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Abstract It is is well known that insulin stimulates glu-

cose transport and epithelial Na? channel (ENaC)-mediated

Na? reabsorption; however, the action of insulin on Cl-

secretion is not fully understood. In this study, we investi-

gated the action of insulin on Na?–K?–2Cl- cotransporter

(NKCC)-mediated Cl- secretion in epithelial A6 cells.

Interestingly, insulin treatment remarkably enhanced the

forskolin-stimulated Cl- secretion associated with an

increase in apical Cl- conductance by upregulating mRNA

expression of both CFTR and NKCC, although insulin

treatment alone had no effect on the basal Cl- secretion or

apical Cl- conductance without forskolin application. We

next elucidated a role of phosphoinositide 3-kinase (PI3K)

in the insulin-induced enhancement of the Cl- secretion,

since insulin actually activated PI3K, resulting in activation

of Akt, a downstream molecule of PI3K. LY294002 (a PI3K

inhibitor) reduced the Cl- secretion by suppressing mRNA

expression of NKCC, whereas insulin still had a stimulatory

action on mRNA expression of CFTR even in the presence

of LY294002. On the other hand, we found that a MEK

inhibitor (PD98059) further enhanced the insulin-stimulated

CFTR mRNA expression and the Cl- secretion in forskolin-

stimulated A6 cells and that insulin induced slight, transient

activation of ERK followed by significant inactivation of

ERK. These observations suggest that: (1) insulin respec-

tively upregulates mRNA expression of NKCC and CFTR

through activation of PI3K and inactivation of ERK; (2)

insulin signals on mRNA expression of NKCC and CFTR

are not enough to stimulate transepithelial Cl- secretion, but

enhance the stimulatory action of cAMP on transepithelial

Cl- secretion.
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Introduction

Transepithelial Cl- secretion from the interstitial space to

the luminal one carries negative charges followed by

movement of cations, such as Na?, K? and H? secretion

[1–10]. The NaCl or KCl secretion, essentially driven by

the transepithelial Cl- secretion, generates an osmotic

gradient followed by water secretion. Thus, Cl- secretion

is a crucial driving force for water secretion, forms an

epithelial surface liquid protecting our bodies from bacte-

rial and viral infections, and controls body fluid contents

[1–4]. Therefore, understanding the regulatory mechanisms

of transepithelial Cl- secretion is important for controlling

the volume of fluid covering the epithelial surface and

extracellular fluid (ECF). Transepithelial Cl- secretion is

composed of two steps: a Cl- uptake step through active
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transporters such as Na?–K?–2Cl- cotransporter (NKCC)

in the basolateral membrane and a Cl- releasing step

through Cl- channels in the apical membrane [3, 4, 11]. To

increase transepithelial Cl- secretion, at least one of the

two steps should be stimulated [12–16]. Therefore, dis-

covering factors regulating Cl- transporters and/or Cl-

channels and clarifying the regulatory mechanism of

transepithelial Cl- secretion are important for under-

standing the mechanisms of body fluid homeostasis.

Evidence accumulated by recent studies indicates phys-

iological roles of transepithelial Cl- secretion, Cl- trans-

porters and Cl- channels in water movement [17], cell

differentiation [18–21], cell proliferation [22–26], and cell

signaling and gene expression [27–32]. For instance, pro-

liferation of poorly differentiated gastric cancer cells

(MKN45) with higher expression of NKCC1 is faster than

that of moderately differentiated gastric cancer cells

(MKN28) with lower expression of NKCC1 [22]. These

observations suggest that expression levels of NKCC are

correlated to the rate of proliferation and that growth factors

possibly regulate cell growth via induction of NKCC1. In

rat pheochromocytoma (PC12) cells, neuron growth factor

(NGF) stimulates neurite elongation through increased

NKCC expression, which is associated with intracellular

Cl--dependent tubulin polymerization [33]. These obser-

vations suggest the importance of transepithelial Cl-

secretion, Cl- transporters and Cl- channels for various

cellular functions, not only for transepithelial ion transport.

