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The ubiquitin–proteasome system 
in regulation of the skeletal muscle homeostasis 
and atrophy: from basic science to disorders
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Abstract 

Skeletal muscle is one of the most abundant and highly plastic tissues. The ubiquitin–proteasome system (UPS) is 
recognised as a major intracellular protein degradation system, and its function is important for muscle homeostasis 
and health. Although UPS plays an essential role in protein degradation during muscle atrophy, leading to the loss of 
muscle mass and strength, its deficit negatively impacts muscle homeostasis and leads to the occurrence of several 
pathological phenotypes. A growing number of studies have linked UPS impairment not only to matured muscle fibre 
degeneration and weakness, but also to muscle stem cells and deficiency in regeneration. Emerging evidence sug‑
gests possible links between abnormal UPS regulation and several types of muscle diseases. Therefore, understand‑
ing of the role of UPS in skeletal muscle may provide novel therapeutic insights to counteract muscle wasting, and 
various muscle diseases. In this review, we focussed on the role of proteasomes in skeletal muscle and its regenera‑
tion, including a brief explanation of the structure of proteasomes. In addition, we summarised the recent findings on 
several diseases and elaborated on how the UPS is related to their pathological states.
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Introduction
The skeletal muscle mass accounts for approximately 
40% of the total human body weight, making it the larg-
est tissue mass present in the body [1]. Maintaining mus-
cle homeostasis is essential for preserving the body’s 
integrity and activities of daily living, and thus, muscle 
loss or impairment is associated with several diseases, 
which ultimately leads to a poor quality of life. Skeletal 
muscle is highly plastic tissue, and its mass can change 
dynamically. Muscle atrophy is caused by an imbalance in 

proteostasis; during muscle atrophy, protein degradation 
overwhelms  protein synthesis, leading to loss of muscle 
mass and muscle weakness. Paradoxically, in general, 
proteolysis is critical for preventing cellular dysfunction 
and the progression of diseases, causing complexity of 
proteolysis in skeletal muscle.

Perhaps the ubiquitin–proteasome system (UPS) is 
the most well-known cellular proteolytic system, which 
is responsible for degrading majority of the misfolded 
or defective cellular proteins [2]. Most proteins undergo 
degradation by being the target of the 26S proteasome 
through covalent attachment of a multi-ubiquitin chain. 
The ubiquitination of proteins involves the action of the 
E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating 
enzymes, and E3 ubiquitin–protein ligases. These tagged 
proteins are then recognised by the 26S proteasome, 
consisting of a central barrel-shaped 20S core associated 
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with two 19S regulatory subunits [3, 4]. The latter subu-
nits recognise and bind to the ubiquitinated proteins and 
initiate the adenosine triphosphate (ATP)-dependent 
degradation process within the catalytic core [3]. Using 
such a mechanism above, the UPS performs substrate-
specific proteolysis.

Although there remains a lot to understand how the 
UPS recognises misfolded or defective proteins, disrup-
tion of the UPS is associated with pathological states, 
highlighting the importance of this system in cellular and 
whole-body homeostasis. Accordingly, several reports 
have demonstrated a relationship between protea-
some system and lifespan. Proteasome activity has been 
reported to decrease with age in the brain [5], liver [6, 
7], heart [8], and skeletal muscles [9], causing age-asso-
ciated deteriorations. On the other hand, the genetical 
activation of the proteasome in yeast and Caenorhabditis 
elegans show protective effect against cellular aging and 
prolonged lifespan [10, 11].

It has also been shown that the overexpression of pro-
teasome subunits in yeast and Caenorhabditis elegans 
results in an increase in the proteasome activity and 
leads to a prolonged lifespan [10, 11]. Conversely, trans-
genic mice constitutively expressing the β5t subunit of 
the proteasome showed reduced proteasome activity and 
a shorter lifespan [12]. Moreover, the loss of function of 
the Rpn11 subunit of the proteasome results in decreased 
proteasome activity, accumulation of ubiquitinated pro-
teins, and a shortened lifespan [13]. These previous 
studies suggest that continuous clearance of misfolded 
proteins mediated by the UPS is necessary for healthy 
aging. We recently reported that skeletal muscle-spe-
cific reduction in proteasome activity is associated with 
a shortened lifespan in mouse models [14, 15]. Thus, the 
UPS in skeletal muscle, which comprises the largest mass 
in the body, may have a strong impact on aging, longev-
ity, and whole-body homeostasis.

