, GABA agonists, such as muscimol and 
baclofen, induce excitatory or inhibitory effects in the SCN 
[26, 39, 70], while GABA has also been shown to produce 
either excitatory or inhibitory effects on firing across the 
circadian day [22]. These effects were inhibited by the 
GABAA receptor antagonist bicuculline [2, 15, 22, 26, 65]. 
Regional differences in the effects of GABA in the SCN have 
also been reported. Short-term application of bicuculline 
increased neuronal activity in the ventral SCN, but decreased 
activity in dorsal SCN slices [2]. These pharmacological 
approaches have shown inconsistent observations regard-
ing the acute effects of GABA in the SCN. Furthermore, 
these agents may represent non-specific pharmacologi-
cal actions. For example, the GABAA receptor antagonist, 
bicuculline is generally known to block small-conductance 

calcium-activated potassium channels [45, 51] and does so 
in SCN neurons [110]. It is necessary to consider this non-
specific effect of these drugs.

Coupling circadian oscillators in the SCN

Individual SCN neurons exhibit autonomous circadian 
rhythms even when isolated in culture [119, 120]. The cir-
cadian period, phase, and amplitude differ from each other 
in dispersed cell culture, although their rhythms are synchro-
nized in SCN slices [33, 36, 79, 84] and in vivo [42, 122]. 
Due to the involvement of heterogeneous oscillators in the 
SCN, individual SCN cells must couple to each other. Syn-
chronized circadian rhythms in the SCN entrain light–dark 
cycles to adapt to environmental light–dark conditions. It is 
thought that GABA may be involved in mediating circadian 
rhythm coupling in individual SCN neurons.

Synchronizer or destabilizer of cellular circadian 
rhythms

Liu and Reppert demonstrated that the application of GABA 
on dispersed SCN cultured cells completely inhibited spon-
taneous firing at all circadian phases. The application of 
GABA after the peak phase of neuronal activity rhythms 
induced a large phase delay. The GABAA agonist muscimol 
induced phase shifts of neuronal activity rhythms in SCN 
neurons, whereas the application of the GABAB agonist bac-
rofen had no effect, suggesting that this phase-dependent 
shift is mediated by GABAA receptors. Additionally, GABA 
was applied daily to dispersed SCN cultured cells to assess 
the effects of circadian rhythms in individual SCN neurons. 
After administration of GABA for 3 h every 24 h for 5 days, 
circadian rhythms of spontaneous firings in individual SCN 
neurons synchronized. This result has been interpreted as 
evidence that the daily application of GABA synchronized 
circadian firing rhythms in the dispersed SCN cell culture 
[60] (Fig. 3a). However, these data do not exclude the effects 
of other transmitters, such as neuropeptides.

Monitoring gene expression or protein products of 
clock genes in the SCN using bioluminescence reporters 
has provided insights into the understanding of circadian 
rhythms [121, 123, 125]. Based on the evidence for the role 
of GABA in the synchronization of circadian rhythms in 
the SCN [60], antagonizing GABA receptors may induce 
desynchronization of cellular circadian rhythms. However, 
long-term application of GABAA (bicuculline) and GABAB 
(saclofen) receptor antagonists into the Per1 promoter-
driven luciferase reporter (Per1-luc) SCN slices gradually 
increased the amplitude of circadian rhythms compared 
with controls at the tissue level [4]. This increased ampli-
tude of circadian rhythms was due to increased amplitude 
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of cellular circadian rhythms and decreased cycle-to-cycle 
period variation (increased precision of cellular rhythms). 
GABA receptor antagonists (bicuculline and saclofen) also 
increased the amplitude of circadian firing rhythms in dis-
persed cultured cells [4]. Similarly, blocking GABAA recep-
tor signaling with the application of gabazine onto the Per2 
protein fusion luciferase reporter (PER2::LUC) SCN slices 
decreased circadian period variability in individual cells 
compared to vehicle-treated controls [22]. These results 
suggest that GABA destabilizes circadian oscillations in 
the SCN (Fig. 3a).