Insulin is a well-known hormone that regulates glucose

metabolism (blood sugar) through its binding to the insulin

receptor in the target tissue. Insulin receptor is a trans-

membrane receptor tyrosine kinase, which is activated

through autophosphorylation by ligand binding and trans-

duces the signal into the intracellular space through a

phosphoinositide 3-kinase (PI3K)-Akt-dependent cascade

[34], which in turn coordinates cell growth [35], cell sur-

vival [35], glucose metabolism [35] and ion/glucose

transport [34–44]. Insulin is also known to stimulate

ENaC-mediated Na? reabsorption in the distal nephron by

increasing ENaC surface expression in the apical mem-

brane [43, 45, 46]. The hypertension frequently observed in

type 2 diabetes [47] is considered to be explained by

hyperstimulation of ENaC-mediated Na? reabsorption in

hyperinsulinemia. Thus, abnormal regulation or hyper-

stimulation of ENaC-mediated Na? reabsorption is con-

sidered to be strongly correlated to hypertension. However,

the action of insulin on transepithelial Cl- secretion is still

poorly understood. In this study, we investigated the tran-

scriptional action of insulin on Cl- secretion and clarified

that insulin-enhanced forskolin-stimulated Cl- secretion by

upregulating mRNA expression of NKCC and CFTR and

that translocation/activation of NKCC and CFTR might be

independently regulated.

Materials and methods

Materials

Transwell-Clear permeable supports (PET membrane

Transwell-Clear 6.5 and 24 mm) were obtained from

Corning, Inc. (Lowell, MA, USA). NCTC-109 medium,

benzamil, NPPB, insulin and forskolin were purchased

from Sigma (St Louis, MO, USA). LY294002 and

PD98059 were obtained from Calbiochem (San Diego, CA,

USA).

Solutions

The isotonic test solution contained 120 mM NaCl,

3.5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM glucose

and 10 mM N-2-hydroxy-ethylpiperazine-N0-2-ethanesul-

fonic acid (HEPES) adjusted to pH 7.4.

Cell culture

Renal epithelial A6 cells derived from Xenopus laevis [48–

50] were purchased from the American Type Culture

Collection (ATCC). A6 cells (passage 73–84) were cul-

tured as previously described [11, 51]. Namely, A6 cells

(passage 73–84) were grown on plastic flasks at 27 �C in a

humidified incubator with 1.0 % CO2 in air in a culture

medium that contained 75 % (v/v) NCTC-109, 15 % (v/v)

distilled water and 10 % (v/v) fetal bovine serum. For

preparation of total RNA and cell lysate, A6 cells were

cultured for 13–14 days on 24-mm Transwell-Clear per-

meable supports. For measurement of short-circuit current

(Isc), A6 cells were cultured for 13–14 days on 6.5-mm

Transwell-Clear permeable supports.

Measurement of the short-circuit current

Isc was measured as described previously [11, 51]. Mon-

olayers of A6 cells subcultured on Transwell-Clear filter

cups were transferred to a modified Ussing chamber (Jim’s

Instrument Manufacturing, Iowa City, IA, USA). Trans-

epithelial potential (PD) was continuously measured by a

high-impedance millivoltmeter that could function as a

voltage clamp with automatic fluid resistance compensa-

tion (VCC-600, Physiologic Instruments, San Diego, CA,

USA) with a pair of calomel electrodes that were bridged to

the modified Ussing chamber by a pair of polyethylene

tubes filled with a solution of 2 % (w/v) agarose in a 2-M

KCl solution. Isc was measured by the amplifier, VCC-600,

with a pair of silver–silver chloride electrodes that were

bridged to the modified Ussing chamber by a pair of

polyethylene tubes filled with a solution of 2 % (w/v)

agarose in a 2-M NaCl solution. When the Isc was
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measured, the PD was clamped to 0 mV for 1 s by the

amplifier. Under a steady condition, the Isc was stable and

did not change even if the transepithelial voltage was

clamped to 0 mV for 1 min. In a non-steady state, the value

of Isc measured at 1 s after clamping the PD to 0 mV is

shown as Isc in the present study. A positive current rep-

resents a net flow of anions from the basolateral to the

apical solution. To detect the transepithelial Cl- secretion,

we added 100 lM NPPB (a non-selective Cl- channel

blocker [52–54]) to the apical solution and measured an

NPPB-sensitive Isc by calculating the difference between

the Isc just before and 30 min after application of 100 lM

NPPB. We show this difference of Isc as an NPPB-sensi-

tive Isc.