Proteolysis in skeletal muscle has dual nature: pro-
teolytic pathways play a substantial physiological role 
in muscle atrophy, while their inhibition also promotes 
muscle dysfunction and weakness [16]. Indeed, contrary 
to the protective role of the UPS in maintaining cellular 
functions, many studies also have implicated that the 
UPS promotes muscle wasting, myofibre degeneration, 
and muscle weakness. Skeletal muscles function as a 
storage place for amino acids, and it might be one rea-
son for the disuse atrophy. These contradictions result in 
variable effects of inhibitions of UPS in atrophies. There-
fore, better understanding of the pathogenic role of this 
proteolytic system in skeletal muscle may provide novel 
therapeutic insights to counteract the UPS-associated 
diseases.

In this manuscript, we reviewed published impor-
tant articles about UPS in the sequence of molecules, 
myotubes, skeletal muscles, until muscle atrophy in the 
patients. We focussed on the role of the UPS in skeletal 
muscle, by outlining the results of our recent studies on 
proteasomes in skeletal muscle and muscle stem cells. 
We further summarised recent findings on several dis-
eases, and elaborated on how the UPS is related to their 
pathological states.

Structure of the 26S proteasome
Proteolysis by the UPS is mainly performed through a 
series of complex structures. The rapid degradation of 
ubiquitinated proteins by the 26S proteasome involves 
multiple enzymatic and non-enzymatic steps. The 26S 
proteasome is a multi-catalytic protease localised both in 
the nucleus and cytoplasm. As shown in Fig. 1, it is com-
posed of one proteolytically active cylinder-shaped par-
ticle (the 20S proteasome), and two ATPase-containing 

20S CP

19S RP

19S RP

α
β
β
α

Rpn10

Rpn10

Rpt3

Rpt3

Base

Base

Rpn1 Rpn2
Rpn13

Rpn1Rpn2
Rpn13

Fig. 1  The 26S proteasome is composed of one proteolytically 
active cylinder-shaped particle (the 20S proteasome) and 
ATPase-containing complexes (the 19S cap complexes). The 19S cap 
complex unfolds ubiquitin-conjugated proteins to allow their entry 
into the 20S cylindrical particle. The 19S regulatory particles on the 
ends of the 20S proteasome are composed of at least 18 subunits. 
The base contains the two largest subunits of the proteasome, Rpn1 
and Rpn2, the ubiquitin receptor Rpn10 and Rpn13, and the six 
ATPases, Rpt1-Rpt6. 19S RP, 19S regulatory particle. 20S CP, 20S core 
particle



Page 3 of 12Kitajima et al. J Physiol Sci           (2020) 70:40 	

complexes (known as the 19S cap complexes) [3, 4, 17]. 
The 19S cap complexes unfold the ubiquitin-conjugated 
proteins, allowing them to enter into the 20S core parti-
cle. The 20S core is composed of inner α-rings and outer 
β-rings, each of them has seven structurally similar subu-
nits, respectively; α1–7 and β1–7 [18]. In particular, β1, 
β2, and β5 subunits display caspase-like, trypsin-like, 
and chymotrypsin-like proteasome activity, respectively 
[19, 20]. Also, these β subunits contain immunoproteas-
omes, in which β1, β2, β5 subunits are replaced with β1i 
(LMP2), β2i (MECL1), β5i (LMP7) subunits, respectively. 
Recently, an association between the immunoprotea-
some and disease has been reported and is described in 
Sect.  4.2.1. The 19S regulatory particles are composed 
of at least 18 subunits [3, 4]. Two components form the 
19S proteasome, the lid and the base. The lid, which is 
responsible for the recognition of the polyubiquitin sig-
nal [21, 22], is composed of nine subunits, Rpn3, Rpn5-9, 
Rpn11-12, and Rpn15. The base is composed of the two 
largest subunits of the proteasome, Rpn1 (PSMD2) and 
Rpn2 (PSMD1), the ubiquitin receptor Rpn13, Rpn10 
(PSMD4), and six ATPases, Rpt1–Rpt6 (PSMC2, PSMC1, 
PSMC4, PSMC6, PSMC3, PSMC5, respectively). These 
subunits form a large family of proteins with a highly 
conserved ATPase domain [23]. Rpt3, also known as 
PSMC4, is an essential subunit of the 26S proteasome 
[23] and is required for the degradation of most protea-
somal substrates. The ubiquitin receptor Rpn10 attaches 
to Rpn1, although this association is stabilised by pres-
ence of Rpn2 [24]. Rpn2 acts as a receptor of the ubiqui-
tin receptor Rpn13 [25–27].