Coupling of dorsal and ventral circadian oscillators

Constant light causes splitting of circadian behavioral 
rhythms [89]. The circadian rhythms of the shell and core, 

or left and right SCN, exhibited a 180° antiphase during 
splitting under constant light conditions [82, 124]. Another 
study showed that an abrupt change in the light–dark cycle 
disrupted synchronous oscillation of circadian components 
in the rat SCN [76]. After a phase delay shift of light–dark 
cycles, clock gene expression rhythms shifted rapidly in the 
ventrolateral SCN, whereas this shift occurred more slowly 
in the dorsomedial SCN [76]. Several researchers have dem-
onstrated a role of GABA in the re-synchronization of the 
dorsal and ventral regions of the SCN after manipulation of 
environmental light–dark cycles.

Albus et al. revealed the role of GABA in coupling dor-
sal and ventral SCN circadian rhythms in acute SCN slices. 
Measurements of neuronal activity in the SCN following a 
6-h phase delay in the light/dark schedule revealed bimodal 
patterns of activity rhythms. Furthermore, when the SCN 
was cut horizontally, separating the slice into dorsal and ven-
tral areas, the peak phase of neuronal activity rhythms in 
the ventral SCN was significantly advanced compared with 
that in the dorsal SCN. Continuous application of a GABAA 
receptor antagonist (bicuculline) yielded similar results [2] 
(Fig. 3b). These results indicate that GABA is important for 
coupling circadian rhythms in the dorsal and ventral SCN.

Photoperiodic changes in SCN cellular networks

Environmental light–dark conditions change depending on 
the season. This photoperiodic change is important for sea-
sonal reproduction in some animals [81, 126]. The long-
day photoperiod also changes cellular networks in the SCN 
and decouples circadian oscillatory cell groups [30, 41, 77]. 
Recently, the role of GABAA receptors in coupling SCN 
dorsal and ventral circadian oscillators was reported to occur 
during the long-day photoperiod [19] (Fig. 3c). PER2::LUC 
reporter mice were exposed to 20 h of light and 4 h of dark 
(LD20:4), and the PER2::LUC bioluminescence was meas-
ured from the SCN slice. In these conditions, the circadian 
phase of the SCN core was advanced compared with that 
of the shell. This phase difference between the dorsal and 
ventral region in the SCN gradually returned to an organi-
zational state similar to that observed under LD12:12 con-
ditions. To investigate the role of GABAA signaling in the 
re-synchronization of dorsal and ventral oscillators after 
LD20:4 conditions, the GABAA receptor antagonist, bicuc-
ulline, was applied to the SCN slice. Bicuculline attenuated 
the re-synchronization when the circadian phase between 
dorsal and ventral regions was out of phase, but not when 
it was in-phase. These results were interpreted as evidence 
that GABAA signaling contributes to the synchronization of 
circadian rhythms between the dorsal and ventral SCN in a 
state-dependent manner. An alternative interpretation would 
suggest that GABA may acutely modulate firing without 
having much, if any, effect on circadian phase. These results 

Fig. 3   Possible roles of GABA in SCN cellular coupling. a GABA 
acts as both a synchronizer and destabilizer. b A phase delay shift 
results in bimodal neuronal activity in the intact SCN slice; how-
ever, after the application of GABAA receptor antagonists, circadian 
rhythms in the dorsal and ventral SCN are dissociated. c Long-day 
photoperiods change the intracellular chloride concentration in the 
dorsal SCN and decoupled circadian rhythms between the dorsal and 
ventral SCN. d Hypothetical model of the astrocytic-neuronal inter-
cellular axis in the SCN
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also suggest that GABA is sufficient for the synchronization 
of dispersed SCN cells [60] and that the absence of GABA 
does not desynchronize cellular rhythms under steady-state 
networks in the SCN [4].