Measurement of transepithelial conductance (Gt)

We measured Gt using the same method as that previously

reported in our study [11] using a high-impedance milli-

voltmeter (VCC-600). Namely, we applied an 1-lA con-

stant current pulse every 10 s for 0.5 s to the A6 monolayer

under open-circuit conditions, enabling us to evaluate the

Gt by measuring the change in the PD (DPD) caused by the

1 lA constant-current pulse using Ohm’s law (Gt = 1 lA/

DPD mV). To detect the apical Cl- conductance, we added

100 lM NPPB (a non-selective Cl- channel blocker [52–

54]) to the apical solution and measured an NPPB-sensitive

conductance by calculating the difference between the Gt

just before and 30 min after application of 100 lM NPPB.

We show this difference of Gt as an NPPB-sensitive con-

ductance (i.e., the apical Cl- conductance), since the apical

Cl- conductance is much smaller than the basolateral Cl-

conductance [55]. We have already confirmed that the

apical Cl- conductance is diminished by apical application

of 100 lM NPPB, but not the basolateral Cl- conductance

[55, 56]. Thus, we indicate that the NPPB-sensitive con-

ductance can be used as the apical Cl- conductance [55,

56].

Western blotting

The confluent A6 monolayers grown on Transwell-Clear

permeable supports were lysed by lysis buffer (50 mM

HEPES, 120 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA,

10 % glycerol, 1 % Triton X-100, 100 mM NaF, 10 mM

pyrophosphate, 250 lg/ml leupeptin, 0.1 mM phenyl

methylsulfonyl fluoride, 100 Kallokein inactivator units/ml

aprotinin, pH 7.4) after various experimental treatments.

Then, cells were homogenized by sonication and centrifuged

at 21,880 g for 10 min at 4 �C to remove insoluble debris.

The cell lysates containing 50 lg protein were boiled in SDS

sample buffer [60 mM Tris-HCl, 2 % (w/v) SDS, 5 % (v/v)

glycerol, pH 6.8] and then subjected to SDS-polyacrylamide

gel electrophoresis (SDS-PAGE). After electrophoresis,

proteins were transferred to nitrocellulose membranes.

Nonspecific binding was blocked by incubation in 5 % (w/v)

nonfat milk in Tris-buffered saline (TBS) containing 0.1 %

Tween 20 (TBST) at room temperature for 60 min. Mem-

branes were blotted with anti-phospho-ERK (Thr202/

Tyr204), anti-phospho-Akt (Ser473) and anti-b-tubulin

antibodies (Cell Signaling Technology, Beverly, MA, USA)

in 5 % BSA in TBST at 4 �C overnight. The membranes

were then washed with TBST and incubated for 60 min at

room temperature with horseradish peroxidase (HRP)-con-

jugated anti-rabbit IgG (Cell Signaling Technology, Denver,

MA, USA) in 5 % (w/v) non-fat milk in TBST. After

washing with TBST, the blots were detected with ECL prime

chemiluminescent reagent (GE Healthcare Bio-Sciences

Corp., Piscataway, NJ, USA). Each blot presented was per-

formed at least three times.

Quantitative real-time PCR

To compare relative amounts of mRNA for NKCC1 and the

CFTR Cl- channel in A6 monolayers treated under different

conditions, we performed quantitative real-time PCR. Total

RNA was extracted from A6 monolayers using an RNeasy kit

(QIAGEN, Tokyo, Japan) with DNase digestion according to

the manufacture’s protocol. Reverse transcription (RT) was

performed on 1 lg total RNA, calculated from absorbance

measured at 260 nm, using a High Capacity Coda transcription

kit (Applied Biosystems, Rotkreuz, Switzerland) according to

the manufacturer’s protocol. Primers (SIGMA Genosis) and

TaqMan probes (Applied Biosystems, Rotkreuz, Switzerland)

unique for each Xenopus NKCC, Xenopus CFTR Cl- channel

or Xenopus B-actin were the following: xNKCC forward 50-T
GCCTCCCTTGCCAAGTCT-30, reverse 50-CGAGTGAC

ACCCACATGTTGTA-30, TaqMan probe 50-AGGATG

GCGTCCCGCCTTCAGATA-30, xCFTR forward 50-A
TGCTATTCTACATGCCCCAATG-30, reverse 50-TCCAAT