Protein degradation in the skeletal muscle
E3 ubiquitin ligases and UPS in skeletal muscle
Muscle atrophy is a serious problem that limits the daily 
activities and reduces the quality of life. Regulation of 
the skeletal muscle mass is highly dependent on both 
the protein synthesis and protein degradation processes. 
Proteolysis in skeletal muscle is closely regulated by ubiq-
uitin ligases. In skeletal muscle, Cullin-RING ubiquitin 
ligases comprise the largest known category of ubiqui-
tin ligases as shown in Table  1. Cullin-RING ubiquitin 
ligases regulate various cellular processes, including mul-
tiple aspects of the cell proliferation, transcription, sig-
nal transduction, and development [28]. Especially, the 
muscle-specific E3 ubiquitin ligases, such as the muscle 
RING finger 1 (MuRF1) and the muscle atrophy F-Box 
(Atrogin-1/MAFbx), are involved in the  regulation of 
protein degradation  in  skeletal muscle [29–31]. The 
expression of these two ubiquitin ligases has been shown 
to markedly increase in skeletal muscle atrophy [32, 33]. 
Studies have suggested that titin, Myosin Heavy Chains, 
Myosin Light Chain-1/2 as the substrates of MuRF1 and 

elongation initiation factor 3 subunit f (eIF3-f ), MyoD, 
and myogenin as the substrates of Atrogin-1/MAFbx 
[34]. Although their specific substrate in vivo is yet to be 
elucidated, MuRF1 or Atrogin-1/MAFbx knockout mice 
are resistant to muscle atrophy induced by denervation 
[32], suggesting that these two genes are important regu-
lators of muscle atrophy.

In addition to MuRF1 and Atrogin-1/MAFbx, Casitas 
B-lineage lymphoma proto-oncogene-b (Cbl-b) is also a 
known E3-ligase related to muscle atrophy. Unloading 
or spaceflight promotes the expression of Cbl-b; which 
targets IRS-1, an intermediate of IGF-I signalling which 
induces protein synthesis in muscle. Thus, it seems Cbl-
b, at least partly, works as mechanosensing-mediated 
muscle atrophy [35, 36]. There are E3-ligases associated 
with denervation-induced muscle atrophy: muscle ubiq-
uitin ligase of SCF complex atrophy-1 (MUSA1) and 
specific for muscle atrophy and regulated by transcrip-
tion (SMART) [37, 38]. Moreover, Hughes et al. recently 
reported that an E3-ligase, F-box and leucine-rich protein 
22 (Fbxl22) mediates neural inactivity-induced muscle 
atrophy [39]. Knockdown of Fbxl22 in denervated mus-
cle resulted in significant muscle sparing. The expression 
of ubiquitin ligase is regulated by a transcription factor, 
Forkhead box O (FoxO) [30]. Akt phosphorylates FoxOs, 
thereby resulting in their export from the nucleus to the 
cytoplasm. On the other hand, when the Akt pathway 
is attenuated by models of muscle atrophy, FoxOs are 

Table 1  Ubiquitin ligases related with  UPS in  skeletal 
muscles modified from Ref. [82]

MuRF1: muscle RING finger 1; MuRF3: muscle RING finger 3; TRAF6: tumour 
necrosis factor receptor-associated factor 6; Cbl-b: Casitas B-lineage lymphoma 
proto-oncogene-b; KLHL40: Kelch-like protein 40; KLHL41: Kelch-like protein 41; 
KLHL20: Kelch-like protein 20

Ubiquitin ligases Target or affected proteins Refs.

MuRF1 (TRIM63) Sarcomeric proteins, myosin-binding 
protein (MYBPC1), troponin 3, tel‑
ethonin

[83–86]

MuRF3 (TRIM 54) Sarcomeric proteins, filamin [83, 87]

TRIM32 Actin, desmin [88]

MUSA1 – [37]

SMART​ – [37, 38]

Nedd4 MTMR4, FGFR1, Notch 1 [89, 90]

TRAF6 Ubc13, K63-linked ubiquitination [128–130]

Cullin adaptors

 Atrogin-1/MAFbx Actin, titin, calsarcin-1, MYHBPC3 [91, 92]

 Cbl-b Insulin receptor substrate 1 (IRS-1) [35, 36]

 KLHL40 Filament protein [95]

 KBTBD13 Z-disc proteins [96]

 KLHL41 Nebulin, nebulin-related anchoring 
protein

[97–99]

 KLHL20 Autophagy-related protein 13 [100, 101]
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imported to the nucleus and induce the expression of 
ubiquitin ligases. Although most of the E3-ligases remain 
to be explored in the context of muscle atrophy, these 
findings indicate that the UPS plays a substantial role in 
muscle atrophies.

