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Abstract Central arterial pulse pressure (PP), a strong

predictor of cardiovascular disease, mainly consists of an

incident wave generated by left ventricular ejection and a

late-arriving reflected wave emanating from the lower

body. We have tested the hypothesis that a reduction in leg

vascular tone by heat treatment of the lower leg attenuates

the central arterial PP. Pressure and wave properties of the

peripheral and central arteries were measured in eight

young men before and after heat treatment of the lower leg

(temperature approx. 43 �C) for 30 and 60 min, respec-

tively. Following the lower leg heat trial, leg (femoral–

ankle) pulse wave velocity (PWV) was significantly de-

creased, but aortic (carotid–femoral) PWV and parameters

of wave reflection and carotid arterial PP did not change

significantly. No significant changes were observed in

these parameters in the control trial. These results suggest

that the reduction in leg vascular tone induced by heat

treatment of the lower leg may not affect wave reflection

and central arterial PP in young men.

Keywords Central arterial pulse pressure � Reflected
wave � Pulse wave velocity � Lower leg heating

Introduction

High pulse pressure (PP) of the central arteries, such as the

aorta and carotid artery, is more strongly associated with

risk for cardiovascular disease than high PP of the pe-

ripheral arteries [1–4]. Thus, effective management of

central arterial PP might be of pathophysiological impor-

tance. The pulsatile component of central arterial pressure

consists of an incident wave elicited by left ventricular

ejection and a late-arriving reflected wave arising from the

peripheral vasculature of the lower body [5]. As the re-

flected wave seems to accrue at high resistance arterioles as

well as other sites of impedance mismatch in the arterial

tree (e.g., aortic bifurcation and branches of renal arteries)

[5], it is very possible that peripheral vascular properties

influence central arterial PP. Systemic vasodilation caused

by the administration of the endothelium-independent va-

sodilator nitroglycerin induces a significant reduction in the

central augmentation index (AI), an index of wave reflec-

tion, without alterations in heart rate (HR) and blood

pressure (BP) [6]. Additionally, systemic a1-adrenergic
receptor blockade evokes a significant attenuation of aortic

PP elevation during dynamic leg exercise [7]. Therefore, a

transient change in peripheral vascular tone may also alter

central arterial PP. Although the major reflected wave

emanates from peripheral vasculature in the lower body,

the influence of regional change in leg vascular tone on

central arterial PP remains incompletely understood.

We have studied the influence of lower leg vascular tone

on central (carotid) arterial hemodynamics. To elicit va-

sodilation of the leg vasculature, we immersed the lower
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leg of eight healthy male subjects in a hot water bath as a

heat treatment [8–12]; these subjects were considered to

have relatively higher vasodilatory function [13, 14]. We

hypothesized that in these young men, decreased leg vas-

cular tone due to heating of the lower leg would decrease

carotid arterial PP by the attenuation of wave reflection.

Methods

Subjects

We studied eight, apparently healthy young men [mean ±

standard error of the mean (SEM): age 21 ± 1 years, height

171 ± 2 cm, weight 65 ± 2 kg]. All subjects had no ap-

parent cardiovascular disease based on assessment of their

respective medical history and did not take any medications.

None of the participants had a history of smoking or regular

physical exercise, and had adopted a normal living style.

This study was approved by the Ethical Committees of the

Institute of Health and Sport Sciences of the University of

Tsukuba. The study conformed to the principles outlined in

the Helsinki Declaration, and all subjects provided written

informed consent before inclusion in the study.

Experimental protocol

The experiment consisted of a 30-min intervention (lower leg

heating and control) and pre- and post-intervention hemo-

dynamic measurements, with the post-intervention mea-

surements performed 30 and 60 min after the intervention.

The subjects abstained from alcohol, caffeine intake and

vigorous exercise for at least 24 h before the experiments. In

all experiments, the subjects were evaluated concurrently.

First, they were asked to lay still for at least 30 min in a

temperature-controlled room (approx. 23 �C) before baseline
measurements were obtained. Then, during the interventions,

the subjects were asked to rest still in a comfortable chair and

put their lower legs and feet into a plastic bucket (diameter

42 cm, depth 40 cm) containing hot water (approx. 43 �C,
approx. 40 cm of hot water; lower leg heating trial) or not

containing hot water (control). To maintain the temperature

of the water in the plastic basin at 43� for 30 min, hot water

(at 43�) was continually added to the bucket during the

30-min trial using a hot-water supply system (BC60V3;

Rinnai Corporation, Nagoya, Japan). These trials were per-

formed on separate days with a crossover design.