ATAGCTGTATCCTTTGAAAATC-30, TaqMan probe 50-A
CCTTCAATACAATGAGAGCTGGTCGGATACTTAA-30,
xb-actin forward 50-GATGCTCCCCGTGCTGTTT-30,
reverse 50-TTCCAACCATGACACCCTGA-30, TaqMan

probe 50-CCCATCTATTGTGGGTCGCCCAAGA-30. Quan-

titative real-time PCR with TaqMan probes using the ABI 7300

real-time PCR system was performed according to the manu-

facturer’s protocol. Diluted RT samples (100 ng total RNA)

were amplified in a final volume of 25 ll. Primers were used at

a concentration of 800 nM and probes at a concentration of

200 nM. b-actin were used as an internal control. The thermal

cycling conditions were as follows: 50 �C for 2 min and 95 �C

for 10 min, followed by 40 cycles of 95 �C for 15 s and 60 �C

for 1 min. Relative amounts of NKCC and CFTR Cl- channel

mRNA were determined by normalization with b-actin mRNA

expression.
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Temperature

All experiments for electrophysiological and other mea-

surements were performed at 24–25 �C unless otherwise

indicated.

Data presentation

All data are presented as mean ± standard error of the

mean (SEM). Where SEM bars are not visible, they are

smaller than the symbol. Student’s t test and ANOVA were

used for statistical analysis as appropriate, and p \ 0.05

was considered significant.

Results

Enhancement of forskolin-stimulated Cl- secretion

by insulin pretreatment

The Cl- secretion is generally composed of two steps: (1)

the step of Cl- uptake via the Na?–K?–2Cl- cotransporter

1 (NKCC1) at the basolateral membrane and (2) the step of

Cl- release via the cystic fibrosis transmembrane conduc-

tance regulator (CFTR) Cl- channel at the apical mem-

brane [11, 57]. Elevation of cytosolic cAMP by bilateral

application of 10 lM forskolin stimulated the Cl- secre-

tion through activation of both the apical Cl- channels and

basolateral NKCC1 in A6 cells. In this study, transepithe-

lial Cl- secretion and apical Cl- channel activities are

respectively determined as NPPB (a Cl- channel blocker)-

sensitive Isc and NPPB-sensitive conductance (Gt) by

addition of 100 lM NPPB to the apical solution. In all of

the experiments, to isolate the Cl- secretion from the Na?

absorption, we added 10 lM benzamil, which is a specific

inhibitor of ENaC and completely blocks the ENaC at the

concentration (10 lM) [30, 58], to the apical solution

10 min before application of forskolin. In this study, we

measured NPPB-sensitive Isc and Gt after pretreatment of

A6 monolayers with insulin, which shows its maximum

effect on ion transport within 100 nM–1 lM [59, 60].

Thus, we applied 1 lM of insulin to obtain its maximum

effect in the present study. We preincubated A6 cells with

or without 1 lM insulin in the absence or presence of

inhibitors in the culture medium for various time periods,

then washed out insulin and inhibitors, and set the pre-

treated A6 monolayers to the modified Ussing chamber in

120 mM NaCl solution without any insulin and inhibitors.

Then, we stimulated the A6 monolayers in 120 mM NaCl

solution with 10 lM forskolin 10 min after addition of

10 lM benzamil. Finally, NPPB of 100 lM was added to

the apical solution 60 min after application of forskolin,

and the differences in Isc and Gt between just before and

30 min after addition of NPPB were measured as NPPB-

sensitive Isc and Gt.

Acute (0–60 min) or chronic (2–24 h) application of

insulin to the basolateral solution had no effect on basal

Cl- secretion detected as NPPB-sensitive Isc in A6 cells

(data not shown). To clarify the action of insulin on cAMP-

stimulated Cl- secretion, we pretreated A6 cells with 1 lM

insulin for 0, 1, 3, 6 and 24 h in the culture medium and

washed out the insulin. Just after washing out the insulin,

10 lM of forskolin was applied to the apical and basolat-

eral solutions for elevation of cytosolic cAMP concentra-

tion. Then, we measured NPPB-sensitive Isc and Gt by

adding 100 lM NPPB 60 min after application of forskolin

in the absence of insulin. Pretreatment of monolayered A6

cells with 1 lM insulin for more than 3 h markedly

enhanced the forskolin-stimulated Cl- secretion (NPPB-

sensitive Isc) by increasing apical Cl- channel activities

(conductances) detected as NPPB-sensitive Gt (Fig. 1).