UPS dysfunction causes skeletal muscle atrophy
The UPS degrades most of the long- and short-lived nor-
mal as well as abnormal intracellular proteins [40]. Espe-
cially in the muscle, most of the myofibrillar proteins 
are degraded through the UPS [41, 42]. We generated 
muscle-specific Rpt3-knockout mice (Mlc1f-Cre;Rpt3f/f) 
to better understand the role of the proteasomal system 
in the skeletal muscle tissue. The proteasomal subunit 
Rpt3 deletion significantly decreases protease activities 
and increases ubiquitinated proteins [14]. The muscle-
specific deletion of Rpt3 resulted in reduced physical 
activity, and a decrease in the force production in mice, 
accompanied with the accumulation of abnormal pro-
teins [14]. In addition, in muscle-specific Rpt3-deficient 
mice, muscle weight divided by body weight was signifi-
cantly smaller in the gastrocnemius and tibialis anterior 
muscles, which are predominantly type II fibres, but not 
in the soleus muscle, which is predominantly type I fibres 
[14]. Previous studies have reported that type II glycolytic 
muscle fibres are more susceptible to muscle wasting 
conditions than are type I oxidative fibres [43, 44]. Since 
genetic induction of PGC-1α shows resistance to atrophy 
[45], the pro-atrophic response in type II fibres may be 
partly due to a low content of PGC1α. Interestingly, the 
proteasome-deficient mice showed premature death [14], 
where it further shows the importance of skeletal muscle 
homeostasis maintained by the UPS.

Crosstalk with autophagy system in muscle‑specific 
proteasome dysfunction
Another degradation process, which is known as 
autophagy is the natural regulatory cellular mechanism 
that is mainly involved in the removal of unnecessary or 
dysfunctional components from the cell [46]. Autophagic 
process initiates by forming a flat membrane cistern that 
envelops a portion of cytoplasm, eventually forming a 
closed double-membrane vesicle, which is known as the 
autophagosome. The autophagosome further fuses with 
the lysosome where its cargo components are degraded. 
Although autophagy is marginally activated in basal con-
ditions, main factor responsible for the activation is the 
nutrient starvation [46, 47]. It has also been shown that 
mice deficient in Atg3, Atg5, or Atg7, which are involved 
in autophagy, respectively, appear almost normal at birth 
but die on the first day of birth [48–50].

Autophagy is also shown to be essential for the mainte-
nance of the skeletal muscle homeostasis. With regard to 

the skeletal muscle, the excessive activation of autophagy 
promotes muscle wasting [51–53]. Conversely, the mus-
cle-specific deletion of a crucial autophagy gene, Atg7, 
results in profound muscle atrophy and age-dependent 
decrease in the generation of muscle force [54]. Further-
more, when mTORC1 was constitutively activated in 
skeletal muscle by TSC1-knockout, autophagy is inhib-
ited, and results in late onset severe myopathy [55]. Thus, 
autophagy plays an important role in muscle plasticity 
and homeostasis.

Since the UPS and autophagy pathways are differently 
oriented, these two proteolysis systems were viewed as 
independent [56, 57]. However, there are emerging evi-
dences suggesting the occurrence of a crosstalk between 
the autophagy and proteasomal pathways in the skel-
etal muscle. Although autophagy had been thought as a 
non-specific degradation system, it was found to degrade 
ubiquitinated proteins [58]. Moreover, muscle-specific 
autophagy dysfunction induces an increase in ubiquit-
inated proteins during denervation [54], which would 
be compensatory upregulation of UPS. Our previous 
study [14] also suggests the autophagy–UPS comple-
mentary relationship. Proteasome-deficient mice exhib-
ited the activation of autophagy. Briefly, the protein 
levels of LC3II, a standard marker for autophagosomes, 
and ubiquitin-binding p62 were found to be increased 
in the Rpt3−/− gastrocnemius muscle. Moreover, the 
levels of Beclin-1 and Atg5 that are involved in the for-
mation of the isolation membrane, and LC3I, which 
is involved in the initiation of autophagosome forma-
tion, were increased in the Rpt3−/− muscle. Therefore, 
the autophagy pathway seems to be enhanced in the 
UPS-deficient muscle. Previous studies also have dem-
onstrated that inhibition of the UPS induces autophagy 
in vivo and in vitro [59, 60]. Taken together, the UPS and 
autophagy systems, at least in part, compensatory main-
tain myocellular homeostasis and integrity.

UPS in muscle stem cells and regeneration
The adult muscle stem cells (also known as satellite cells) 
are required for the regeneration of the adult skeletal 
muscle [61]. Responding to muscle damage, satellite cells 
are rapidly activated and start to proliferate. Three days 
after the cardiotoxin injection-induced muscle damage, 
when the satellite cells are under the process of muscle 
regeneration, we found that both chymotrypsin-like and 
trypsin-like proteasome activities were increased. Using 
satellite cell-specific proteasome-deficient mice (Pax7-
CreERT2; Rpt3f/f), we demonstrated that proteasome 
dysfunction impaired satellite cell ability to proliferate, 
survive, and differentiate, resulting in defective muscle 
regeneration [62] (Fig.  2). These findings indicate that 
the UPS activity in satellite cell is associated with muscle 
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regeneration, especially in the early phase [62]. Consist-
ently, in a previous study, proteasome activity was found 
to be strongly correlated with proliferating cell nuclear 
antigen protein levels, suggesting that proteasomes play 
a key role in satellite cell proliferation [63]. Therefore, the 
findings suggest that the enhancement of the proteasome 
system is important for satellite cell proliferation and 
normal muscle regeneration.