Intracellular chloride concentrations and cellular 
coupling

Long-day photoperiods also change the excitability [20], 
and levels of chloride transporter expression in SCN neu-
rons. This determines the difference in circadian phase and 
period between the dorsal and ventral SCN [75] (Fig. 3c). 
It was observed that under long-day conditions, the phase 
difference in Bmal1 promoter-driven luciferase reporter 
(Bmal1-Eluc) circadian rhythms between the dorsal and 
ventral SCN were increased, and the circadian period of 
the dorsal SCN was decreased compared with the ventral 
SCN. Myung et al. also measured intracellular chloride con-
centrations in the SCN, using N-(ethoxycarbonylmethyl)-
6-methoxyquinoliniumbromide fluorescence, and found that 
intracellular chloride concentrations were increased under 
long-day photoperiods. These results are due to a higher 
expression ratio of sodium/potassium/chloride cotransporter 
(NKCC1)/potassium/chloride cotransporters (KCC2), in the 
dorsal than the ventral SCN. Because NKCC1 is a chlo-
ride importer, a high ratio of NKCC1/KCC2 results in more 
GABA-induced excitation. KCC2 is expressed exclusively in 
VIP and GRP neurons, whereas NKCC1 is expressed in VIP, 
GRP, and AVP neurons within the SCN [7]. Recently, Klett 
and Allen reported that intracellular chloride concentrations 
were higher during the day than at night in both AVP- and 
VIP-positive neurons [52]. The prevalence of GABA exci-
tation and inhibition is dependent on the level of chloride 
transporter expression and may affect the coupling of dorsal 
and ventral SCN circadian oscillations.

Astrocytes and GABA

In addition to neurons, astrocytes in the SCN are involved 
in circadian rhythms. Individual astrocytes display circa-
dian rhythms entrained to daily temperature cycles [90]. 
Moreover, astrocytes co-cultured with adult SCN explants 
sustained the rhythms of astrocytes, suggesting that diffus-
ible factors from the SCN are sufficient to entrain circadian 
oscillations in astrocytes [90]. Furthermore, VIP expressed 
in SCN neurons entrains astrocyte circadian rhythms [63]. 
It is known that astrocytes release ATP into the extracellular 
space and it has been shown that cultured astrocytes display 
daily oscillations of extracellular ATP concentrations that 
are under circadian control [64]. Astrocytes also regulate 
neuronal networks through the reuptake and release of vari-
ous transmitters including glutamate [27, 88]; however, the 
functional mechanisms of these transmitters in astrocytes 

have yet to be identified. Recently, three groups reported that 
astrocytes regulate SCN and behavioral circadian rhythms 
[5, 10, 112]. Astrocyte-specific deletion of the Bmal1 gene 
led to reduced expression of astrocytic GABA transporter 
1 and 3 (GAT1 and GAT3), suggesting a potential impair-
ment in the clearance of extracellular GABA released by 
neurons [5]. Brancaccio et al. proposed a new model of 
circadian timekeeping in the SCN. They hypothesized that 
in the SCN, glutamate released from astrocytes maintains 
higher intracellular calcium levels, specifically in pre-syn-
aptic terminals, through the activation of NMDA receptors 
(NR2C), which subsequently facilitates neuronal GABA 
release [10] (Fig. 3d). Because the peak phase of circadian 
calcium rhythms in astrocytes was observed at night, GABA 
release from neurons via glutamate release from astrocytes 
would increase at night, resulting in a decrease in neuronal 
activity at night.

Circadian outputs and GABA functions

Circadian rhythms in SCN neurons synchronize via several 
neurotransmitters, such as AVP, VIP, and GRP [3, 66, 67]. 
To regulate sleep/wake cycles, SCN circadian rhythms need 
to send outputs to peripheral circadian oscillators. Neuronal 
activity in the SCN is one of the most important input and/
or output signals from molecular oscillations. Applica-
tion of the sodium channel blocker, tetrodotoxin, into the 
SCN in vivo resulted in arrhythmicity in behavior without 
affecting the circadian oscillation [97]. In addition, optoge-
netic stimulation of the SCN in vivo modulated circadian 
behavioral rhythms [46]. GABA, therefore, may regulate the 
transmission of circadian output from the SCN by chang-
ing neuronal excitability. In contrast, it is also reported that 
GABA is involved in the synaptic plasticity changes in the 
retinohypothalamic tract-SCN synapses [69]. These results 
indicate that GABA modulates both input and output of cir-
cadian oscillation in the SCN.