Pretreatment with insulin for 6 h had similar effects to that

for 24 h, which showed the maximum effects on the

enhancement of forskolin-stimulated Cl- secretion (NPPB-

sensitive Isc) and conductance (NPPB-sensitive Gt)

(Fig. 1). It is notable that application of insulin alone had
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Fig. 1 Time-dependent effect of insulin on forskolin-stimulated

NPPB-sensitive Isc (a) and Gt (b) in A6 cells. After pretreating

monolayer A6 cells with 1 lM insulin for 0, 1, 3, 6 and 24 h, 10 lM

forskolin was applied to the apical and basolateral sites, and then

NPPB-sensitive Isc and Gt were detected by the addition of 100 lM

NPPB to the apical solution 60 min after application of forskolin.

Data are presented as mean ± SEM. n = 5–7. *p \ 0.05 vs. control

(0 h; without insulin)
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no stimulatory action on Cl- secretion (NPPB-sensitive

Isc) or conductance (NPPB-sensitive Gt) in the absence of

forskolin. Namely, the NPPB-sensitive Isc was

0.30 ± 0.03 lA/cm2 (n = 7) in cells preincubated with

insulin for 24 h, which was not significantly different from

that without insulin (0.23 ± 0.03 lA/cm2 without insulin;

n = 7): the NPPB-sensitive Gt was 22.04 ± 1.31 lA/cm2

(n = 7) in cells preincubated with insulin for 24 h, which

was not significantly different from that without insulin

(18.67 ± 1.38 lS/cm2 without insulin; n = 7).

Insulin enhanced the Cl- secretion through

transcriptional regulation of NKCC and CFTR

Incubation with insulin for at least 3 h is required for

enhancement of the Cl- secretion, suggesting that tran-

scriptional regulation in NKCC and/or CFTR might be

involved in the enhancement of the Cl- secretion. To

elucidate this suggestion, we next examined the effect of

insulin on mRNA expression of NKCC and CFTR by

quantitative real-time PCR. Pretreatment of monolayered

A6 cells with 1 lM insulin for 24 h remarkably increased

mRNA expression of both NKCC and CFTR (Fig. 2). This

result suggests that insulin enhanced forskolin-stimulated

Cl- secretion by increasing mRNA expression of both

NKCC and CFTR.

Involvement of PI3K in the transcriptional regulation

of NKCC and CFTR

We next addressed the question of how insulin induces

mRNA expression of NKCC and CFTR. As PI3K is a

major signal molecule in the insulin cascade, we examined

whether insulin activates PI3K in monolayered A6 cells by

detecting Akt phosphorylation. Insulin increased phos-

phorylation of Akt at Ser473 (Fig. 3), which is known to be

phosphorylated through a PI3K-dependent pathway. To

clarify the involvement of PI3K in the insulin-induced

mRNA expression of NKCC and CFTR, we examined the

effects of LY294002 (a specific inhibitor of PI3K). Pre-

treatment with LY294002 markedly reduced mRNA

expression of NKCC and CFTR in insulin-untreated and -

treated A6 cells (Fig. 4a). The treatment with LY294002

blocked the stimulatory action of insulin on NKCC mRNA

expression, but not CFTR mRNA expression (Fig. 4a).

This observation suggests that insulin upregulates NKCC

mRNA expression by mainly activating a PI3K-dependent

pathway, but CFTR mRNA expression via a PI3K-inde-

pendent pathway.

To further elucidate a PI3K-independent pathway for

CFTR mRNA expression, we examined a possible role of

ERK in CFTR mRNA expression by using PD98059 (a

MEK inhibitor blocking ERK activation). Pretreatment of

monolayered A6 cells with PD98059 did not affect NKCC

mRNA expression, but further increased CFTR mRNA
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Fig. 2 Effects of insulin on mRNA expression of NKCC and the

CFTR Cl- channel. A6 monolayers were treated with 1 lM insulin

for 24 h, and then mRNA expression of NKCC and the CFTR Cl-

channel was detected by quantitative real-time PCR. Data are

presented as mean ± SEM. n = 5–8. *p \ 0.05 vs. insulin (-)
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Fig. 3 Effects of insulin on phosphorylation of Akt as an indicator of

PI3K activity in A6 monolayered cells. a A6 monolayers were treated

with 1 lM insulin for the indicated time, and then phosphorylation of

Akt (p-Akt) at Ser473 was detected by immunoblotting with an anti-

phospho Akt (Ser473)-specific antibody. b Relative amounts of

phosphorylated Akt (p-Akt) at Ser473 are shown. Equal loading of

cell lysate to each well was confirmed by measuring b-tubulin as an

internal control. Data are presented as mean ± SEM. n = 3.