Previous studies have also reported that the UPS is 
associated with the process of myogenic differentiation of 
satellite cells, which begins with cell cycle arrest and ends 
with the fusion of individual cells to form multinucleated 
myotubes [64–66]. In addition, it has also been shown 
that the inhibition or knockdown of the proteasome can 
block the fusion of myoblasts and thereby inhibit the pro-
cess of differentiation [65, 66].

A lot of uncertainty still remains, regarding the rela-
tionship between the UPS and muscle regeneration. 
One possible candidate to explain the relationship would 
be p53, which regulates apoptosis and cell survival, and 
promotes muscle differentiation in myoblasts [67–71]. A 
recent study reported that the tight control of p53 levels 
in myoblasts regulates the balance between the differ-
entiation process and the return to the quiescence stage 
[72], which indicates the importance of the p53 during 
the process of myogenic differentiation. Interestingly, 
p53 was upregulated in Rpt3-deficient primary satel-
lite cells and the inhibition of p53 expression by siRNA 
in those cells reduced cell death [62]. These data indicate 
that Rpt3 in satellite cells is important for cell survival via 
p53. There is still ambiguity with regard to muscle regen-
eration and the UPS. Although further work needs to be 

carried out to understand the UPS, recent studies have 
revealed a link between the UPS and various diseases dis-
cussed the following section.

Proteasome system and related diseases
As the UPS is important for the maintenance of the 
homeostasis in skeletal muscle, dysfunctions in the sys-
tem may lead to pathological conditions such as mus-
cular dystrophy, myositis, cachexia and amyotrophic 
lateral sclerosis.

Diseases with disorganisation of skeletal muscle itself
Muscular dystrophy: aberrant developmental process
Dystrophin, a 427-kDa skeletal muscle protein, links 
the interior of the myofibres to the extracellular matrix. 
Mutations in the dystrophin gene are linked to a severe 
form of muscular dystrophy known as Duchenne 
muscular dystrophy (DMD) or a mild form known as 
Becker muscular dystrophy (BMD) [73]. Dystrophin 
missense mutations cause a wide range of severe phe-
notypical features in DMD patients. When these mis-
sense mutations are stably expressed in mammalian 
myoblasts, dystrophin proteins are unstable and the 
protein levels are decreased by proteasomal degrada-
tion, but still mutated dystrophin functions to some 
extent [74]. Continuous administration of the protea-
somal inhibitor MG-132 effectively rescues the plasma 
membrane localisation and the amount of dystrophin 
in skeletal muscle fibres in dystrophin-deficient model 
mice [75]. Proteasomal inhibitors have been shown to 
reduce muscle membrane damage, as revealed by vital 
staining of the diaphragm and gastrocnemius muscle 
isolated from treated mice with dystrophin deficiency 
[75]. Bortezomib, which is a proteasome inhibitor, 
restores dystrophin and dystrophin–glycoprotein com-
plex at the sarcolemma, which improves the dystrophic 
phenotype [76]. Compared with control animals, mus-
cular dystrophy dogs treated with bortezomib had 
lower amount of connective tissue deposition and 
inflammation as evidenced by muscle histology, colla-
gen morphometry, and ultrastructural microscopy [77].

Congenital muscular dystrophy, which is caused by 
mutations in the gene encoding the laminin α2 chain, is a 
severe and incapacitating disease [78]. Proteasome activ-
ity is increased in laminin α2 chain-deficient muscle, and 
treatment with MG-132 reduces muscle pathology in 
laminin α2 chain-deficient mice [78]. In addition, bort-
ezomib reduces proteasome activity in congenital mus-
cular dystrophy type 1A myoblasts and myotubes [78]. 
Hence, proteasome inhibition might be useful in patients 
lacking the laminin α2 chain as a supportive treatment 
[79]. In case of dysferlinopathy, it was reported that 

Rpt3 KO in muscle stem cell

Apoptosis
Proliferation defect
Differentiation defect

Defective 
regeneration

Depletion of muscle 
stem cell pool

Fig. 2  Proteasome dysfunction in Rpt3-deficient muscle stem cells 
impaired their ability to proliferate, survive and differentiate, resulting 
in defective muscle regeneration. We also found that proteasome 
inactivation by Rpt3 deficiency in primary myoblasts inhibits cell 
proliferation and induces apoptosis. Further, proteasome dysfunction 
conferred by satellite cell-specific Rpt3-knockout induces p53 
activation
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proteasomal inhibition restores biological function of 
missense mutated dysferlin in patient-derived cells, but 
the paper was retracted [80]. The effect of proteasome 
inhibition in muscular dystrophy is yet to be elucidated.