Identification of SCN circadian outputs is important for 
understanding the mechanisms underlying the regulation of 
behavioral rhythms. Previously, SCN efferent projections 
have been investigated [50, 54, 104, 117, 118]. Neurons in 
the dorsal SCN project densely to the preoptic area, para-
ventricular nucleus (PVN), dorsomedial hypothalamus, and 
subparaventricular zone (SPVZ). In contrast, dense projec-
tions from the core are limited to the peri-suprachiasmatic 
area (PSCN), lateral SPVZ, and ventral tuberal area (VTU) 
[54]. Interestingly, the circadian rhythms of neuronal activ-
ity outside the SCN in vivo were in antiphase compared 
with the SCN in nocturnal animals [42, 80]. Importantly, 
in both diurnal and nocturnal animals, the peak phase of 
neuronal activity rhythms in the SCN is observed during the 
day. However, in diurnal animals, the peak phase of neuronal 
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activity outside of the SCN is in-phase compared with that 
of the SCN [95], suggesting that circadian information from 
the SCN is transferred to output brain areas, and that this 
mechanism is different in nocturnal and diurnal animals. 
The mechanisms for switching day-night information from 
the SCN, however, have not been identified.

The PVN receives an efferent projection from the SCN. 
The PVN contains several neuropeptides, such as cortico-
trophin-releasing factor, oxytocin, and AVP, and regulates 
endocrine and autonomic functions. Electrical stimulation 
of the SCN evoked monosynaptic inhibitory postsynaptic 
potentials, as well as excitatory postsynaptic potentials in 
the PVN, indicating that GABA and glutamate are impor-
tant mediators of fast monosynaptic transmission from the 
SCN to the PVN [31, 32]. Tousson and Meissl used a multi-
electrode array dish to demonstrate that humoral factors are 
responsible for circadian rhythms in the PVN [111]. They 
observed circadian rhythms in PVN neuronal activity meas-
ured in brain slices containing both PVN and SCN. When 
the SCN was removed from the brain slice, PVN circadian 
rhythms disappeared and were subsequently restored by co-
cultured SCN grafts.

The SCN regulates circadian rhythms of plasma mela-
tonin concentrations via a multi-synaptic pathway, including 
the PVN, sympathetic preganglionic neurons of the spinal 
cord, and noradrenergic sympathetic neurons of the supe-
rior cervical ganglion [72]. The melatonin concentration is 

increased at night and decreased during the day. Blocking 
GABAergic transmission to the PVN results in inhibition of 
melatonin synthesis in the pineal gland [48, 49], suggesting 
that GABAergic signals from the SCN have an inhibitory 
effect on melatonin synthesis during the day. Importantly, 
melatonin administration suppressed spontaneous firing in 
the SCN [61, 99]. Neuronal and humoral regulation of PVN 
neuronal activity by the SCN is important for temporal inte-
gration of physiological events.

Variety of circadian recording methods

Several studies have attempted to understand the function of 
GABA in the SCN, using both ex vivo and in vivo methods 
(Fig. 4). Primary culture techniques (dispersed and slice) are 
useful for measuring SCN circadian rhythms. Typically, the 
SCN from neonatal animals is used for this experiment [34, 
60, 79, 120]; however, acute SCN slices from adult animals 
have also been used for recording circadian rhythms [2, 25, 
116]. Neonatal SCN tissue allows researchers to measure 
circadian rhythms over long periods; however, the cellular 
properties and neuronal networks in the SCN may not be 
the same in the adult. In general, NKCC1 expression pre-
dominates in immature neurons, in which the intracellular 
concentration of chloride ions is relatively high, whereas 
KCC2 expression predominates in mature neurons. These 

Fig. 4   Variety of circadian 
rhythm recording techniques. 
a Different parameters can 
be measured using different 
methods. Clock gene expres-
sion rhythms can be measured 
with bioluminescence reporters. 
Cytosolic calcium concentra-
tions can be measured with 
fluorescent probes. Neuronal 
activity can be recorded using 
patch clamp or multi-electrode 
array dish techniques. b SCN 
cell preparations for recording 
circadian rhythms. Individual 
SCN properties may depend on 
the coupling strength and the 
age of mice
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developmental changes of chloride transporters modulate 
excitability to GABA depending on age [9]. Developmental 
effects of GABA on SCN circadian oscillations have not 
been fully identified. Recently, however, we reported devel-
opmental changes of neuronal networks in the SCN, as Ono 
et al. demonstrated that Cryptochrome (Cry), a clock gene, 
is involved in cellular coupling in the adult SCN [84, 85]. 
GABA may have an important role in cellular coupling and 
circadian outputs in the SCN, depending on the develop-
mental stage.