Measurements

Hemodynamic variables

Heart rate, brachial BP and pulse wave velocity (PWV)

were measured with a vascular testing device equipped

with an electrocardiogram, phonocardiogram, oscillo-

metric extremities cuffs and an (optional) applanation

tonometry sensor unit (Form PWV/ABI: Model BP-

203RPEII and TU-100; Colin Medical Technology,

Komaki, Japan), as previously described [15, 16]. Car-

otid and femoral arterial pressure waveforms were si-

multaneously recorded by two applanation tonometry

sensors incorporating an array of 15 micropiezoresistive

transducers. Briefly, PWV (=arterial path length/pulse

transit time) was obtained between the carotid and

femoral regions (e.g. aorta) and between the femoral

and ankle regions (e.g. leg). These arterial path lengths

were assessed in duplicate with a random zero length

measurement over the surface of the body with a

nonelastic tape measure [17]. Pulse transit times were

automatically computed from simultaneously recorded

arterial pressure waveforms at the left carotid, left

femoral (via applanation tonometory sensors) and left

posterior-tibial (via air plethysmography) arteries by the

5- to 30-Hz band pass filter-based algorithm of the

testing device (Fig. 1). The carotid AI was also

Table 1 Brachial arterial blood pressure, heart rate and body tem-

perature responses to the heat intervention

Variables Baseline Post-intervention:

30 min

Post-intervention:

60 min

Brachial SBP (mmHg)

Control 114 ± 1 114 ± 2 116 ± 2

Lower leg

heating

114 ± 2 114 ± 2 113 ± 2

Brachial MBP (mmHg)

Control 81 ± 1 83 ± 2 84 ± 1

Lower leg

heating

83 ± 1 83 ± 2 85 ± 2

Brachial DBP (mmHg)

Control 61 ± 1 62 ± 2 64 ± 2

Lower leg

heating

62 ± 2 62 ± 3 62 ± 2

HR (beats/min)

Control 54 ± 2 52 ± 2 53 ± 2

Lower leg

heating

58 ± 2 58 ± 3 58 ± 2

Axillary temperature (�C)
Control 36.3 ± 0.1 36.5 ± 0.1 36.3 ± 0.1

Lower leg

heating

36.7 ± 0.1 36.7 ± 0.1 36.6 ± 0.1

Tympanic temperature (�C)
Control 36.6 ± 0.2 36.6 ± 0.2 36.7 ± 0.2

Lower leg

heating

37.3 ± 0.2 37.4 ± 0.2 37.3 ± 0.2

Data are presented as the mean ± standard error of the mean (SEM)

SBP Systolic blood pressure, MBP mean arterial pressure, DBP di-

astolic blood pressure, PP pulse pressure, HR heart rate
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calculated automatically as the pressure wave above its

systolic shoulder, which was detected by fourth-order

derivatives [15], divided by the PP [18]. Carotid arterial

pressure was calibrated by equating the mean carotid

and diastolic BP to the mean brachial and diastolic BP

[19].

Carotid blood pressure waveform analysis

LabVIEW-based pulse waveform analysis software

(TRial, Omron Health Care Co., Kyoto, Japan) was used

according to the algorithm published by Westerhof et al.

[20] and Qasem and Avolio [21] to decompose the carotid

arterial pressure waveforms into the forward- and back-

ward-traveling (incident wave and reflected wave, respec-

tively) waves and their time delay [e.g. the return time of

the reflected wave (TR)].

Statistical analyses

The effects of acute lower leg heating on hemodynamic

variables were evaluated by repeated-measure analysis of

variance (ANOVA) in a general linear model (GLM). In

the case of a significant F value, Fischer’s LSD post hoc

test was used to identify significant differences among

mean values. All data were reported as mean ± SEM.

Statistical significance was defined a priori at P\ 0.05.

Results

Brachial arterial BP, HR and body temperature in the lower

leg subjected to heating and in the control lower leg were

not significantly different (Table 1). The aortic PWV in the

heated lower leg also did not significantly from the control

Fig. 1 Sample of simultaneous

recordings of electrocardiogram

(ECG), phonocardiogram

(PCG) and arterial pressure

waveforms at carotid (CAP),

brachial (BAP), femoral (FAP),

and posterior–tibial (PAP)

arteries by an automated

polygraph apparatus. Each box

above the carotid arterial

waveform indicates the location

of tonometry sensor which

detected the strongest pressure

(black bar) among 15 sensors
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level (Fig. 2). Leg PWV was significantly decreased at

30 min after the lower leg heating trial (773 ± 30 vs.

741 ± 26 cm/s, respectively; P\ 0.05), and this decrease

was not observed after the control trials (Fig. 2). Carotid

BP, incident wave amplitude and parameters of wave re-

flection, such as AI, TR, and reflected wave amplitude, did

not change significantly in either the lower leg heating trial

or control trial (Table 2). Carotid and brachial arterial PP

did not change significantly throughout both trials (Fig. 3).

Discussion

Owing to the growing body of evidence demonstrating

superior prognostic utility of central arterial PP compared

with that of peripheral arterial PP [22–24], in the near fu-

ture lowering the central arterial PP may become important

in hypertension management and cardiovascular disease

prevention. Therefore, we attempted to identify a deter-

minant of the central arterial PP. A major finding of this

study was that after the heat intervention the PWV in the

lower leg did significantly decrease, and the reflected wave

and central arterial PP did not change. This result suggests

that the reduction in leg vascular tone induced by heating

of the lower leg does not affect the wave reflection and,

consequently, does not affect the central arterial PP in

young men.