*p \ 0.05 vs. insulin (-)
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expression in insulin-treated A6 cells (Fig. 4b). These

observations suggest that ERK would be a negative regu-

lator for CFTR mRNA expression and that insulin might

inactivate ERK, leading to an increase in CFTR mRNA

expression through a PI3K-independent pathway. To con-

firm this presumption, we examined whether insulin inac-

tivates ERK by detecting activated (phosphorylated) ERK

with immunoblotting. Insulin induced slight, transient

activation followed by a remarkable inactivation (dephos-

phorylation) of ERK (Fig. 5). Based on these results, we

suggest that insulin increases CFTR mRNA expression via

suppression of ERK in a PI3K-independent manner.

The regulatory mechanism of forskolin-stimulated Cl-

secretion by insulin

In this study, we indicated that insulin enhanced the for-

skolin-stimulated Cl- secretion by increasing respectively

mRNA expression of both NKCC and CFTR through PI3K

activation and ERK inactivation. We next elucidated

whether PI3K-dependent transcriptional regulation in

NKCC and CFTR actually participates in the enhancement

of forskolin-stimulated Cl- secretion by insulin in A6 cells.

Pretreatment with LY294002 slightly decreased the for-

skolin-stimulated NPPB-sensitive Isc associated with a

similar rate of reduction of NPPB-sensitive Gt in insulin-

untreated A6 cells [(-) Insulin in Fig. 6a, b]. Likewise,

LY294002 remarkably suppressed the insulin-induced

enhancement of forskolin-stimulated NPBB-sensitive Isc

associated with suppression of NPPB-sensitive Gt to a

similar extent as Isc [(?) Insulin in Fig. 6a, b]. Conse-

quently, most of the insulin-induced enhancement of for-

skolin-stimulated Cl- secretion and Cl- channel

conductance (activity) was sensitive to LY294002, sug-

gesting that insulin enhances the forskolin-stimulated Cl-
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Fig. 4 Effects of LY294002 (LY, a PI3K inhibitor, 30 lM) (a) and

PD98059 (PD, a MEK inhibitor, 50 lM) (b) on insulin-induced

mRNA expression of the NKCC and the CFTR Cl- channel. After

pretreatment with or without LY294002 or PD98059 for 1 h in the

culture medium, A6 monolayers were incubated in the culture

medium with or without 1 lM insulin in the presence or absence of

LY294002 or PD98059 for 6 h. The mRNA expression of NKCC and

CFTR was detected by real-time PCR. Relative amounts of mRNA

expression of NKCC and the CFTR Cl- channel were normalized to

b-actin as an internal control. Amounts of mRNA expression of

NKCC and the CFTR Cl- channel in the absence of insulin are shown

as 1.0; therefore, the relative amounts of mRNA expression of NKCC

and the CFTR Cl- channel shown here mean the insulin action on

amounts of mRNA expression of NKCC and the CFTR Cl- channel

compared with those without insulin pretreatment. Data are presented

as mean ± SEM. n = 5–8. NS, no significance; *p \ 0.05
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Fig. 5 Effects of insulin on phosphorylation of ERK in A6 mono-

layered cells. a A6 monolayers were treated with 1 lM insulin for the

indicated time, and then phosphorylation of ERK was detected by

immunoblotting with an anti-phospho-ERK specific antibody. b Rel-

ative amounts of phosphorylated ERK are shown. Equal loading of

cell lysate to each well was confirmed by measuring b-tubulin as

an internal control. Data are presented as mean ± SEM. n = 3.