Overall, proteasome inhibition might block the degra-
dation of the mutant dystrophin and recover the function 
to some extent.

Disease related to mutants in the proteins of UPS system: 
abnormal maintenance of muscle structures
Protein aggregate myopathies are characterised by pro-
tein accumulation in myofibres. These myofibres con-
tain inclusions of sarcomere proteins including myosin 
and myosin-associated proteins with aberrantly distrib-
uted microtubules [81]. Since sarcomere proteins are 
degraded by UPS, UPS dysfunction might be central 
to the development of these diseases. It is important to 
understand how genetic mutations of UPS impact on sar-
comere integrity.

Several disease-causing mutations have been found in 
ubiquitin E3-ligase and its adaptors (Table1) [82]. The 
genes tripartite motif-containing 63 and 54 (TRIM63 and 
TRIM54) encoding MuRF1 and MuRF3, respectively, are 
RING ubiquitin ligases involved in UPS. Both MuRFs 
are microtubule-associated proteins located in the M 
bands and Z discs of the sarcomere [83]. These E3 ubiq-
uitin ligases play a role in the degradation of sarcomeric 
proteins, myogenesis, and stabilisation of microtubules. 
The targets of MuRF1 include myosin-binding protein 
(MYBPC1), troponin 3, and telethonin, which cause 
distal arthrogryposis-1B myopathy [84], dilated cardio-
myopathy-2A [85], and limb–girdle muscular dystrophy 
(LGMD)-7 [86], respectively. MuRF3 targets filamin, and 
MuRF3 mutations are associated with distal myopathy, 
myofibrillar myopathy, and restrictive cardiomyopathy-5 
[87]. Another TRIM protein, TRIM32, targets actin, and 
desmin. A mutation in TRIM32 results in LGMD, nema-
line myopathy, or myofibrillar myopathy [88]. The ubiq-
uitin ligase Nedd4 participates in denervation-induced 
muscle atrophy in mice [89], and a relationship between 
myotonic dystrophy type 2 and NEDD4 has also been 
reported in human [90]. Atrogin-1/MAFbx is the Cullin 
adaptor of UPS. Atrogin-1 targets actin and disconnects 
actin, titin, and calsarcin-1 [91]. Atrogin-1 also targets 
MYHBPC3, and mutation in the gene results in dilated 
cardiomyopathy [92].

The Kelch-like family members, the adaptor proteins 
of E3-ligase, are mutated in nemaline myopathy [93]. 
Mutations in the Kelch family affect Cullin 3 (CUL3) 
interaction, which in turn affects the ubiquitination and 
degradation of protein substrates targeted by CUL3 pro-
tein complex [94]. Several genes among the Kelch-like 
family members are involved in nemaline myopathy; 

Kelch-like protein 40 (KLHL40) decreases thin filament 
protein stability [95], KBTBD13 disorganises the Z-disc 
[96], and Kelch-like protein 41 (KLHL41) impacts on 
nebulin degradation [97, 98]. KLHL41 degrades nebu-
lin-related anchoring protein, and this degradation is 
dysregulated in nemaline myopathy [99]. Especially, the 
CUL3 and KLHL20 complex coordinates the amount of 
autophagy-related protein 13 (ATG13) in prolonged star-
vation and controls autophagy [100, 101].

Overall, mutations in several E3-ligases can be the 
cause of muscle diseases. Ubiquitin ligases could mediate 
the interplay between autophagy and ubiquitin proteaso-
mal degradation.