The central arterial PP differs from the peripheral arte-

rial PP due to the variable superposition of incident and

reflected pressure waves along the arterial tree [5]. As the

reflected pulse wave is likely to occur in the arterioles of

the lower body, which show high resistance, as well as at

the aortic bifurcation and branches of the renal arteries [5],

we assumed that heating of the lower leg would reduce leg

vasoconstrictor tone, resulting in delayed return and

dampening the magnitude of the reflected pulse waves and

subsequent attenuation of the central arterial PP.

It is well-known that warmth stimulation elicits va-

sodilatory substances, such as nitric oxide [10, 11], va-

soactive intestinal peptide [8], prostanoids [9] and H1

Fig. 2 Responses of aortic (top) and leg (bottom) pulse wave velocity

to the heating intervention. Data are given as the mean ± standard

error of the mean (SEM). *P\ 0.05 vs. baseline

Table 2 Carotid blood pressure, incident wave amplitude and pa-

rameters of wave reflection responses to the intervention

Variables Baseline Post-intervention:

30 min

Post-intervention

60 min

Carotid SBP (mmHg)

Control 109 ± 2 106 ± 2 108 ± 1

Lower leg

heating

114 ± 2 113 ± 3 109 ± 3

Carotid DBP (mmHg)

Control 61 ± 1 62 ± 1 65 ± 2

Lower leg

heating

62 ± 2 62 ± 3 62 ± 2

IWA (mmHg)

Control 47.7 ± 2 44.1 ± 2 44.6 ± 3

Lower leg

heating

50.8 ± 3 48.3 ± 5 46.2 ± 3

RWA (mmHg)

Control 14.3 ± 1 14.4 ± 1 13.9 ± 1

Lower leg

heating

13.4 ± 1 13.4 ± 1 13.0 ± 1

TR (ms)

Control 152 ± 5 146 ± 5 152 ± 5

Lower leg

heating

151 ± 4 141 ± 6 146 ± 5

Carotid AI (%)

Control -27.8 ± 4 -20.7 ± 4 -22.1 ± 4

Lower leg

heating

-33.6 ± 6 -25.8 ± 6 -21.3 ± 6

Data are presented as the mean ± SEM

IWA Incident wave amplitude, RWA reflected wave amplitude, TR

timing of reflected wave, AI augmentation index
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histamine receptor [12]. Thus, in order to reduce vaso-

constrictor tone in the leg vasculature, we applied heat

stimulation to both of the lower legs of young healthy men

who were likely to have relatively higher vasodilatory

function. As expected, we found that heating of the lower

leg decreased leg PWV, presumably due to a reduced local

vasoconstrictor tone. However, aortic PWV, RWA and

central (e.g. carotid artery) PP did not change significantly

with heating of the lower leg. Although we were unable to

clearly identify an etiology for this result, we do propose a

number of theories. First, since the major reflection site is

located in the abdominal region (i.e., renal and aortic bi-

furcation) in young adults [25], a reduction in the leg

vasoconstrictor tone might not affect central arterial he-

modynamics. In this context, an investigation of elderly

adults may clarify whether this proposal is valid because

the major wave reflection site shifts distally with advancing

age [25]. Alternatively, the region subjected to heating (e.g.

lower legs) might have been too small to influence central

arterial hemodynamics. Further studies investigating the

effects of heating an expanded full leg region, the use of

different temperatures and/or the chronic application of

lower leg heating on the central arterial PP are warranted.

Several methodological limitations of this study should

be mentioned. First, we applied this method on carotid

arterial pressure waveforms to extract carotid forward and

backward pressure components, as previously reported

[26]. The Westerhof’s triangulation method had been

proposed for decomposing aortic forward and backward

pressure waves. Although the shape of carotid arterial

pressure waveform differs from that of aorta, these are both

classified as central arterial pressure and provide qualita-

tively similar clinical information [27]. Of note, to validate

this approach, we compared the ratio of backward pressure

wave amplitude to forward pressure wave amplitude ob-

tained from the carotid arterial waveform and found that

this ratio was strongly correlated with the corresponding

value acquired from aortic waveforms that was estimated

from simultaneously recorded radial arterial pressure

waveforms (r = 0.758, P\ 0.01). Second, we performed

measurements at 30 min post-intervention to elicit the re-

duction in local (leg) vasoconstrictor tone without systemic

hemodynamic change (i.e. peripheral BP and HR), as seen

in a previous study investigating the acute effect of aerobic

exercise [28]. This protocol was likely the preferable one to

test our hypothesis. To gain insight into the physiological

mechanisms of central arterial hemodynamics, measure-

ments of leg vascular tone at an earlier post-intervention

phase (\30 min) are warranted.

In summary, using lower leg heating, we determined the

influence of the transient reduction in leg vascular tone on

the wave reflection and central arterial PP in healthy young

men. Despite the decrease in leg PWV, measures of wave

reflection and carotid arterial PP did not change sig-

nificantly following the lower leg heating intervention.

These results suggest that the lower leg heating-induced

reduction in leg vascular tone does not affect the wave

reflection and central arterial PP in young men.
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