* Significantly larger than that at 0 min (without insulin treatment)

with p \ 0.05. # Significantly smaller than that at 0 min (without

insulin treatment) with p \ 0.05
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secretion and Cl- channel conductance via a PI3K-

dependent pathway (Fig. 6). On the contrary, pretreatment

with PD98059 further increased the insulin-induced

enhancement of forskolin-stimulated Cl- secretion

accompanied by further elevation of apical Cl- channel

conductance (activity) (Fig. 7), suggesting that complete

inhibition of ERK forcibly caused by PD98059 further

increased the insulin-pretreatment-stimulated Cl- secretion

via further enhancement of CFTR expression in forskolin-

stimulated cells.

cAMP-dependent regulation of NKCC and/or CFTR

translocation

mRNA expression of NKCC and CFTR is upregulated by

insulin; nevertheless, the basal Cl- secretion or apical Cl-

channel conductance (activity) was not significantly

increased. There are two possible explanations for these

phenomena. One is that insulin induced too small increases in

basal Cl- secretion and apical Cl- channel conductance

(activity) to detect the increases. The other is that insulin

signals alone are not enough to translocate proteins of NKCC

and/or CFTR newly synthesized by insulin pretreatment to

the plasma membrane for stimulation of Cl- secretion. To

confirm this presumption, we examined the effects of bre-

feldin A (BFA; an inhibitor of protein translocation from ER

to Golgi) on the insulin-induced enhancement of Cl- secre-

tion and apical Cl- channel conductance (activity) in for-

skolin-stimulated cells. After pretreatment with insulin for

5 h, we further pretreated A6 cells with both insulin and BFA

(5 lg/ml) for 1 h. Then, we measured Cl- secretion and

apical Cl- channel conductance (activity) in forskolin-stim-

ulated cells in the absence or presence of BFA. BFA abol-

ished the stimulatory action of insulin on Cl- secretion

(Fig. 8a) and apical Cl- channel conductance (activity:

Fig. 8b) in forskolin-stimulated cells.
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Fig. 6 Effects of LY294002 (LY, a PI3K inhibitor, 30 lM) on

forskolin-stimulated NPPB-sensitive Isc (a) and Gt (b) in A6 cells

treated with or without insulin. After pretreatment with or without

LY294002 for 1 h in the culture medium, A6 monolayers were

incubated in the medium with or without 1 lM insulin in the presence

or absence of LY294002 for 6 h. After each treatment, 10 lM

forskolin was applied, and then NPPB-sensitive Isc and Gt were

measured by adding NPPB 60 min after the application of forskolin.

Data are presented as mean ± SEM. n = 5–8. *p \ 0.05
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Fig. 7 Effects of PD98059 (PD, a MEK inhibitor, 50 lM) on

forskolin-stimulated NPPB-sensitive Isc (a) and Gt (b) in A6 cells

treated with or without insulin. After pretreatment with or without

50 lM PD98059 for 1 h in the culture medium, A6 monolayers were

incubated in the medium with or without 1 lM insulin for 6 h in the

presence or absence of PD98059. After each treatment, 10 lM

forskolin was applied, and then NPPB-sensitive Isc and Gt were

measured by adding NPPB 60 min after application of forskolin. Data

are presented as mean ± SEM. n = 5–8. *p \ 0.05
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Discussion

In this study, we elucidate that insulin enhanced forskolin-

stimulated Cl- secretion and apical Cl- channel conduc-

tance (activity) by respectively upregulating mRNA

expression of NKCC and CFTR via activation of PI3K-Akt

and inactivation of ERK in epithelial A6 cells. Previous

studies indicated the action of growth factors including

insulin on NKCC. Insulin activates NKCC in human

fibroblast [61], 3T3-L1 fibroblast, adipocyte [62] and L6

cells [63] regulating cell volume and K? uptake. IGF-1

(insulin-like growth factor-1) increases NKCC mRNA

expression in pavement cells [64], while EGF (epidermal

growth factor) and NGF increase NKCC protein expression

in intestinal epithelial cells [65] and PC12 cells [18]. In

human skin fibroblasts, EGF-induced activation of NKCC

is crucial for mitogenic signaling pathways [66]. Thus,

these studies indicate that growth factors regulate NKCC

expression at transcriptional, translational and posttransla-

tional levels in various types of cells. On the other hand,

NKCC basically contributes to Cl- uptake from extracel-

lular into intracellular space regulating the cell volume,

intracellular Cl- concentration ([Cl-]i) and transepithelial

Cl- secretion. In our previous studies, [Cl-]i was shown to

have a crucial role in cell proliferation and differentiation

in gastric cancer cells [22, 23, 25], prostate cancer cells

[24], osteoblast-like cells [67], breast cancer cell [26] and

neural cells [18, 19]. These studies suggest that growth

factors might control cell proliferation through regulation

of NKCC expression and activity.