Cachexia: reduced stress tolerance of the skeletal muscle
Cachexia reflects muscle wasting syndromes associated 
with several chronic diseases, such as cancer, diabetes, 
chronic obstructive pulmonary disease, congestive heart 
failure and chronic kidney disease (CKD) [102]. Body 
weight loss, muscle wasting, adipose tissue depletion 
and abnormal metabolism are among the characteristics 
of cachexia [103]. While the underlying mechanisms are 
complex, elevated angiotensin II (Ang II) levels are fre-
quently found in patients with cachexia, and treatment 
with angiotensin-converting enzyme inhibitor prevents 
weight loss [104]. Diaphragm muscle biopsies from 
22 critically ill patients under mechanical ventilation 
appeared approximately 25% smaller in myofibre diam-
eter, and this reduced their contractile force by one-half 
or more [105]. This protein degradation is mediated by 
proteolytic pathways, including proteasome and lys-
osomes [103]. The expression levels of muscle-specific 
ubiquitin ligases, such as Atrogin-1/MAFbx, MuRF1/
TRIM63, SMART [38], have been accepted as molecular 
markers of enhanced proteasome-dependent proteolysis 
in cancer-related cachexia demonstrated in several types 
of experimental models [106]. Small-molecule inhibit-
ing MuRF1 attenuates skeletal muscle atrophy in cardiac 
cachexia mouse model [107]. Sestrin1, which is a stress-
inducible metabolic regulator, preserves muscle mass 
and force in atrophy condition mouse models, including 
sarcopenia by blunting FoxO-dependent atrogenes [108]. 
On the other hand, specific proteasome inhibitors such 
as bortezomib do not improve the muscle phenotype in 
cancer-associated cachexia [109]. Others have reported 
unchanged levels of the UPS pathway in cancer patients 
[110, 111].

Depending on the type of cachexia pathology, there 
could be different protein degradation pathways involved. 
Interventional studies using cachexic models are needed 
to elucidate the role of UPS in the cachexic state.
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Diseases characterised with inflammations
Nakajo–Nishimura syndrome
Proteasome-associated auto-inflammatory syndromes 
was firstly described in 1939 in patients presenting with 
recurrent fever beginning in early childhood, accompa-
nied by nodular erythema, rash, and joint contractures 
[112]. Since then, several syndromes, such as the chronic 
atypical neutrophilic dermatosis with lipodystrophy 
and elevated temperatures (CANDLE) syndrome, the 
Nakajo–Nishimura syndrome (NNS), Joint contractures/
Muscle atrophy/microcytic anaemia/the Panniculitis-
induced lipodystrophy (JMP) syndrome, and the Japa-
nese auto-inflammatory syndrome with lipodystrophy, 
have been used to categorise patients with diseases 
within the same spectrum, including myositis [113, 114]. 
As mentioned in Sect.  2, an association between the 
immunoproteasome and disease has also been reported. 
Independent studies identified mutations in the immu-
noproteasome subunit β5i gene that result in a sus-
tained inflammatory response [113, 115]. In response to 
cytokines, DNA damage, or oxidative stress, cells selec-
tively upregulate the expression of the immunoprotea-
some. Immunoproteasome accelerates the proteolysis of 
specific peptide substrates and allows for the facilitated 
degradation of oxidant damaged proteins, which may 
accumulate during inflammation. Immunoproteasome-
mediated proteolysis generates immunogenic epitopes 
presented by MHC class I molecules [116].

Immunoproteasomes are also critical for skeletal mus-
cle differentiation of myoblasts [117]. The oxidative 
pathway is dysregulated in β5i-mutated iPS cell-induced 
myeloid cells [118]. In a DMD animal model, inhibition 
of the immunoproteasome was reported to ameliorate 
cardiomyopathy in mdx mice, reducing the fibrosis [119, 
120]. The mechanism of β5i mutations in skeletal muscles 
remains to be elucidated. These studies are enhancing the 
importance of analysing about immunoproteasome in 
the disease mechanism of NNS and muscular dystrophy.

Sporadic inclusion body myositis
Sporadic inclusion body myositis (sIBM) is the most com-
mon form of inflammatory myopathy in individuals aged 
50  years or more [121, 122]. Muscle weakness apparent 
in the quadriceps, wrist flexors, and finger flexors are the 
typical clinical findings of sIBM [123]. A muscle biopsy 
would typically reveal endomysial inflammation, inva-
sion of mononuclear cells into non-necrotic fibres, and 
rimmed vacuoles. These pathological hallmarks indicate 
that both inflammation and degeneration contribute to 
the pathology. As such, sIBM is considered to be caused 
by protein unfolding/misfolding combined with the for-
mation of inclusion bodies [124]. Inhibition of the elimi-
nation of ubiquitinated misfolded/unfolded proteins by 

proteasome results in cellular accumulation of protein 
aggregates found in sIBM-affected muscle fibres [14]. 
Amyloid beta (Aβ) and phosphorylated tau (p-tau) can 
be found in these aggregates. The effect of Aβ precursor 
protein (APP) overexpression on proteasome function 
and the influence of proteasome inhibition on aggresome 
formation was examined using cultured human muscle 
fibres [125]. In sIBM-affected muscle biopsies, the 26S 
proteasome subunits have been immune-detected in the 
β-tubulin-associated aggresomes, which also contained 
Aβ, p-tau, ubiquitin, and heat shock protein 70 (HSP70). 
Cultured muscle fibres have been observed to overex-
press APP and display diminished proteasomal proteo-
lytic activity, and the addition of a proteasome inhibitor 
strikingly increases aggresome formation apparently. The 
formation of inclusion bodies might be followed by 
abnormal intracellular accumulation of unfolded proteins 
[126]. As mentioned in Sect.  3.3, the crosstalk between 
proteasome and autophagy is important. Recently, the 
role of chaperone-mediated autophagy in the aetiology 
of sIBM was investigated [127]. Several ubiquitin protea-
some genes modulate autophagy. For example, Beclin-1, 
an essential gene for activation of autophagy, is ubiqui-
tinated by TNF receptor-associated factor 6 (TRAF6) 
ligase [128]. In addition, TRAF6 has been reported to be 
involved in muscle atrophy in several cases [128–130].