GABA functions have been studied using various record-
ing methods, such as neuronal activity recording, calcium 
imaging, and bioluminescence imaging [2, 4, 40, 43, 60, 
101, 116]. These recording methods are useful for measuring 
circadian oscillations in the SCN. However, circadian oscil-
lation in measurements such as gene expression, intracel-
lular calcium levels, and neuronal activity do not show the 
same properties. For instance, Vansteensel et al. measured 
Per1-luc and neuronal activity rhythms in both acute SCN 
slices and in vivo, during a 6-h light/dark phase advance 
schedule. Per1 and neuronal activity rhythms in SCN slices 
demonstrated a phase shift immediately after the 6-h phase 
advance, whereas in vivo neuronal activity did not immedi-
ately shift, indicating that neuronal activity was dissociated 
between brain slices and in vivo [115]. Ono et al. also dem-
onstrated that circadian rhythms of the clock genes, Per1 
and Bmal1, were dissociated in cultured SCN slices [86]. 
We have successfully simultaneously measured Per1, Bmal1, 
cytosolic calcium ions, and neuronal activity in SCN slices 
and found that the circadian period of Bmal1-ELuc rhythms 
is shorter than that of Per1-luc rhythms. Furthermore, the 
circadian period of calcium and neuronal activity rhythms 
were intermediate between Per1 and Bmal1 rhythms. Simul-
taneous and multifunctional recording of circadian oscilla-
tion is a useful tool for understanding the hierarchal structure 
of SCN networks in addition to the roles of GABA within 
these networks.

Perspectives

All studies that have addressed the function of GABA 
in the SCN have only used pharmacological approaches. 
Because mice with genetic GABA deficiencies, such as 
VGAT- and GAD65/67-deficient mice, cannot survive 
after birth [47, 94], it is difficult to assess the roles of 
GABA in the SCN using a genetic approach. It is pos-
sible to measure SCN circadian rhythms obtained from 
embryos of VGAT- or GAD65/67-deficient mice. How-
ever, this slice culture approach is not enough to under-
stand mechanisms of circadian rhythms as they relate to 
behavior. A conditional knockout method could potentially 

provide a solution to this problem. Recently, several Cre 
driver mice have been used to conditionally disrupt genes 
of interest in the SCN [6, 28, 55, 68]. Creating conditional 
KO mice is useful; however, there are currently no SCN-
specific Cre driver mice. While Neuromedin-S is specifi-
cally expressed in the SCN, not all SCN neurons express 
this neuropeptide [55]. Recently, a Crispr/Cas9 genome 
editing method, a powerful tool for manipulating genes 
of interest in various species [17], was developed and has 
been used to manipulate signaling in specific cell types of 
the SCN [112]. Adeno-associated viral driven Crispr/Cas9 
techniques may be applicable to the study of GABA func-
tion specifically in the SCN [92]. Since transfection and 
expression efficiency are not perfect, however, it is difficult 
to control viral diffusion outside of the SCN. Therefore, 
alternative methods are required for SCN-specific func-
tional GABA deficiency.

To understand the roles of GABA in circadian physi-
ology and behavior, it is important to identify neuronal 
networks and output pathways from the SCN. Several 
new methods have been developed to accomplish this. For 
example, the glycoprotein-deleted (DG) rabies virus is a 
useful tool for studies of neural circuits [87]. In combina-
tion with Cre mice, we can identify direct input and output 
pathways of specific neurons [98]. However, because neu-
rons infected with the rabies virus are killed by approxi-
mately 14  days after infection [87], manipulations or 
recordings of neuronal activity are limited to this short 
time window. Recently, self-inactivating rabies virus has 
been developed, which may allow us to further understand 
neuronal brain networks [16]. AAV-mediated retrograde 
tracing methods have also been developed, which could 
allow us to label, manipulate, and measure retrograde-
labeled neurons [109]. Identification of a local GABA 
circuit in the SCN and long-range brain networks may be 
important for the understanding of circadian physiology 
and behavior in the future.
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