In this study, pretreatment with insulin alone did not

stimulate transepithelial Cl- secretion in A6 cells, even

though insulin upregulated mRNA expression of NKCC

and CFTR. On the other hand, in the presence of forskolin,

the enhancement of Cl- secretion by insulin was revealed.

To stimulate transepithelial Cl- secretion, at least either

the step of NKCC-mediated Cl- uptake or CFTR-mediated

Cl- release in the Cl- secretion must be stimulated. This

means that elevation of cAMP regulating NKCC and CFTR

would be essentially required for stimulation of Cl- uptake

or release contributing to the Cl- secretion.

In the present study, we observed that application of

insulin alone upregulated mRNA expression of NKCC and

CFTR; nevertheless, its application showed no stimulatory

action on the basal Cl- secretion or apical Cl- channel

conductance (activity). To clarify these phenomena, we

speculated that proteins of NKCC and/or CFTR newly

synthesized via insulin-elevated mRNA expression of

NKCC and CFTR would stay in intracellular stores sites,

but neither protein would be translocated to the apical or

basolateral membrane only by insulin signaling. To con-

firm this speculation, we applied BFA (an inhibitor of

protein translocation from ER to Golgi). As expected, BFA

blocked the forskolin action on Cl- secretion and apical

Cl- channel conductance (activity) (Fig. 8). Further, we

should state that even in the absence of insulin application,

BFA reduced the stimulatory action of forskolin [Fig. 8a,

b; (?) BFA]. This means that irrespective of insulin

application forskolin would have a stimulatory action on

the translocation of NKCC and CFTR proteins to the apical

and basolateral membrane. We strongly suggest that insulin

shows its enhancing action on forskolin-stimulated Cl-

secretion and apical Cl- channel conductance (activity) by

upregulating mRNA expression of NKCC and CFTR but

that the insulin signaling is not large enough for translo-

cation of the insulin-induced newly synthesized proteins of

NKCC and CFTR.

In A6 cells, insulin increased cell proliferation, which

was abolished by bumetanide (an NKCC inhibitor) (Niisato

et al. unpublished data). cAMP stimulates translocation of

CFTR Cl- channels to the apical membrane and increases
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Fig. 8 Effects of brefeldin A (BFA) on forskolin-stimulated Cl-

secretion (a) and conductance (b) in A6 cells treated with or without

insulin. After pretreatment with or without 1 lM insulin for 5 h in the

culture medium, A6 monolayers were incubated in the medium with

or without 5 lg/ml BFA in the presence or absence of insulin for 1 h.

After each treatment, A6 monolayers were incubated with 10 lM

forskolin under each condition without insulin, and then NPPB-

sensitive Isc and Gt were measured by adding NPPB 60 min after

application of forskolin. Data are presented as mean ± SEM. n = 4.

Ins insulin, NS no significance; *p \ 0.05
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the number of functional CFTR Cl- channels detected by

patch clamp techniques [68]. Thus, insulin and cAMP

cooperatively ativate Cl- transport regulating various cel-

lular functions including epithelial Cl- secretion.

Conclusion

Taken together, these observations based on the present

study suggest that: (1) insulin stimulates mRNA expression

of NKCC and CFTR, which respectively contribute to

transepithelial Cl- secretion as a Cl- uptake pathway

across the basolateral membrane and a Cl- release pathway

across the apical membrane; (2) the insulin-induced mRNA

expression of NKCC and CFTR is respectively mediated

through activation of PI3K stimulating NKCC mRNA

expression and inactivation of ERK suppressing CFTR

mRNA expression; (3) the insulin-increased NKCC and

CFTR would be in the cytosolic store sites and cytosolic

cAMP stimulates translocation of the insulin-increased

NKCC and CFTR to the basolateral and apical membranes

leading to an increases in transepithelial Cl- secretion

associated with elevation of apical Cl- channel conduc-

tance (activity). Thus, insulin enhances the stimulatory

action of cAMP on epithelial Cl- secretion via increases in

new synthesis of NKCC and CFTR via PI3K- and ERK-

mediated mechanisms (Fig. 9).
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