Dysfunction of UPS, which results in an enhanced 
autophagic machinery, may be the cause of muscle atro-
phy in sIBM. Accordingly, in contrast to the protective 
effect of proteasome inhibitor in muscular dystrophy, 
proteasome dysfunction may play a role in the accumula-
tion of misfolded, potentially cytotoxic proteins in sIBM 
myofibres.

Motor neuron disease: indirect cause of muscle atrophy
Amyotrophic lateral sclerosis (ALS) is a neurodegen-
erative disorder characterised by the fatal progressive 
loss of upper and lower motor neurons. In particular, 
the accumulation of ubiquitinated inclusions containing 
ALS-causing gene products is a common feature in most 
familial ALS models; it is also a pathological hallmark 
of sporadic ALS, indicating that the failure to eliminate 
detrimental proteins is linked to the pathogenesis of both 
sporadic and familial ALS. The involvement of UPS dys-
function is strongly suggested by the presence of ubiqui-
tinated inclusions such as skein-like and round hyaline 
inclusions [131]. The proteasome system is dysregulated 
in ALS, and the accumulation of superoxide dismutase 1 
(SOD1) deposits can be found in the spinal cord of exper-
imental animals and human autopsy cases [132–134]. The 
continuous expression of mutant SOD1 decreases pro-
teasome activity, and primary cultured embryonic motor 
neurons are vulnerable to proteasome inhibitor [134]. 
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Proteasome subunit Rpt3 conditional knockout mouse in 
a motor neuron-specific system showed locomotor dys-
function accompanied by progressive motor neuron loss 
and gliosis [135]. Promoting proteasomal degradation 
could be a therapeutic strategy for ALS [136].

Mutation causing ALS can also affect the function of 
UPS. Ubiquilin-2 and p62, two disease-causing genes 
in ALS, are mainly related to the protein aggregation 
and degradation pathways; therefore, mutations in 
the ubiquilin-2 and p62 genes can cause ALS related 
disorders [137–139]. Recently, exome sequencing of 
the ALS-FTD family identified the CCNF (encoding 
cyclin-F) gene as a novel gene associated with ALS 
[140]. Cyclin-F is the part of Skp1-Cul1-F-box (SCF) 
E3 ubiquitin-ligase complex that enables proteasome 
degradation [141]. Cyclin-F binds to valosin-containing 
protein (VCP), which is also reported to be mutated in 
ALS [142]. The ATPase activity of VCP promotes cyto-
plasmic aggregation of TAR DNA-binding protein 43 
(TDP-43), which is commonly observed in degenerat-
ing neurons in ALS patients [142]. The inhibition of 
proteasome in motor neuron can be the cause of aggre-
gation of SOD1 or TDP-43, which would be involved in 
ALS pathomechanism.

Overall, in case of motor neuron disease, UPS has a 
role to eliminate pathologically aggregated proteins 
rather than preserving the amounts of functional mole-
cules as is in the case of structural proteins in muscular 
dystrophy. The inhibition of proteasome in motor neu-
ron can be the cause of aggregation of SOD1 or TDP-
43, which would be involved in ALS pathomechanism.

Conclusions
In skeletal muscle, a functional decline due to atrophy 
is regulated by proteolysis. This nature of the tissue 
makes the relationship between proteolysis and skeletal 
muscle complicated. Indeed, the UPS inhibition often 
leads muscle atrophy and deficit in regeneration, while 
preserving skeletal muscle in some conditions or dis-
eases. The proteasome inhibitors and ubiquitin ligases 
are important regulators of the proteolytic system and 
may be potential therapeutic targets. Further studies 
are needed to understand how the UPS regulates the 
dynamics of proteostasis in skeletal muscle, and how its 
aberrance/dysfunction induces the pathological state. 
The study considerably enhances our understanding of 
the UPS regulation/maintenance of skeletal muscle. It 
will thus be of immense importance to further elucidate 
the mechanisms behind proteasome-mediated prote-
olysis, which will ultimately allow us to develop thera-
peutic intervention for the related diseases.
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